Journal Articles
S. Hittmeyer, B. Krauskopf, H.M. Osinga and K. Shinohara, How
to identify a hyperbolic set as a blender,
to appear in Discrete
and Continuous Dynamical Systems –
Series A, doi: 10.3934/dcds.2020295
S. Hittmeyer, B. Krauskopf, H.M. Osinga and K. Shinohara, Existence of blenders in a Hénon-like
family: geometric insights from invariant manifold
computations, Nonlinearity, 31(10): R239–R267, 2018, doi: 10.1088/1361-6544/aacd66
S. Hittmeyer, B. Krauskopf and H.M. Osinga, From
wild Lorenz-like to wild Rovella-like dynamics,Dynamical
Systems, 30(4): 525-542, 2015, doi: 10.1080/14689367.2015.1081677
S. Hittmeyer, B. Krauskopf and H.M. Osinga, Interactions
of the Julia set with critical and (un)stable sets in an
angle-doubling map on C\{0}, International Journal of
Bifurcation and Chaos, 25(4): 1530013, 2015, doi: 10.1142/S021812741530013X
S. Hittmeyer, B. Krauskopf and H.M. Osinga, Interacting
global invariant sets in a planar map model of wild chaos, SIAM
Journal on Applied Dynamical Systems, 12(3):
1280–1329, 2013, doi: 10.1137/120902860
Refereed Proceedings
S. Hittmeyer, B. Krauskopf and H.M. Osinga, Generalized
Mandelbrot and Julia sets in a family of planar
angle-doubling maps, in M. Bohner,
S. Siegmund, R.Š. Hilscher and P. Stehlík (Eds.),
Difference Equations and Discrete Dynamical Systems with Applications, ICDEA 2018, Springer Proceedings in
Mathematics and Statistics, Springer Nature (2020), doi:
10.1007/978-3-030-35502-9_2
pp. 21–54,
S. Hittmeyer, B. Krauskopf and H.M. Osinga, Generalized
Julia Sets: from Cantor Bouquet to Cantor Cheese,
S. Goldstine, D. McKenna and K. Fenyvesi (Eds.),
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture,
Tessellations Publishing (2019), pp. 371–374, link
to paper
H.M. Osinga, B. Krauskopf and S. Hittmeyer, Chaos and wild
chaos in Lorenz-type systems, in Z. Al-Sharawi,
J.M. Cushing and S. Elaydi (Eds.), Theory and Applications
of Difference Equations and Discrete Dynamical Systems,
ICDEA 2013, Springer Proceedings in Mathematics and
Statistics 102, Springer-Verlag (2014), pp. 75–98, doi: 10.1007/978-3-662-44140-4_4
Other publications
S. Hittmeyer, B. Krauskopf and H.M. Osinga, Interactions of generalised Julia sets near
the complex quadratic family, Proceedings of the International
Congress of Women Mathematicians, 2014, link
to paper
S. Hittmeyer, Bifurcations of invariant sets in a model of wild chaos, Doctoral
Thesis, The University of Auckland, 2014, link
to thesis
S. Hittmeyer, Continuation of Periodic Orbits in Conservative
and Hamiltonian Systems (in German), Diploma thesis, Bielefeld
University, 2009, link
to thesis
S. Hittmeyer, The
ISOMAP Algorithm for Non-linear Dimensionality
Reduction, in M. Bolten (Ed.), Proceedings of the
JSC Guest Student Programme on Scientific Computing 2007, Jülich
Supercomputing Centre (2007), pp. 51-61, link to report