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Meshless Finite Difference Methods

Meshless methods for numerical PDEs

Growing interest since 1990s in particular in the

engineering literature.

As the name suggests there is no mesh or grid (even

‘unstructured’), just unconnected nodes spread out over

the computational domain.

Motivation: difficulties of mesh generation for complex

geometries, and difficulties of the modification of a mesh

when singularities or domain boundary move in time.

Many versions with different backgrounds.
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Meshless Finite Difference Methods

Meshless FDM

Model problem: Poisson equation ∆u = f on Ω, u|∂Ω = g.

Distribute nodes {ξi}i∈I = Ξ ⊂ Ω.

Choose a small set of influence Ξi ⊂ Ξ for each ξi ∈ Ξ \∂Ω.

Find the weights wi ,j of a numerical differentiation formula:

∆u(ξi) ≈
∑

ξj∈Ξi

wi ,ju(ξj) for each ξi ∈ Ξ \ ∂Ω.

Find a discrete approximate solution û defined on Ξ by

solving sparse linear system with matrix W = [wi ,j ]ξi ,ξj∈Ξ\∂Ω

∑

ξj∈Ξi

wi ,j û(ξj) = f (ξi) for ξi ∈ Ξ \ ∂Ω

û(ξi) = g(ξi) for ξi ∈ ∂Ω.
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Meshless Finite Difference Methods

Set Ξ of all nodes and a set of influence Ξi :

T

ξi

ξi

Ξi
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Meshless Finite Difference Methods

Classical FD method is a special case:

Ξ is a tensor-product grid (or union of several grids)

Ξi and {wi ,j}j∈Ξi
are shifted and scaled versions of

a single stencil

The weights wi ,j are in fact chosen such that numerical

differentiation is exact for polynomials of certain degree:

∆u(ξi) =
∑

ξj∈Ξi

wi ,ju(ξj) if u is a polynomial of degree n
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Meshless Finite Difference Methods

Meshless FD vs. classical FD method:

Ξ is arbitrary

Ξi are chosen individually

The weights wi ,j are obtained by a method that ensures
exactness of the formula for either

polynomials of certain degree, or

kernel sums:

∆u(ξi) =
∑

ξj∈Ξi

wi,ju(ξj ) if u =
∑

ξj∈Ξi

aj K (·, ξj)

where K (x , y) is a positive definite kernel, or

kernel sums + polynomials

(also for conditionally positive definite kernels)
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Meshless Finite Difference Methods

Advantages of meshless finite difference methods

genuinely meshless, no need to maintain any mesh

efficient numerics of sparse linear systems

no integration over complicated subdomains

system matrix assembly amounts to

(a) search for sets of influence, and

(b) computation of numerical differentiation weights

full flexibility for local adaptation to reflect local features:
free to choose

location of nodes

local sets of influence Ξi

numerical differentiation formulae
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Meshless Finite Difference Methods: Examples

Numerical Examples

Joint work with Dang Thi Oanh and Hoang Xuan Phu

Oleg Davydov and Dang Thi Oanh, Adaptive meshless

centres and RBF stencils for Poisson equation, J. Comput.

Phys., 230 (2011), 287-304.

Dang Thi Oanh, Oleg Davydov and Hoang Xuan Phu,

Adaptive RBF-FD method for elliptic problems with point

singularities in 2D, Appl. Math. Comput., 313 (2017),

474–497.

Oleg Davydov Consistency Error of mFDM 8



Meshless Finite Difference Methods: Examples

Low order mFD method competing with linear FEM

Sets of influence of size ni = 7 with “geometric selection”

Gaussian kernel K (x,y) = e−ǫ2‖x−y‖2
2 with small ǫ = 10−4

via Gauss-QR preconditioning by Fornberg, Larsson et al.

Error indicator: ε(ζ, ξ) defined for all ζ ∈ Ξ, ξ ∈ Ξζ .

An ‘edge’ ζξ is marked for refinement if

ε(ζ, ξ) ≥ ε̄ := γ max{ε(ζ, ξ) : ζ ∈ Ξ, ξ ∈ Ξζ}

γ ∈ (0,1] is a tolerance (γ = 0.5 in all our tests).

2011: ε(ζ, ξ) = |û(ζ)− û(ξ)|
2017: indicator of averaging type
ε(ζ, ξ) = |(û(ζ)− û(ξ))− (ℓζ(ζ) − ℓζ(ξ))|, where ℓζ is a

linear polynomial least squares fit to data {(ξ, û(ξ))}ξ∈Ξζ

(motivated by Zienkiewicz-Zhu indicator in FEM).
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Meshless Finite Difference Methods: Examples

Test Problem 1

Dirichlet problem for the Helmholz equation −∆u − 1
(α+r)4 u = f ,

r =
√

x2 + y2 in the domain Ω = (0,1)2. RHS and the

boundary conditions chosen such that the exact solution is

sin( 1
α+r ), where α = 1

50π .

Exact solution:
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Meshless Finite Difference Methods: Examples

Zooms of the exact solution, FEM (with 9225 centers) and mFD

(with 9775 centers)

exact FEM mFD
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Meshless Finite Difference Methods: Examples

Error plots: FEM (left) vs. mFD (right)
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Meshless Finite Difference Methods: Examples

RMS Errors
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(a) RMS errors on centers
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(b) RMS errors on a grid

X-axis: (the number of interior centers)−1

Y-axis: RMS error
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Meshless Finite Difference Methods: Examples

Test problem 2

Laplace equation ∆u = 0 in a circle sector

−3π/4 ≤ ψ ≤ 3π/4

Boundary conditions g(r , ψ) = cos(2ψ/3) along the arc,

and g(r , ψ) = 0 along the straight lines

Exact solution u(r , ψ) = r2/3 cos(2ψ/3)
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Meshless Finite Difference Methods: Examples

Adaptive centers by PDE Toolbox (MATLAB) and by mFD
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(a) FEM centers (1431)
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(b) mFD centers (1444)
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Meshless Finite Difference Methods: Examples

Error plots: u − û

(û obtained by piecewise linear w.r.t. Delaunay triangulation)

(a) FEM (1431 centers) (b) mFD (1444 centers)
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Meshless Finite Difference Methods: Examples

RMS Errors
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Meshless Finite Difference Methods: Error Bounds

“Consistency and Stability =⇒ Convergence”:

‖û − u|Ξ‖
︸ ︷︷ ︸

solution error

≤ S
∥
∥
∥

[

∆u(ξi)−
∑

ξj∈Ξi

wi ,ju(ξj)
]

ξi∈Ξ\∂Ω

∥
∥
∥

︸ ︷︷ ︸

consistency error

‖ · ‖ − a vector norm, e.g. ‖ · ‖∞ (max) or quadratic mean (rms),

respectively a matrix norm, ‖ · ‖∞ or ‖ · ‖2,

S := ‖[wi ,j ]
−1
ξi ,ξj∈Ξ\∂Ω

‖ − stability constant

(can be estimated once wi ,j are known).

If S is bounded, then the convergence order for a sequence of

discretisations Ξn is determined by the consistency error:

∆u(ξi)−
∑

ξj∈Ξi

wi ,ju(ξj) (numerical differentiation error)
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Consistency Error

Joint work with Robert Schaback

O. Davydov and R. Schaback, Error bounds for

kernel-based numerical differentiation, Numer. Math., 132

(2016), 243-269.

O. Davydov and R. Schaback, Optimal stencils in Sobolev

spaces, to appear in IMA J. Numer. Anal.

Preprint: arXiv:1611.04750

O. Davydov and R. Schaback, Minimal numerical

differentiation formulas, preprint. arXiv:1611.05001
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Consistency Error

Numerical differentiation formulas

Given a finite set of points X = {x1, . . . ,xN} ⊂ R
d and function

values fj = f (xj), we want to approximate the value Df (z) at a

point z by a linear combination

Df (z) ≈
N∑

i=1

wi f (xi),

where D is a differential operator Df (z) =
∑

α∈Zd
+, |α|≤k

aα(z)∂
αf (z).
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Consistency Error

Approximation approach

Df (z) ≈ Dp(z), where p is an approximation of f , e.g.,

least squares fit from a finite dimensional space P
partition of unity interpolant

moving least squares fit

RBF / kernel interpolant

If p =
m∑

i=1

aiφi and the coefficients ai depend linearly on

f (xj), i.e. a = Af |X, then p = φa = φAf |X,

Dp(z) = Dφ(z)A
︸ ︷︷ ︸

w

f |X =
N∑

j=1

wj f (xj).
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Consistency Error

Exactness approach

Require exactness of the numerical differentiation formula

for all elements of a space P:

Dp(z) =

N∑

j=1

wj p(xj) for all p ∈ P .

Notation: w ⊥D P.

E.g., exactness for polynomials of certain order q:

P = Πd
q , the space of polynomials of total degree < q in d

variables. (Polynomial numerical differentiation.)
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Consistency Error: ‖·‖1,µ-minimal formulas

Theorem

If w is exact for polynomials of order q > k (the order of D), then

|Df (z)−
N∑

j=1

wj f (xj)| ≤ |f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 ,

where |f |∞,q,Ω :=
( 1

q!

∑

|α|=q

1

α!
‖∂αf‖2

∞,Ω

)1/2
.

The best bound is obtained if

N∑

j=1

|wj |‖xj − z‖q
2 is

minimized over all weights w satisfying the exactness

condition Dp(z) =
∑N

j=1 wj p(xj), ∀p ∈ Πd
q . (w ⊥D Πd

q )

More general: minimize

N∑

j=1

|wj |‖xj − z‖µ2 , µ ≥ 0.

We say that formula is ‖·‖1,µ-minimal.
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Consistency Error: ‖·‖1,µ-minimal formulas

Minimize

N∑

j=1

|wj |‖xj − z‖µ2 subject to w ⊥D Πd
q .

‖·‖1,µ-minimal weights can be found by linear

programming (e.g. simplex algorithm if N is small).

µ = 0: formulas with optimal stability constant
∑N

j=1 |wj |
w is sparse in the sense that the number of nonzero wj ’s

does not exceed dimΠd
q .

Considered by Seibold (2006) for D = ∆ under additional

condition of “positivity” (which restricts exactness to q ≤ 4).

Our error bound suggests the choice µ = q.
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Consistency Error: ‖·‖1,µ-minimal weights

Influence of µ on the location of nonzero weights w∗
j 6= 0.
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(a) µ = 0
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(b) µ = q = 7
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(c) µ = 15

‖·‖1,µ-minimal weights (µ = 0,7,15) of exactness order q = 7

computed for the Laplacian at the origin from the data at 150

points. Locations of 28 points xj for which w∗
j 6= 0 are shown.

The set for µ = q = 7 looks like most reasonable choice.
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Consistency Error: Growth Function

Duality:

inf
w⊥DΠ

d
q

N∑

i=1

|wi | ‖xi − z‖q
2 =

= sup
{

Dp(z) : p ∈ Πd
q , |p(xi)| ≤ ‖xi − z‖q

2 , ∀i
}

=: ρq,D(z,X,1)

A special case of Fenchel’s duality theorem, but can also

be proved directly by using extension of linear functionals.

More general, for any seminorm ‖·‖ on R
N ,

inf
w⊥DΠ

d
q

‖w‖ = sup
{

Dp(z) : p ∈ Πd
q , ‖p|X‖∗ ≤ 1

}

=: ρq,D(z,X, ‖·‖).

We call ρq,D(z,X, ‖·‖) the growth function.
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Consistency Error: Growth Function

Theorem

For any ‖·‖1,q-minimal formula,

|Df (z)−
N∑

j=1

wj f (xj )| ≤ ρq,D(z,X,1)|f |∞,q,Ω.

As we will see, similar estimates involving ρq,D(z,X,1) hold

for kernel methods as well.
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Consistency Error: Growth Function

Default behavior of growth function

ρq,D(z,X,1) := sup
{
|Dp(z)| : p ∈ Πd

q , |p(xi)| ≤ ‖xi − z‖q
2 , ∀i

}
,

hz,X := max
1≤j≤N

‖z − xj‖2

If X is a “good” set for Πd
q (“norming set”), then

max
‖x−z‖2≤hz,X/2

|p(x)| ≤ C max
i

|p(xi)| ≤ Ch
q
z,X,

hence |Dp(z)| ≤ Ch
q−k
z,X and ρq,D(z,X,1) ≤ Ch

q−k
z,X ,

so that we get an error bound of order h
q−k
z,X :

|Df (z)−
N∑

j=1

wj f (xj)| ≤ Ch
q−k
z,X |f |∞,q,Ω.

This means mFD method on such formulas has

consistency order q − k
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Consistency Error: Least Squares Formulas

Discrete Least Squares

Let X = {x1, . . . ,xN} be unisolvent for Πd
q (N ≥ dimΠd

q ).

The weighted least squares polynomial Lθ

X,qf ∈ Πd
q is uniquely

defined by the condition

‖(Lθ

X,q f − f )|X‖2,θ = min
{
‖(p − f )|X‖2,θ : p ∈ Πd

q

}
,

where

‖v‖2,θ :=
( N∑

j=1

θjv
2
j

)1/2
, θ = [θ1, . . . , θN ]

T , θj > 0.

Exact for polynomials: Lθ

X,qp = p for all p ∈ Πd
q

Num. differentiation: Df (z) ≈ DLθ

X,qf (z) =
N∑

j=1

w
2,θ
j f (xj)
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Consistency Error: Least Squares Formulas

Dual formulation

The weight vector w2,θ of Df (z) ≈ DLθ

X,qf (z) =
N∑

j=1

w
2,θ
j f (xj)

solves the quadratic minimization problem

‖w2,θ‖2
2,θ−1 = inf

w∈RN

w⊥DΠd
q

‖w‖2
2,θ−1 ,

where θ
−1 := [θ−1

1 , . . . , θ−1
N ]T , ‖w‖2,θ−1 =

( N∑

j=1

w2
j

θj

)1/2
.

It follows that

‖w2,θ‖2,θ−1 = sup
{

Dp(z) : p ∈ Πd
q , ‖p|X‖2,θ ≤ 1

}

= ρq,D(z,X, ‖·‖2,θ−1).
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Consistency Error: Least Squares Formulas

Theorem

|Df (z)− DLθ

X,qf (z)| ≤
≤ ρq,D(z,X, ‖·‖2,θ−1)

( N∑

j=1

θj‖xj − z‖2q
2

)1/2
|f |∞,q,Ω.

In particular, for θj = ‖xj − z‖−2q
2 ,

|Df (z)− DLq
X,qf (z)| ≤

√
N ρq,D(z,X,2) |f |∞,q,Ω,

where

ρq,D(z,X,2) = sup
{

|Dp(z)| : p ∈ Πd
q ,

N∑

j=1

|p(xj)|2

‖xj − z‖2q
2

≤ 1, ∀i
}

ρq,D(z,X,2) = ‖w2,q‖2,q =
(
∑N

j=1(w
2,q
j )2‖xj − z‖2q

2

)1/2

can be computed a posteriori and used in degree

adaptation algorithms similar to [D. & Zeilfelder, 2004]
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Consistency Error: Least Squares Formulas

Inequalities between ρq,D(z,X,1) and ρq,D(z,X,2):

ρq,D(z,X,2) ≤ ρq,D(z,X,1) ≤
√

Nρq,D(z,X,2).

This implies for the least squares formulas with

θj = ‖xj − z‖−2q
2 an error bound in terms of ρq,D(z,X,1):

|Df (z)− DL
q
X,qf (z)| ≤

√
N ρq,D(z,X,1) |f |∞,q,Ω,

which is only by factor
√

N worse than the error bound for

the ‖·‖1,q-minimal formula.

We can estimate ρq,D(z,X,1) with the help of ρq,D(z,X,2),
which is cheaper to compute by quadratic minimization or

orthogonal decompositions instead of ℓ1 minimization.

Oleg Davydov Consistency Error of mFDM 32



Consistency Error: Least Squares Formulas

Comparison to earlier work

For non-weighted least squares (θj = 1) we get

|Df (z)− DLX,qf (z)| ≤
√

N ρq,D(z,X, ‖·‖2)h
q
z,X |f |∞,q,Ω

≤
√

N ρq,D(z,X, ‖·‖1)h
q
z,X |f |∞,q,Ω.

Hence, for D = I

‖f − LX,qf‖L∞(Ω) ≤
√

N ρq,I(Ω,X, ‖·‖1) diam
q(Ω) |f |∞,q,Ω,

where ρq,I(Ω,X, ‖·‖1) := sup
z∈Ω

ρq,I(z,X, ‖·‖1)

= sup
{
‖p‖L∞(Ω) : p ∈ Πd

q , |p(xi)| ≤ 1, ∀i
}

is the norming constant of X w.r.t. Πd
q on Ω. Compare [D., 2002]:

‖f − LX,qf‖L∞(Ω) ≤
(
1 +

√
N ρq,I(Ω,X, ‖·‖1)

)
E(f ,Πd

q )L∞(Ω).
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Consistency Error: Kernel-Based Formulas

Let K : Rd × R
d → R be a symmetric kernel, conditionally

positive definite (cpd) of order s ≥ 0 on R
d (positive definite

when s = 0). Πd
s : polynomials of order s.

For a Πd
s -unisolvent X, the kernel interpolant rX,K ,f in the form

rX,K ,f =
N∑

j=1

ajK (·,xj) +
M∑

j=1

bjpj , aj ,bj ∈ R, M = dim(Πd
s ),

is uniquely determined from the positive definite linear system

rX,K ,f (xk ) =
N∑

j=1

ajK (xk ,xj) +
M∑

j=1

bjpj(xk ) = fk , 1 ≤ k ≤ N,

N∑

j=1

aj pi(xj) = 0, 1 ≤ i ≤ M.
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Consistency Error: Kernel-Based Formulas

Examples. K (x,y) = φ(‖x − y‖)
(φ : R+ → R is then a radial basis function (RBF))

s ≥ 0: Any φ with positive Fourier transform of Φ(x) = φ(‖x‖)
Gaussian φ(r) = e−r2

inverse quadric 1/(1 + r2)

inverse multiquadric 1/
√

1 + r2

Matérn kernel Kν(r)r
ν , ν > 0

(Kν(r) modified Bessel function of second kind)

s ≥ 1: multiquadric
√

1 + r2

s ≥ ⌊ν/2⌋+ 1: polyharmonic / thin plate spline rν{log r}

K (εx, εy) are also cpd kernels (ε > 0: shape parameter)
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Consistency Error: Kernel-Based Formulas

A kernel-based numerical differentiation formula is obtained by

applying D to the kernel interpolant (approximation approach):

Df (z) ≈ DrX,K ,f (z) =

N∑

j=1

w∗
j f (xj).

The weights w∗
j can be calculated by solving the system

N∑

j=1

w∗
j K (xk ,xj) +

M∑

j=1

cjpj(xk ) = [DK (·,xk )](z), 1 ≤ k ≤ N,

N∑

j=1

w∗
j pi(xj) + 0 = Dpi(z), 1 ≤ i ≤ M.
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Consistency Error: Kernel-Based Formulas

Kernel-based weights w∗ = {w∗
j }N

j=1 provide optimal recovery

of Df (z) from f (xj), j = 1, . . . ,N, for f ∈ FK ,

inf
w∈RN

w⊥DΠd
s

sup
‖f‖FK

≤1

∣
∣
∣Df (z)−

N∑

j=1

wj f (xj)
∣
∣
∣ = sup

‖f‖FK
≤1

∣
∣
∣Df (z)−

N∑

j=1

w∗
j f (xj)

∣
∣
∣,

FK is the RKHS or native space of K ,

w ⊥D Πd
s : exactness of numerical differentiation for Πd

s .

For example, the formula obtained with Matérn kernel

K (x,y) = Kν(‖x − y‖)‖x − y‖ν , ν > 0 (s = 0),

gives the best possible estimate of Df (z) if we only know

that f belongs to the Sobolev space

FK = Hν+d/2(Rd )
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Consistency Error: Kernel-Based Formulas

Theorem

For any q ≥ max{s, k + 1},

|Df (z)− DrX,K ,f (z)| ≤ ρq,D(z,X,1)CK ,q‖f‖FK
, f ∈ FK ,

as soon as ∂α,βK (x,y) ∈ C(Ω× Ω) for |α|, |β| ≤ q, where

ρq,D(z,X,1) is the ‖·‖1,q-growth function,

CK ,q :=
1

q!

( ∑

|α|,|β|=q

(
q

α

)(
q

β

)

‖∂α,βK‖2
C(Ω×Ω)

)1/4
<∞.

To compare with the above error bound of ‖·‖1,q-formulas:

|Df (z)−
N∑

j=1

wj f (xj)| ≤ ρq,D(z,X,1)|f |∞,q,Ω.

Robustness: Prior knowledge of the approximation order

attainable on X is not needed since estimate holds for all q.
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Conclusion

Meshless finite difference method can be based on

polynomial or kernel numerical differentiation

Numerical experiments suggest it is competitive with FEM

Consistency estimates are available in terms of a growth

function

Good sets of nodes for these methods would possess

small growth functions on influence sets

(e.g. “weakly admissible” etc. sets are good for spectral

type mFDM with global sets of influence)
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