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Abstract

We investigate a method with which one can deduce controllability results from
smoothing properties. Previous applications of the method were for partial differ-
ential equations like the Euler-Bernoulli Beam Equation (Petrowski-Hyperbolic).
In this paper we study the method’s applicability to a strictly hyperbolic system
by considering the boundary controllability of a vibrating Timoshenko beam with
physical characteristics that may vary along the length of the beam. Two cases are
considered: A beam which is clamped at one end, the other end being controlled
by a torque and transverse force; and a beam which is hinged at one end, where a
control torque is applied, and free at the other end, where a control force is applied.

1 Introduction.

In this paper, we study the boundary controllability of a Timoshenko beam.
The main purpose of the paper is to try out a recent method of controllability
(see below) on a strictly hyperbolic system. Previously, the method had been
applied to the Euler-Bernoulli beam equation and the Schrödinger equation,
neither of which is hyperbolic in the usual sense. One of the aims of the paper
is to give a simple, self-contained application of the controllability method and
the Timoshenko beam equations allow this.

The motion of a Timoshenko Beam is governed by the equations

ρẅ + (K(ψ − w′))′= 0,

Iρψ̈ − (EIψ′)′ +K(ψ − w′) = 0. (1)

Here, we use dots to denote time derivatives, and primes to denote derivatives
with respect to the space variable, which is the distance of a point on the
center line of the beam from one end of the beam.
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Fig. 1. A Schematic Diagram of the Timoshenko Beam.

A schematic diagram of the beam appears in Fig. 1. The function w is the
transverse displacement of the beam and ψ is the rotation angle of a filament
of the beam. The Timoshenko model takes into account the shearing effect of
the beam’s motion indicated by the parallelogram in Fig. 1, which is actually a
rectangle in the beam’s rest state. The shear angle is ψ− ∂w

∂x
. We let L denote

the length of the beam. The physical parameters appearing here are ρ, the
mass density per unit length, E, Young’s modulus of elasticity, I, the moment
of inertia of a cross section of the beam, Iρ, the polar moment of inertia of a
cross section, and K, the shear modulus. We assume that ρ, EI, Iρ and K are
all positive, C2 functions of the space variable.

A number of authors (see [1,2,5,7,14–16]) have considered control problems
associated with the Timoshenko beam. However, in all of these papers the
beam is assumed to be uniform, that is the physical parameters are constants.
In this paper, we allow the physical parameters to be variable.

We consider two situations. The first is a beam clamped at the origin, and free
at its other end. In this case, the control functions are a force f and torque τ ,
both applied to the free end of the beam. The associated boundary conditions
for this case are

w(0, t) = 0, ψ(0, t) = 0,

K(L)(−ψ(L, t) + w′(L, t)) = f(t), EI(L)ψ′(L, t) = τ(t). (2)

In the second situation, we consider the beam to model small motions of a
hinged arm, which is hinged at the origin and free at the other end. The control
functions are a torque τ applied at the hinged end, and a force f applied at
the free end. The associated boundary conditions for this case are

w(0, t) = 0, ψ′(L, t) = 0,

EI(0)ψ′(0, t) = τ(t), K(L)(−ψ(L, t) + w′(L, t)) = f(t). (3)

In each case, the system is completed by including the initial conditions
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w(x, 0) = w0(x), ẇ(x, 0) = v0(x),

ψ(x, 0) = ψ0(x), ψ̇(x, 0) = φ0(x). (4)

There are two wave speeds (characteristic speeds) associated with the system
(1),

v1 =
√
K/ρ, v2 =

√
EI/Iρ. (5)

These govern the speed of propagation of singularities along the beam (see
Fritz John’s book [4] for a simple discussion of propagation of singularities).
Singularities in derivatives of w propagate with speed v1 and singularities in
derivatives of ψ propagate with speed v2. We let T1 and T2 denote the times
required for the two types of wave to travel along the whole length of the
beam. Specifically,

T1 =

L∫

0

1/v1(x) dx, T2 =

L∫

0

1/v2(x) dx. (6)

We let T0 = 2 max(T1, T2) and suppose that T > T0. For each of the situations
described above, we seek control functions f and τ belonging to L2(0, T ) that
drive the corresponding system to rest. For the case of the clamped beam, this
means that solutions are driven to the state w(x, T ) = ψ(x, T ) = ẇ(x, T ) =
ψ̇(x, T ) = 0. For the hinged beam, solutions are driven to one of the states
ẇ(x, T ) = ψ̇(x, T ) = 0, w(x, T ) = ax, ψ(x, T ) = a, where a is a constant that
can be interpreted as being the angle of rotation of the beam about the point
x = 0. This mathematical model of the hinged beam is valid only for small
displacements, and we hope to write a report in the near future which allows
for larger rotation angles, and for controllability of the final angle of rotation
(a slight modification of the procedure used here will give controllability of
the final angle of rotation, but it requires an extra control function).

We show that there is a certain over-determined eigenvalue problem associ-
ated with each situation described above, and that controllability is linked to
the non-existence of eigenfunctions, and uncontrollability is linked to the exis-
tence of such eigenfunctions. For this reason, we call such eigenvalue problems
controllability eigenvalue problems. Here, each eigenvalue problem consists of
the ordinary differential equations

µ2ρw − (K(ψ − w′))′= 0,

µ2Iρψ + (EIψ′)′ −K(ψ − w′) = 0, (7)
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and six homogeneous boundary conditions. The boundary conditions associ-
ated with the eigenvalue problem for the clamped beam are

w(0) = 0, w(L) = 0, w′(L) = 0,

ψ(0) = 0, ψ(L) = 0, ψ′(L) = 0, (8)

and the boundary conditions associated with the eigenvalue problem for the
hinged beam are

w(0) = 0, w(L) = 0, w′(L)− ψ(L) = 0,

ψ(0) = 0, ψ′(0) = 0, ψ′(L) = 0. (9)

The fact that existence of nontrivial solutions of these eigenvalue problems
implies non-controllability is easily understood. Each eigenfunction solution
yields an exponential (in the time variable) solution of the beam system. If
(W,Ψ) is one such solution and the system is controllable, pick controllers such
that (W (0),Ψ(0)) is steered to rest and call the corresponding solution (W̃ , Ψ̃).
The energy of the beam is associated with an inner product and it is easy to
show that the inner product of (W (t),Ψ(t)) with (W̃ (t), Ψ̃(t)) is constant. But
for t large enough it vanishes, so it must always vanish. However, this implies
that the energy of the initial data is zero - a contradiction. These ideas are
explained in more detail in the proof of Theorem 8.

It is easy to see that the eigenvalue problem (7,8) has no solutions, for even if
we dispense with the boundary conditions at the origin, we have an initial value
problem for a system of linear ordinary differential equations, the solution of
which is unique.

Our proof of smoothing properties relies on a technical condition which could
possibly be avoided with a different proof. This is that the characteristic curves
associated with ψ and those associated with w are not tangent to each other
at points of intersection. Thus, we require that the characteristic speeds v1

and v2 are different at each point.

Thus, aside from this technical condition, we can conclude that the clamped
beam with variable physical characteristics is always controllable. Similarly,
we can conclude that the hinged arm problem is controllable provided that the
eigenvalue problem (7,9) has no solutions, again with the technical assumption
on wave speeds. However, we show in this case that when the coefficients of our
differential equations are constant, solutions of the controllability eigenvalue
problem exist for certain values of the physical parameters. Thus, this problem
is not always controllable.

As mentioned above, the technique that we use involves demonstrating a
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smoothing property of auxiliary problems consisting of a semi-infinite beam
and an infinite beam for the clamped and hinged problems respectively. This
technique was first introduced by W. Littman and S. W. Taylor [13] to inves-
tigate the controllability of an Euler-Bernoulli beam that is pinned at several
points along its length. The method, which has its origins in an earlier paper
[12] by Littman and Taylor, has also been used to investigate the controlla-
bility of an Euler-Bernoulli beam and point mass system [18]. A much earlier
technique, introduced by W. Littman [10] and used by W. Littman and L.
Markus [11] for a uniform Euler-Bernoulli beam and later by Taylor [17] for
a non-uniform Euler-Bernoulli beam, could also be used to study the control-
lability of the clamped beam described above. However, the technique of [10]
will not work when there are homogeneous boundary conditions at each end
of the beam, which is the case for the hinged beam. Related work has also
been done by Horn and Littman [3].

Another technique used in boundary control theory is the very popular Hilbert
Uniqueness Method, HUM, introduced by J. L. Lions [9]. In fact, the boundary
control of a uniform Timoshenko beam is studied by J. E. Lagnese and J.
L. Lions using HUM in [7]. There are situations in which each method has
advantages over the other. Specifically, HUM depends on certain inequalities
that are usually found by considering multipliers (see V. Komornik’s book [6]
and it’s references for examples of this). Thus, if multipliers can be found,
HUM can be applied. Our technique depends on certain smoothing properties
of systems and thus it can be applied in situations where smoothing properties
can be found. Of course, there are many situations to which both techniques
are applicable.

2 Remarks on the existence of solutions to the beam equations.

Here we outline the existence theory of each of the systems (1, 2, 4) and (1,
3, 4). One approach to work with a variational formulation of the equations,
as Lagnese, Leugering, and Schmidt do for systems of uniform Timoshenko
beams in [8]. However, we use the classical method of characteristics, because
consideration of characteristics is an important element in our development
of the smoothing properties of the beam equations in the next section. In this
section, we assume that ρ, EI, Iρ and K are all positive, C1 functions of the
space variable.

We begin by transforming the equations to first order systems by introducing
the variables

u1 =
1

2
(K1/2(w′ − ψ)− ρ1/2ẇ), u2 =

1

2
(K1/2(w′ − ψ) + ρ1/2ẇ),
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u3 =
−1

2
((EI)1/2ψ′ − I1/2

ρ ψ̇), u4 =
−1

2
((EI)1/2ψ′ + I1/2

ρ ψ̇). (10)

In the new variables, the beam equations (1) take the form

u̇+ Λu′ = Au− 1

2
Λ′u, (11)

where Λ is the 4 by 4 diagonal matrix with diagonal entries λ11 = v1, λ22 =
−v1, λ33 = v2, λ44 = −v2, where the characteristic speeds are given by (5);
and A is the skew-symmetric matrix given by

2a12 = K1/2(ρ−1/2)′ − (K1/2)′ρ−1/2,

a13 = −a14 = a23 = −a24 = −1

2
K1/2I−1/2

ρ ,

2a34 = (EI)1/2(I−1/2
ρ )′ − ((EI)1/2)′I−1/2

ρ . (12)

The mechanical energy of the beam is given by

E =
1

2

L∫

0

ρẇ2 + Iρψ̇
2 +K(ψ − w′)2 + EI(ψ′)2 dx. (13)

In the new variables, the energy (13) now has the simple form

E =

L∫

0

u2
1 + u2

2 + u2
3 + u2

4 dx. (14)

The clamped beam’s boundary conditions (2) now take the form

u2(0, t)− u1(0, t) = 0, u1(L, t) + u2(L, t) = K(L)−1/2f(t),

u4(0, t)− u3(0, t) = 0, u3(L, t) + u4(L, t) = (EI(L))−1/2τ(t), (15)

and the hinged beam’s boundary conditions (3) take the form

u1(L, t) + u2(L, t) = K(L)−1/2f(t), u2(0, t)− u1(0, t) = 0,

u3(0, t) + u4(0, t) = −(EI(0))−1/2τ(t), u3(L, t) + u4(L, t) = 0. (16)

We complete the description of each system by specifying the initial condition

u(x, 0) = φ(x). (17)
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As usual, we use the term classical solution to denote a C1 solution of either
(11, 15, 17) or (11, 16, 17). It is clear that such solutions must satisfy com-
patibility conditions. There are eight such conditions for each of the systems,
four arising from the continuity of u(x, t) at (0, 0) and (L, 0), and four more
arising from the compatibility of the initial and boundary data with the par-
tial differential equations (11) at (0, 0) and (L, 0). We leave the specific details
of these to the reader.

Theorem 1 (Classical Solutions). If the boundary data f , τ and the initial
data φ are continuously differentiable and satisfy the compatibility conditions,
then each of the systems (11, 15, 17) and (11, 16, 17) has a unique classical
solution.

The proof involves making use of the characteristic curves of the equations (11)
to set up a system of integral equations, which one solves by the contraction
mapping principle. This is a very standard, classical method of proof (see, for
example, F. John [4], p. 46), so we omit the details.

It is easy to check that classical solutions of our first order systems correspond
to classical solutions of the original beam systems (1, 2, 4) and (1, 3, 4), and
vice versa. It is useful to note that we can differentiate the energy (14) of a
classical solution and that

Ė(t) = ρ(L)−1/2(u2(L, t)− u1(L, t))f(t) (18)

+ Iρ(L)−1/2(u4(L, t)− u3(L, t))τ(t)

for the clamped system, and

Ė(t) = ρ(L)−1/2(u2(L, t)− u1(L, t))f(t)

+ Iρ(0)−1/2(u4(0, t)− u3(0, t))τ(t) (19)

for the hinged system.

We now define some spaces of test functions Pc and Ph in order to define weak
solutions of the clamped and hinged systems.

Given T > 0, let Pc denote the set of functions p ∈ (C1([0, L]× [0, T ]))4 that
satisfy

p2(0, t)− p1(0, t) = 0, p1(L, t) + p2(L, t) = 0,

p4(0, t)− p3(0, t) = 0, p3(L, t) + p4(L, t) = 0,

p(x, T ) = 0, (20)

and let Ph denote the set of functions p ∈ (C1([0, L]× [0, T ]))4 that satisfy
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p2(0, t)− p1(0, t) = 0, p1(L, t) + p2(L, t) = 0,

p3(0, t) + p4(0, t) = 0, p3(L, t) + p4(L, t) = 0,

p(x, T ) = 0. (21)

Thus, functions in Pc satisfy the homogeneous boundary conditions of a clamped-
free beam, and the functions in Ph satisfy the homogeneous boundary condi-
tions of a hinged-free beam. Suppose that u is a classical solution of the system
(11, 15, 17). Taking the conjugate transpose of (11) and post-multiplying (with
usual matrix multiplication) this by p ∈ Pc, and integrating over [0, L]× [0, T ],
we obtain

T∫

0

L∫

0

u∗(ṗ+ Λp′ +
1

2
Λ′p− Ap) dxdt = −

L∫

0

φ∗(x)p(x, 0) dx+

T∫

0

ρ(L)−1/2f̄(t)p1(L, t) + Iρ(L)−1/2τ̄(t)p3(L, t) dt. (22)

Here, v∗ denotes the conjugate transpose of a matrix v. As usual, we say that
a function u is a weak solution of (11, 15, 17), if (22) holds for all p ∈ Pc. We
define weak solutions of (11, 16, 17) similarly. We note that weak solutions are
unique. To see this, suppose that we have a weak solution u of the clamped
system with zero initial and boundary data. Given F ∈ Pc, find p ∈ Pc such
that ṗ + Λp′ + 1

2
Λ′p− Ap = F . The fact that we can find a classical solution

of this problem follows from Theorem 1 and Duhamel’s principle. Hence (22)
implies that

T∫

0

L∫

0

u∗F dxdt = 0

for all such F , and thus u = 0. The same argument works for weak solutions
of the hinged problem.

The physically meaningful solutions of the beam equations are those with finite
energy. Thus, we define the finite energy space H = (L2(0, L))4, the norm of
which is given by

||u|| = (

L∫

0

|u1|2 + |u2|2 + |u3|2 + |u4|2 dx)1/2,

and say that a weak solution u is a finite energy solution if u ∈ L∞(0, T ;H).

Theorem 2 (Finite Energy Solutions). If the boundary data f , τ are in L2(0, T )
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and the initial data φ ∈ H, then each of the systems (11, 15, 17) and (11, 16,
17) has a unique finite energy solution u. In fact, u ∈ C(0, T ;H).

PROOF. We prove the theorem for the case of the clamped beam system.
The proof for the hinged beam is similar. We note that uniqueness has already
been established.

Suppose first that f and τ are in C1
0(0, T ), and φ ∈ C1

0(0, L). Let u be the
classical solution, the existence of which is guaranteed by Theorem 1. Let T1

and T2 be given by (6) and let t0 < min(T1, T2). Let γ be the characteristic
curve with speed v1 that ends at (L, t0), i.e. γ is parameterized by x = X(t),
where

X(t0) = L, Ẋ = v1(X).

Let x0 = X(0). We have

u̇1 + v1u
′
1 +

1

2
v′1u1 =

4∑

k=1

a1kuk

We multiply this by u1 and integrate the equation over the region Ω bounded
by γ, the x-axis, and the t-axis. An application of Green’s Theorem then gives

1

2

t0∫

0

v1(L)u1(L, t)2 dt =
1

2

L∫

x0

u1(x, 0)2 dx+
4∑

k=1

∫∫

Ω

a1ku1uk dxdt. (23)

A similar equation holds for u3. Thus, we see that

t0∫

0

v1(L)u1(L, t)2 + v2(L)u3(L, t)2 dt ≤ E(0) + C

t0∫

0

E(t) dt. (24)

But integration of (19) and taking into account the boundary conditions (15)
gives

E(t0)− E(0) = (K(L)ρ(L))−1/2

t0∫

0

f(t)2 dt

+ (EI(L)Iρ(L))−1/2

t0∫

0

τ(t)2 dt
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− 2ρ(L)−1/2

t0∫

0

u1(t)f(t) dt− 2Iρ(L)−1/2

t0∫

0

u3(t)τ(t) dt

≤ 2(K(L)ρ(L))−1/2

t0∫

0

f(t)2 dt+ 2(EI(L)Iρ(L))−1/2

t0∫

0

τ(t)2 dt

+

t0∫

0

v1(L)u1(L, t)2 + v2(L)u3(L, t)2 dt (25)

Estimates (24) and (25) imply that there is a constant c1, independent of the
initial and boundary data, such that

E(t0) ≤ c1(E(0) +

t0∫

0

f(t)2 + τ(t)2 dt) (26)

for all 0 ≤ t0 ≤ t1 = min(T1, T2). However, we can repeat the analysis over the
interval [t1, 2t1], then over [2t1, 3t1], and so on. We conclude that (26) holds
for all 0 ≤ t0 ≤ T . Moreover, the proof reveals (see 24) that the components
of u(L, t) are all in L2(0, T ) and have L2 norms bounded by a constant times
the sum of the L2 norms of the initial and boundary data.

We now see the existence of the finite energy solutions, as follows. Given
initial data φ ∈ H and boundary data f and τ in L2(0, T ), pick a sequence
φn in C∞0 (0, L) converging to φ in H, and sequences fn and τn in C∞0 (0, T )
converging to f and τ in L2(0, T ) respectively. Let un be the sequence of
classical solutions with initial data φn and boundary data fn and τn. The
estimate (26) shows that un is a Cauchy sequence in L∞((0, T );H), and it is
clear that the limit u satisfies (22).

We now establish continuity of the solution as an H-valued function. We know
that the components of u(L, t) are all in L2(0, T ) and have L2 norms bounded
by a constant times the sum of the L2 norms of the initial and boundary data.
Classical solutions satisfy (19), which integrates to give

E(s2)− E(s1) =

s2∫

s1

ρ(L)−1/2(u2(L, t)− u1(L, t))f(t)

+ Iρ(L)−1/2(u4(L, t)− u3(L, t))τ(t) dt.

But a limit argument shows that this holds for finite energy solutions as well.
Thus, we see that t→ ||u(t)|| is continuous (here u(t) is taken to mean u(·, t).
Further, we have

||u(s2)− u(s1)||2 = ||u(s2)||2 + ||u(s1)||2 − 2(u(s2), u(s1)),
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so the left side of this equation will tend to zero as s2 → s1, provided that
we can show that (u(s2), u(s1)) → ||u(s1)||2. This will follow from the weak
continuity of u. But the weak continuity is easily established by taking the
scalar product of (11) with p ∈ C∞0 (0, L), and integrating by parts to give

(u(s2)− u(s1), p) =

s2∫

s1

(u(t),Λp′ +
1

2
Λ′p− Ap) dt

This is equation is, of course, derived for classical solutions, but it holds for
finite energy solutions by the usual limit argument. Since any v ∈ H can be
approximated by such a p, we see that (u(s2)−u(s1), v)→ 0 as s2 → s1. Thus
the continuity is established. This completes the proof of Theorem 2.

We should say a little about what this theorem says about the existence of
finite energy solutions of the original beam systems (1, 2, 4), and (1, 3, 4).
Weak solutions of each system are defined in the usual way. We give details for
the clamped system, the hinged system being similar. Let C be the set of all q
and χ in C2([0, L]× [0, T ]) that vanish at t = T and satisfy the homogeneous
boundary conditions of the clamped-free system, i.e.

q(0, t) = 0, χ(0, t) = 0,

K(L)(χ(L, t)− q′(L, t)) = 0, EI(L)χ′(L, t) = 0,

for 0 ≤ t ≤ T and

q(x, T ) = 0, χ(x, T ) = 0,

for 0 ≤ x ≤ L. We say that (w,ψ) is a weak solution of (1, 2, 4) if the following
holds for all (q, χ) ∈ C:

0 =

T∫

0

L∫

0

w(ρq̈ − (K(q′ − χ)′) + ψ(Iρχ̈− (EIχ′)′ +K(χ− q′)) dxdt

+

L∫

0

ρ(x)(q̇(x, 0)w0(x)− q(x, 0)v0(x)) dx

+

L∫

0

Iρ(x)(χ̇(x, 0)ψ0(x)− χ(x, 0)φ0(x)) dx

−
T∫

0

q(L, t)f(t) + χ(L, t)τ(t) dt.
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A similar criterion holds for weak solutions of (1, 3, 4) We setH0 = (L2(0, L))2,
Vc = {(w,ψ) ∈ H1(0, L)2 : w(0) = ψ(0) = 0, and Vh = {(w,ψ) ∈ H1(0, L)2 :
w(0) = 0.

Theorem 3 (Finite Energy Solutions). If the boundary data f , τ are in L2(0, T )
and (w0, ψ0) ∈ Vc and (v0, φ0) ∈ H0, then the system (1, 2, 4) has a unique
weak solution (w,ψ) such that (w,ψ) ∈ C(0, T,Vc), (ẇ, ψ̇) ∈ C(0, T,H0).

Note that we can state a similar theorem for (1, 3, 4). We again call such
solutions finite energy solutions.

PROOF. It is easy to see that classical solutions of (1, 2, 4) correspond to
classical solutions of (11, 15, 17) under the transformation (10). The proof of
Theorem 2 exhibited finite energy solutions of (11, 15, 17) as limits of classical
solutions. It is a simple task to verify that the images of these sequences under
the transformation (10) converge to finite energy solutions of (1, 2, 4).

3 Smoothing Properties of the Beam Equations.

Here we consider two auxiliary problems concerning the beam equations. In
this section, we establish smoothing properties of these auxiliary problems. In
the next section, we show that the smoothing properties are associated with
the controllability problems posed in the introduction.

The first system is associated with the finite clamped system already consid-
ered. This system consists of a semi-infinite beam, the end of which is clamped
at the origin. Equations (1) must be satisfied for 0 < x <∞, and the clamped
end conditions,

w(0, t) = 0, ψ(0, t) = 0,

must hold at x = 0.

The second system is associated with the finite hinged system. This system
is most easily thought of as consisting of two semi-infinite beams, the first
satisfying Equations (1) for x < L, the second satisfying the equations for
x > L. The beams are connected by a hinge at their ends at x = L, and the
first beam is connected to the origin by a hinge. The conditions at x = 0 and
x = L are

w(0, t) = 0, ψ′(L, t) = 0.
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In this case, ψ′(0−, t) = ψ′(0+, t), since there is no external applied torque at
the origin, and w(L−, t) = w(L+, t), since the displacement of each beam is
the same at x = L.

In order to prove existence of solutions (Theorems 4 and 5), we assume in this
section that ρ, EI, Iρ and K are all positive, C1 functions of the space variable,
and that they are all constant in the exterior of a bounded interval, although
the latter assumption is not essential. For the smoothing result, Theorem 7, in
addition to these assumptions, we assume that the functions are C2 functions
of the space variable and that the wave speeds (5) are different at each point.

It is convenient to work with the first order equations (11). We use the terms
auxiliary problem 1 and auxiliary problem 2 to refer to the problems for the
semi-infinite clamped beam, and the pair of semi-infinite hinged beams re-
spectively. As first order systems, the problems take the following forms:

Auxiliary Problem 1

u̇+ Λu′ = Au− 1

2
Λ′u, (x, t) ∈ (0,∞)×R,

u(x, 0) = φ(x), x ∈ (0,∞),

u2(0, t)− u1(0, t) = u4(0, t)− u3(0, t) = 0, t ∈ R. (27)

Auxiliary Problem 2

u̇I + ΛIu
′
I = AIu−

1

2
Λ′Iu, (x, t) ∈ ((−∞, 0) ∪ (0,∞))×R,

u̇II + ΛIIu
′
II = AIIu−

1

2
Λ′IIu, (x, t) ∈ ((−∞, L) ∪ (L,∞))×R,

u(x, 0) = φ(x), x ∈ (−∞,∞),

u2(0, t)− u1(0, t) = 0, t ∈ R,
u4(L, t)− u3(L, t) = 0, t ∈ R, (28)

where uI = (u1, u2)T , uII = (u3, u4)T , AI is the 2 by 4 matrix obtained by
deleting the last two rows of A, AII is the 2 by 4 matrix obtained by deleting
the first two rows of A, ΛI is the 2 by 2 matrix obtained by deleting the last
two rows and columns of Λ, and ΛII is the 2 by 2 matrix obtained by deleting
the first two rows and columns of Λ.

Classical solutions for auxiliary problem 1 are simply functions that are con-
tinuously differentiable in the closed right half plane, and satisfy the equations
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(27). A classical solution of auxiliary problem 2 is a function u for which

(1) u is C1 in the strip 0 ≤ x ≤ L and the restrictions of u to the sets x < 0
and x > L may be extended to be C1 functions in the closures of these
sets.

(2) u1 and u2 are continuous on the line x = L, and u3 and u4 are continuous
on the line x = 0.

(3) u1 − u2 and u3 − u4 are continuous.
(4) The equations (28) are satisfied.

Theorem 4 (Classical Solutions).

(1) If φ ∈ C1[0,∞) and

φ1(0)− φ2(0) = φ3(0)− φ4(0) = 0,

then (27) has a unique classical solution.
(2) Suppose that the following conditions are satisfied.

(a) φ is C1 in the interval 0 ≤ x ≤ L and the restrictions of φ to the
intervals x < 0 and x > L may be extended to be C1 functions in the
closures of these intervals.

(b) φ1 and φ2 are continuous at the point x = L, and φ3 and φ4 are
continuous at the point x = 0.

(c) φ1 − φ2 and φ3 − φ4 are continuous, and φ1(0)− φ2(0) = 0, φ3(L)−
φ4(L) = 0.

Then (28) has a unique classical solution.

The simple proof involves making use of the characteristic curves of the equa-
tions (see the comments following the statement of Theorem 1).

Let I1 = (−∞,∞) and I2 = (0,∞). For k = 1, 2, we define the finite energy
space of auxiliary problem k to be Hk = (L2(Ik))

4, with norm given by

||u|| = (
∫

Ik

|u1|2 + |u2|2 + |u3|2 + |u4|2 dx)1/2.

(We use the same symbol for each norm, but this will not cause confusion
since the two problems are separate, and it will be clear from the context
which norm we are referring to). ||u||2 represents the mechanical energy of
each system, and it is easy to see that for classical solutions this is constant.
We use semigroup theory to investigate the existence of finite energy solutions,
although an alternative procedure would be to proceed as in the proof of
Theorem 1.

To this end, let D1 = {u ∈ (H1(I1))4 : u1(0)− u2(0) = u3(0)− u4(0) = 0} and
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consider the operator A1 on H1 with domain D1, given by

A1u = −Λu′ − 1

2
Λ′u+ Au.

Similarly, let D2 be the set of functions u ∈ H2 such that

(1) u1 and u2 are in H1(−∞, 0) ∩H1(0,∞),
(2) u3 and u4 are in H1(−∞, L) ∩H1(L,∞),
(3) u1−u2 and u3−u4 are almost everywhere equal to continuous functions,

and in this sense u1(0)− u2(0) = 0, u3(L)− u4(L) = 0,

and consider the operator A2 on H2 with domain D2, given by

A2u = −Λu′ − 1

2
Λ′u+ Au.

Theorem 5 (Finite Energy Solutions). A1 and A2 are the infinitesimal gen-
erators of strongly continuous unitary groups U1(t) and U2(t) on H1 and H2

respectively.

PROOF. It is easy to check that both iA1 and iA2 are closed, densely defined
and symmetric. In the special case A = 0, it is easy to check that the ranges
of A1± I and A2± I are H1 and H2 respectively, since this reduces to solving
four first order ordinary differential equations, coupled only by their boundary
conditions (one can write down the solution of these explicitly). Thus, if A = 0,
then iA1 and iA2 are self-adjoint. But iA is itself a bounded, self-adjoint
operator and perturbations of unbounded self-adjoint operators by bounded
self-adjoint operators are self-adjoint. Thus iA1 and iA2 are self-adjoint in the
general case. Thus, by Stone’s Theorem (see [19] for a statement of this), A1

and A2 are the infinitesimal generators of strongly continuous unitary groups.
This completes the proof.

We refer to U1(t)φ, U2(t)φ, for φ in H1 and H2 respectively, as being finite
energy solutions.

It is convenient to define

r1(x) =

x∫

0

ds

v1(s)
, r2(x) =

x∫

0

ds

v2(s)
.

Lemma 6 (Trace Property) The restrictions of components of finite energy
solutions to lines parallel to the t-axis are locally L2 functions. Moreover, if u
is such a solution, then the mapping x → uk(x, ·) into L2

loc(R), is continuous
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everywhere except possibly at x = 0 for (28) and k = 1, 2, and at x = L for
(28) and k = 3, 4. At these discontinuities, the left and right limits of the
mapping exist.

PROOF. It suffices to work with a classical solution and use the usual density
argument to get the general result, after appropriate estimates are obtained.
Let u be a classical solution of either (27) or (28). Then

∂

∂t
u2

2 −
∂

∂x
v1u

2
2 = 2

4∑

k=1

a2ku2uk. (29)

Let x̃ ≥ 0, t̃ > 0, and let γ1 be the characteristic curve given by

r1(x) + t = r1(x̃) + t̃.

This curve intersects the x-axis at the point (x1, 0), where x1 = r−1
1 (r1(x̃)+ t̃).

Let Ω1 be the region bounded by γ1, the line segment from (x̃, t̃) to (x̃, 0), and
the line segment from (x̃, 0) to (x1, 0). Integrating (29) over Ω1 and applying
Green’s Theorem, we obtain

t̃∫

0

v1(x̃)u2(x̃, t)2 dt=

x1∫

x̃

u2(x, 0)2 dx+ 2
4∑

k=1

∫∫

Ω1

a2ku2uk dxdt

≤C(1 + t̃)||u(0)||2. (30)

Similarly, we let γ2 denote the curve given by

t− r1(x) = t̃− r1(x̃),

and, if r1(x̃) − t̃ ≥ 0, we let x2 = r−1
1 (r1(x̃) − t̃). We obtain an estimate for

the trace of u1 on the line x = x̃ by integrating the first equation of motion
over Ω2, where, Ω2 is the region bounded by γ2, the x-axis, and the line x = x̃.
However, if r1(x̃)− t̃ < 0, we let Ω2 be the region in the first quadrant bounded
by γ2, the x-axis, the t-axis and the line x = x̃. This leads to the estimate

t̃∫

0

v1(x̃)u1(x̃, t)2 dt ≤
t0∫

0

v1(0)u1(0, t)2 dt+ C(1 + t̃)||u(0)||2,

where t0 = t̃ − r1(x̃). But u1(0, t) = u2(0, t), so we can use (30) to estimate
the integral on the right side of this equation. Estimates for t̃ or x̃ negative
may be obtained similarly. The analysis of u3 and u4 is also similar.
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To prove the continuity of the mapping x → u2(x, ·), we integrate (29) over
the rectangle bounded by lines x = x1, x = x2, t = t1, t = t2 and obtain

t2∫

t1

v1(x2)u2(x2, t)
2 dt=

t2∫

t1

v1(x1)u2(x1, t)
2 dt− 2

4∑

k=1

∫∫

Ω1

a2ku2uk dxdt

+

x2∫

x1

u2(x, t1)2 dx−
x2∫

x1

u2(x, t2)2 dx.

This shows that the mapping

x→
t2∫

t1

v1(x)u2(x, t)2 dt

is continuous. Now we may proceed as in the proof of Theorem 2 to complete
the proof of continuity.

In Theorem 7, we assume that ρ, EI, Iρ and K are all positive, C2 functions of
the space variable, and that they are all constant in the exterior of a bounded
interval. We also assume that the wave speeds (5) are different at each point.
The smoothing properties of Theorem 8 are at the heart of our method of
showing controllability of the beam systems.

Theorem 7 (Smoothing Property)

(1) If u(t) = U1(t)φ, where φ ∈ H1 has support in the interval [0, L], then
the following statements are true.
(a) u1(t) ∈ H1(0, r−1

1 (t− r1(L))) if t > r1(L).
(b) u3(t) ∈ H1(0, r−1

2 (t− r2(L))) if t > r2(L).
(c) u2(t) ∈ H1(r−1

1 (r1(L)− t),∞) if 0 ≤ t < r1(L),
u2(t) ∈ H1(0,∞) if t ≥ r1(L).

(d) u4(t) ∈ H1(r−1
2 (r2(L)− t),∞) if 0 ≤ t < r2(L),

u4(t) ∈ H1(0,∞) if t ≥ r2(L).
(2) If u(t) = U2(t)φ, where φ ∈ H2 has support in the interval [0, L], then

the following statements are true.
(a) u1(t) ∈ H1(0, r−1

1 (t− r1(L))) if t > r1(L),
u1(t) ∈ H1(−∞, 0) if t ≥ 0.

(b) u3(t) ∈ H1(−∞, r−1
2 (t)) if 0 ≤ t < r2(L),

u3(t) ∈ H1(−∞, 0) if t > r2(L),
u3(t) ∈ H1(L,∞) if t ≥ 0.

(c) u2(t) ∈ H1(r−1
1 (r1(L)− t),∞) if 0 ≤ t < r1(L),

u2(t) ∈ H1(0,∞) if t ≥ r1(L),
u2(t) ∈ H1(−∞, 0) if t ≥ 0.
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(d) u4(t) ∈ H1(r−1
2 (2r2(L)− t), L) if t > r2(L),

u4(t) ∈ H1(L,∞) if t ≥ 0.

PROOF. It suffices to work with smooth solutions (e.g. with initial data in
the domain of the square of the infinitesimal generators), and then use the
standard density argument to prove the appropriate estimates.

Differentiation of the second of the equations of motion with respect to x gives

u̇′2 − v1u
′′
2 −

3

2
v′1u

′
2 =

4∑

j=1

(a2ju
′
j + a′2juj).

Using the notation

Dt =
∂

∂t
− v1

∂

∂x
,

this may be written

Dtv
3/2
1 u′2 =

4∑

j=1

v
3/2
1 (a2ju

′
j + a′2juj).

We make use of the fact that the right side of this equation does not involve
u′2 because a22 = 0. The other equations of motion yield

2v1u
′
1 = −Dtu1 −

1

2
v′1u1 +

4∑

j=1

a1juj,

(v1 + v2)u′3 = −Dtu3 −
1

2
v′3u3 +

4∑

j=1

a3juj,

(v1 − v2)u′4 = −Dtu4 −
1

2
v′4u4 +

4∑

j=1

a4juj. (31)

Let γ2 be the characteristic curve

r1(x) + t = r1(x̃) + t̃

which starts on the x-axis and terminates at the point (x̃, t̃). We assume that
this curve lies to the right of the curve r1(x)+ t = r1(L), i.e. r1(x̃)+ t̃ > r1(L).
We integrate (3) over γ2, making use of the identities (31) and the fact that
Dt is a directional derivative along γ2. Assume first that u is a solution of (27).
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Recall that the initial data vanishes on the x-axis, at points to the right of L.
Thus we obtain for (27), after an integration by parts,

v1(x̃)3/2u′2(x̃, t̃) =
4∑

j=1

(σ2j(x̃)uj(x̃, t̃) +
∫

γ2

δ2juj dt), (32)

where the functions σ2j and δ2j are bounded and continuous. Multiplying this
by u′2(x̃, t̃), integrating with respect to x̃ from x0 = max(r−1

1 (r1(L)− t), 0) to
∞, and using the Cauchy-Schwarz inequality yields the estimate

(

∞∫

x0

|u′2(x̃, t̃)|2 dx̃)1/2 ≤ C(||u(t̃)||+
t̃∫

0

||u(t)|| dt ≤ C(1 + t̃)||u(0)||, (33)

where C is a constant independent of u. This proves (1c). The proof of the first
two statements of (2c) is similar. The only difference is due to the discontinuity
of u3 and u4 on the line x = L, which leads to an extra term

C

t̃∫

0

|u3(L+, t)− u3(L−, t)|2 + |u4(L+, t)− u4(L−, t)|2 dt)1/2

in estimate (33). But this term may be estimated in terms of the initial energy
by Lemma 6.

Given nonnegative x̃ and t̃ such that t̃ − r1(x̃) > r1(L), let γ1 be the charac-
teristic curve which starts at (0, t̃− r1(x̃)), ends at (x̃, t̃) and is given by

t− r1(x) = t̃− r1(x̃).

Let u again be a solution of (27). Proceeding as in the analysis that lead to
(32) gives

v1(x̃)3/2u′1(x̃, t̃) = v1(0)3/2u′1(0, t̃− r1(x̃))

+
4∑

j=1

(σ1j(x̃)uj(x̃, t̃)− σ1j(0)uj(0, t̃− r1(x̃))

+
∫

γ1

δ1juj dt). (34)

However, the first two equations of motion and the condition u1(0, t) = u2(0, t)
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give

v1(0)u′1(0, t) = −v1(0)u′2(0, t)− v′1(0)u2(0, t) +
4∑

k=1

(a1k(0)− a2k(0))uj(0, t),

and we may use (32) to rewrite the u′2 term on the right side of this equation.
Substituting the resulting expression for u′1(0, t̃− r1(x̃)) into (34), multiplying
by u′1(x̃, t̃) and integrating with respect to x̃ leads to an estimate

(

x0∫

0

|u′1(x̃, t̃)|2 dx̃)1/2 ≤ C(1 + t̃)||u(0)||, (35)

where x0 = r−1
1 (t̃− r1(L)). This proves (1a), and a slight modification of the

procedure leads to a proof of the first part of (2a).

At this point, it should be clear that the remainder of the proof is largely a
repetition of the arguments already given, so we omit it.

4 Boundary Controllability of the Beams.

The following conditions are relevant to our controllability results:

(1) ρ, Iρ, K, and EI are all positive functions of the space variable and all
belong to C2([0, L]).

(2) The two wave speeds (5) are different at all points on the beam.
(3) T > 2 max(T1, T2), where T1 and T2 are given by (6).

Theorem 8 (Controllability) Suppose that conditions (1), (2) and (3) above
hold. Then the following statements are true.

(1) Given finite energy initial data of the clamped beam problem (1, 2, 4),
there exist control functions f ∈ L2(0, T ) and τ ∈ L2(0, T ), that drive the
system to its rest state at time T :

w(x, T ) = ψ(x, T ) = ẇ(x, T ) = ψ̇(x, T ) = 0, 0 < x < L.

(2) (a) Suppose that there are no nontrivial solutions of the eigenvalue prob-
lem (7, 9). Given finite energy initial data of the hinged beam problem
(1,3,4), there exist control functions f ∈ L2(0, T ) and τ ∈ L2(0, T ),
that drive the system to one of its rest states at time T :

w(x, T )− ax = ψ(x, T )− a = 0,

ẇ(x, T ) = ψ̇(x, T ) = 0, 0 < x < L. (36)

20



       

(b) If there exist nontrivial solutions of the eigenvalue problem (7, 9),
then the hinged beam problem (1,3,4) is not even approximately con-
trollable.

Remark 9 The proof will show that in cases (1) and (2a) of Theorem 8, there
exist bounded linear maps from the space of finite energy initial data to the
L2-normed space of control functions.

PROOF. The proof is similar to the corresponding proof in [13], so we sketch
it here. We work with the first order systems (11, 15, 17) and (11, 16, 17). To
prove (1) and (2a), we show that we can steer the finite energy solutions of
the first order systems to zero at time T .

The proofs of (1) and (2a) are essentially the same, so for this proof, we let
X, denote either H1 or H2, the finite energy spaces of Theorem 5. We also
denote both U1(t) and U2(t) by U(t) and A1 and A2 by A.

Consider the subspace S of X consisting of functions with support in the
interval [0, L]. We show that we can extend the initial data of the “finite
problems” outside the interval [0, L] in such a way that the projection onto S
of the solution of the problems (27) and (28) vanishes at time T . Since this
projection corresponds to the values of the solution for 0 ≤ x ≤ L, we obtain
the desired solutions of the control problems by using (15) or (16) to define
the control functions. Note that Lemma 6 implies that f and τ , if defined this
way, will be in L2(0, T ). We now show that such an extension of the initial
data exists.

First, let g denote the initial data, extended to be in S. Let P denote the
projection onto S and let U = U(T ). Consider the equation

h̃− PU−1PUPh̃ = g

Suppose that this can be solved and set h = Ph̃−U−1PUPh̃. Then PUh = 0
and Ph = g. Thus h agrees with the initial data g on the interval [0, L] and the
solution with initial data h vanishes on the interval [0, L] at time T . Thus, h
is the desired extension of g. If we solve for h in terms of g, we obtain h = Rg,
where

R = (P − U−1PUP )(I − PU−1PUP )−1.

For this to make sense, it is clearly enough to show that PUP is a contrac-
tion. Clearly ||PUP || ≤ 1 because U is unitary. By the smoothing property,
Theorem 7, PUP is compact. If we assume that ||PUP || = 1, then we can use
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the compactness to show that the set

V = {z ∈ S : Uz ∈ S}

is a non-trivial subspace of X. The set V is finite dimensional because it is
contained in the kernel of I−PU−1PUP and PUP is compact. Also, if z ∈ V
then Uz ∈ D(A), the domain of A, because, by the smoothing property, it
is smooth enough to be in D(A), but since it is in S, it must be in D(A).
Uz ∈ D(A) implies that z ∈ D(A), so V is a subset of D(A). Thus, A is a
bounded operator on the finite dimensional space V , and as such, must possess
an eigenvalue. It is easy to see that the existence of eigenvectors of A in S
is equivalent to the existence of nontrivial solutions to either (7, 8) (for the
clamped beam problem) or (7,9) (for the hinged beam problem). But (7, 8)
has no nontrivial solutions and our assumption is that (7, 9) has no nontrivial
solutions. Thus, PUP must be a contraction. This completes the proof of (1)
and (2a).

For (2b), let 〈·, ·〉 denote the sesquilinear form associated with the energy
functional (13). We note that this is not an inner product on the finite energy
space of (1, 3, 4), but it is an inner product on the quotient space of initial
data modulo the states (36). Let (W,Ψ) denote a solution of the eigenvalue
problem (7, 9). Then pµ(t) = exp(iµt)(W,Ψ) is a periodic solution of (1) which
satisfies (9). It is easy to check that 〈pµ(t), q(t)〉 is constant for all finite energy
solutions q. If q(T ) is one of the rest states (36), it follows that 〈pµ(t), q(t)〉 = 0.
But approximate controllability implies that we can find such a solution q with
initial data as close as we please to the initial data of pµ. But this implies that
the energy of the solution pµ must vanish, which is impossible. This completes
the proof of the theorem.

We now investigate the possibility of (2b) occurring for the constant coefficient
case.

Theorem 10 (Constant Coefficient Case). Suppose that the coefficients ρ, Iρ,
K, and EI are all constant. Then nontrivial solutions of (7, 9) exist if and
only if

K

EI
=

ρ

3Iρ
=
m2π2

2L2
, (37)

where m is an odd integer.

PROOF. The calculation is simplified considerably by the fact that the fol-
lowing is a first integral of the equations (7):

22



          

−K
2

EI
w2 + (K − 3IρK

2

ρEI
+

2K3

ρEIµ2
− Iρµ2 +

I2
ρKµ

2

ρEI
)ψ2−

2
K2

ρEI
(
K

µ2
− Iρ)ψw′ − 2Kwψ′ + (

IρK

ρ
− EI − K2

ρµ2
)(ψ′)2 = c

The boundary conditions (9) at x = 0 imply that c = 0. Substituting the
boundary conditions at x = L into the equation shows that all of the Cauchy
data of w and ψ must vanish at x = L (and thus w and ψ vanish on [0, L])
unless ρEI = IρK or µ2 = K/Iρ. A straight-forward calculation now reveals
that the only nontrivial solutions are

w(x) = A sin(
mπx

L
), ψ(x) =

LKA

mπEI
(1− cos(

mπx

L
)),

where A is arbitrary, µ2 = K/Iρ, m is an odd integer and (37) is satisfied.
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