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Introduction

G = 〈X 〉 ≤ GL(d , q)

Can we answer the following?

� |G |
� Composition series or chief series for G

� Sylow p-subgroups

� Conjugacy classes of elements or subgroups of G

� Normaliser of H ≤ G

Rarely
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Challenge problems

Problem

Find the order of H ≤ GL(6, 52).

. . . using either of GAP or Magma.

Problem

Given g ∈ GL(6, 52) find its order.

GL(d , q) has elements of order qd − 1

Probably requires factorisation of qi − 1, a hard problem.

Problem

Find the normaliser in GL(8, 3) of a subgroup of moderate index.

By contrast: if G = Sym(106), we can answer readily most
questions about G , using “efficient” algorithms.
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The “matrix recognition” project

Goal: efficient algorithms, both theoretically and practically.

One measure of algorithm performance:
in time polynomial in the size of the input

If f and g are real-valued functions, defined on all sufficiently large
integers, then f (n) = O(g(n)) means |f (n)| < C |g(n)| for some
positive constant C and all sufficiently large n.

For G = 〈X 〉 ≤ GL(d , q), log |G | < d2 log q.
Input size is |X |d2 log q.

Desire: algorithms whose complexity involves log q, not q.

Another measure: practical, implemented in GAP or Magma.

Eamonn O’Brien Towards effective algorithms for linear groups



logo

Outline of Lecture I

� Basic features

� Permutation group analogues

� Recognition strategies

� Simple groups: the tasks
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Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements? Perhaps for d ≥ 100.
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Membership

Given G ≤ GL(d , q) and x ∈ GL(d , q): is x ∈ G ?

|GL(d , q)| = O(qd2
)

Difficult even for . . . 1× 1 matrices over GF(q):

Example

H := 〈[561], [520], [320]〉 ≤ GL(1, 593).

Membership related to Discrete log problem

Problem

F = GF(q), ω ∈ F primitive.
Given α ∈ F×, determine k so that α = ωk .

No polynomial-time algorithm known.
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Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS).
G acts faithfully on Ω = {1, . . . , n}

Base: sequence of points B = [ε1, ε2, . . . , εk ] where Gε1,ε2,...,εk = 1.

This determines chain of stabilisers

G = G (0) ≥ G (1) ≥ · · · ≥ G (k−1) ≥ G (k) = 1,

where G (i) = Gε1,ε2,...,εi .
S strong generating set: G (i) =

〈
S ∩ G (i)

〉
Example

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = [1, 3]
G > G1 > G1,3 = 1
S = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}
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Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Let Ui be transversal of G (i+1) in G (i).

Transversal provide normal form: every g ∈ G has unique
representation g = ukuk−1 . . . u1 where ui ∈ Ui .

Sifting algorithm provides membership test for G .
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Base image Bg = [εg1 , . . . ε
g
k ] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

For many interesting G ≤ Sn, |B| is small compared to n:
short base groups.

Luks et al. (1980), Seress (2003): polynomial time.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.
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Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits
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Critical for success: index of one stabiliser in its predecessor.

|Sn : Sn−1| = n

“Optimal” subgroup chain for GL(d , q)?

GL(d , q) ≥ qd−1.GL(d − 1, q) ≥ GL(d − 1, q) ≥ . . .

Leading index: qd − 1.

Example

Largest maximal subgroup 211 : M24 ≤ J4 index 173 067 389.
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Randomness

|GL(d , q)| = O(qd2
)

Many algorithms are randomised: use random search in G to find
elements having prescribed property P.

Example

� Characteristic polynomial having factor of degree > d/2.

� Order divisible by prescribed prime.

Common feature: algorithms depend on detailed analysis of
proportion of elements of finite simple groups satisfying P.
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Classes of algorithms

Definition

A Monte Carlo algorithm is a randomised algorithm which may
return an incorrect answer to a decision question, the probability of
this event being less than some ε.

If one of the answers is always correct, then it is one-sided.

Definition

A Las Vegas algorithm is one which never returns an incorrect
answer, but may report failure with probability less than ε.

Assume we determine a lower bound, say 1/k , for proportion of
elements in G satisfying Property P.

To find element satisfying P by random search with a probability
of failure less than given ε ∈ (0, 1): choose a sample of uniformly
distributed random elements in G of size at least d− loge(ε)ek.
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Random elements of a finite group

Babai (1991): Monte Carlo algorithm to construct in polynomial
time nearly uniformly distributed random elements.

Celler, Leedham-Green, Murray, Niemeyer, O’B (1995):
product replacement algorithm

Pak (2000): polynomial time

GAP and Magma use latter.
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Black-box groups

Babai & Szemerédi (1984)

Group elements represented by bit-strings of uniform length.

Operations: multiplication, inversion, and checking for equality
with the identity element.

Representation-independent: model includes permutation groups
and matrix groups defined over GF(q).

Definition

Black-box algorithm does not use specific features of the group
representation, nor particulars of how group operations are
performed; it uses only these operations.
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The basic strategies

� Geometry following Aschbacher

� Characteristic structure

Both provide composition series (and more) for G .
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Geometry following Aschbacher

Aschbacher (1984)

G maximal subgroup of GL(d , q), let V be underlying vector space

� G preserves some natural linear structure associated with the
action of G on V , and has normal subgroup related to this
structure,

� or G is almost simple modulo scalars: T ≤ G/Z ≤ Aut(T )
where T is simple.
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Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks.

Then φ : G → Sr where r |d and N = ker φ.

Lecture II: Geometry after Aschbacher

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.
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Base cases for Aschbacher strategy

Classical group in natural representation or other almost
simple modulo scalars.

Liebeck (1985): almost all maximal non-classical subgroups of
GL(d , q) have order at most q3d .

Landazuri & Seitz (1974), Seitz & Zalesskii (1993): lower bounds
for degrees of nonlinear irreducible projective representations of
finite Chevalley groups. Faithful projective representations in cross
characteristic have degree that is polynomial in the size of the
defining characteristic.

Principal focus: matrix representations in defining characteristic.

Hiss & Malle (2001), Lübeck (2001): absolutely irreducible
representations of degree ≤ 250 of quasisimple groups.
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Can we name the group?

A prime r dividing be − 1 is a primitive prime divisor of be − 1
if r does not divide bi − 1 for 1 ≤ i < e.

Zsigmondy (1892): be − 1 has ppd unless (b, e) = (2, 6) or
e = 2, b = 2n − 1.

|GL(d , q)| = q(d
2)

d∏
i=1

(qi − 1)

Hence ppds of qe − 1 for various values of e ≤ d divide |GL(d , q)|
and also orders of the various classical groups.

ppd-element: order a multiple of some ppd
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Naming groups: Classical groups

Problem

Given G = 〈X 〉 ≤ GL(d , q), does G contain SX(d , q)?

Praeger & Neumann (1992), P & Niemeyer (1998): Monte Carlo
polynomial-time algorithms to name classical group in natural repn.

Search for certain kinds of ppd-elements that occur with high
probability in SX(d , q) and are in only a “small” number of other
subgroups of GL(d , q).

Original motivation: Joachim Neubüser (1988) asked for analogue
of algorithm to decide if G ≤ Sn contains An.
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Naming groups of Lie type: Black box

Theorem (Babai, Kantor, Palfy, Seress, 2002)

Given a group G isomorphic to a simple group of Lie type of
known characteristic, its standard name can be computed using a
polynomial time Monte-Carlo algorithm.

Choose sample L of independent (nearly) uniformly distributed
random elements of G .

Find the three largest integers v1 > v2 > v3 such that a member of
L has order divisible by a primitive prime divisor of one of pvi − 1.

Usually {v1, v2, v3} determines |G | and name of G .

Altseimer & Borovik (2002): distinguish between PSp(2m, q) and
Ω(2m + 1, q), q odd and m ≥ 3.
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Finding the characteristic

BKPS and other algorithms assume that input G is a simple group
of Lie type of known characteristic.

Problem

Given G ≤ GL(d , q) where G is a group of Lie type in unknown
defining characteristic r . Can we determine r?

Liebeck & O’B (2007):
Monte Carlo algorithm which proceeds recursively through
centralisers of involutions to find SL(2,Fr ). Now read off r .

Kantor & Seress (2009):
The three largest element orders determine the characteristic of
Lie-type simple groups of odd characteristic.

Result: extremely powerful Monte Carlo algorithms to name group.
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Constructive recognition

Given H = 〈X 〉, a named (quasi)simple group.

1 Given h ∈ H, express h = w(X ).
(“Constructive membership problem”, “Word problem”)

2 Given G = 〈Y 〉 where G is faithful representation of H,
� solve constructive membership problem for G ;

� construct “effective” isomorphisms
φ : H 7−→ G
τ : G 7−→ H.

Lecture III: Constructive recognition
Key concept: standard generators
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Application I: Conjugacy classes of classical groups

Example: H = 〈X 〉 = SX(d , q)
G = 〈Y 〉 is symmetric cube.

Wall (1963): description of conjugacy classes and centralisers of
elements of classical groups.

Murray & Haller (ongoing): algorithm, which given d and q,
constructs classes for SX(d , q).

φ : H 7−→ G now maps class reps and centralisers to G .

Example

Higman’s (1961) count of p-groups of p-class 2.
Eick and O’B (1999): algorithm which, given d and p, counts
precisely the number of d-generator p-groups of class 2.
Critical task: for each conjugacy class rep r in G := Λ2(GL(d , p))
use Cauchy-Frobenius theorem to count fixed points for r .
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Application II: Maximal subgroups of classical groups

Kleidmann & Liebeck (1990): describe some maximal subgroups of
classical groups where d ≥ 13.

Bray, Holt & Roney-Dougal (ongoing): construct generating sets
for geometric maximal subgroups, and all maximals for d ≤ 12.

So obtain M ≤ H := SX(d , q), classical group in natural
representation.

Use φ : H 7−→ G to construct image of M in arbitrary
representation G .
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Characteristic structure

G has characteristic series C of subgroups:

1 ≤ O∞(G ) ≤ S∗(G ) ≤ P(G ) ≤ G

O∞(G ) = largest soluble normal subgroup of G , soluble radical

S∗(G )/O∞(G ) = Socle (G/O∞(G )) = T1 × . . .× Tk where Ti

non-abelian simple

φ : G 7−→ Sym(k) is repn of G induced by conjugation on
{T1, . . . ,Tk} and P(G ) = ker φ

P(G )/S∗(G ) ≤ Out(T1)× . . .×Out(Tk) and so is soluble

G/P(G ) ≤ Sym(k) where k ≤ log |G |/ log 60
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Black-box model pioneered by Babai and Beals.

Babai, Beals, Seress (2009): can construct C directly in black-box
groups in polynomial time (subject to Discrete Log solution and
some other restrictions).

Ongoing work with Holt and Roney-Dougal: refine composition
series obtained from “geometric model” to obtain chief series
reflecting this characteristic structure.

Cannon & Holt: exploit this model in many algorithms e.g.
automorphism group, conjugacy classes of subgroups.

Lecture IV: Towards effective computation
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