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Abstract. In this paper we provide an elementary proof of James’ characterisation of weak
compactness in separable Banach spaces. The proof of the theorem does not rely upon either
Simons’ inequality or any integral representation theorems. In fact the proof only requires the
Krein-Milman theorem, Milman’s theorem and the Bishop-Phelps theorem.
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Ever since R. C. James first proved in [6] that, in any Banach space X, a closed bounded convex
subset C of X is weakly compact if, and only if, every continuous linear functional attains its
supremum over C, there has been continued interest in trying to simplify his proof. Some success
was made in [5] when G. Godefroy used Simons’ inequality, [14] to deduce James’ theorem in the case
of a separable Banach space. However, although the proof of Simons’ inequality is elementary, it is
certainly not easy and so the search for a simple proof continued. Later in [4] Fonf, Lindenstrauss
and Phelps used the notion of (I)-generation to provide an alternative proof of James’ theorem (in
the separable Banach space case) without recourse to Simons’ inequality (this was later slightly
refined in [3]). Their proof was short and reasonably elementary. However, it still relied upon
integral representation theorems, as well as, the Bishop-Phelps theorem, [2]. In this short note we
show how to modify the proof in [4] in order to further simplify matters by replacing the integral
representations in [4] by the use of the Krein-Milman theorem, [8] in conjunction with Milman’s
theorem, [9].

Let K be a weak∗ compact convex subset of the dual of a Banach space X. A subset B of K is called
a boundary of K if for every x ∈ X there exists an x∗ ∈ B such that x∗(x) = sup{y∗(x) : y∗ ∈ K}.
We shall say B, (I)-generates K, if for every countable cover {Cn : n ∈ N} of B by weak∗ compact
convex subsets of K, the convex hull of

⋃
n∈N

Cn is norm dense in K. Finally, we shall denote by
BX∗ the closed unit ball in X∗ and by Ext(K), the set of all extreme points of K.

The main theorem relies upon the following prerequisite result.

Lemma 1 Suppose that K, S and {Kn : n ∈ N} are weak∗ compact subsets of the dual of a Banach

space X. Suppose also that S ∩K = ∅ and S ⊆
⋃

n∈N
Kn

w∗

. If for each weak∗ open neighbourhood
W of 0 there exists an N ∈ N such that Kn ⊆ K + W for all n > N then S ⊆

⋃
1≤n≤M Kn for

some M ∈ N.

Proof: Since K∩S = ∅ there exists a weak∗ open neighbourhood W of 0 such that K+W ⊆ X∗\S.

By making W smaller, we may assume that K + W
w∗

⊆ X∗ \S. From the hypotheses there exists
a M ∈ N such that

⋃
n>M Kn ⊆ K + W and so

⋃

n>M

Kn

w∗

⊆ K + W
w∗

⊆ X∗ \ S, since K + W
w∗

is weak∗ closed.
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On the other hand, S ⊆
⋃

n∈N
Kn

w∗

=
⋃

n>M Kn
w∗

∪
⋃

1≤n≤M Kn. Therefore, S ⊆
⋃

1≤n≤M Kn.
k��

We may now state and prove the main theorem.

Theorem 1 Let K be a weak∗ compact convex subset of the dual of a Banach space X and let B
be a boundary of K. Then B, (I)-generates K.

Proof: After possibly translating K we may assume that 0 ∈ B. Suppose that B ⊆
⋃

n∈N
Cn

where {Cn : n ∈ N} are weak∗ compact convex subsets of K. Fix ε > 0. We will show that
K ⊆ co[

⋃
n∈N

Cn]+2εBX∗ . For each n ∈ N, let Kn := Cn +(ε/n)BX∗ and let V ∗ := cow∗
⋃

n∈N
Kn.

Clearly, B ⊆
⋃

n∈N
Kn and so K = cow∗

(B) ⊆ V ∗. It is also clear that V ∗ is a weak∗ compact
convex body in X∗ with 0 ∈ int(V ∗). Let x∗ be any element of

ΣV :=

{
y∗ ∈ V ∗ : x̂(y∗) = max

z∗∈V ∗

x̂(z∗) for some x ∈ X \ {0}

}

and let x ∈ X by chosen so that x̂(x∗) = max
z∗∈V ∗

x̂(z∗) = 1. It is easy to see that if F := {y∗ ∈ V ∗ :

y∗(x) = 1} then F ∩ K = ∅. Indeed, if F ∩ K 6= ∅ then max{y∗(x) : y∗ ∈ K} = 1 and because
B is a boundary for K it follows that for some j ∈ N there is a b∗ ∈ Cj ∩ B such that b∗(x) = 1.
However, as b∗ ∈ b∗ + (ε/j)BX∗ ⊆ Kj ⊆ V ∗, this is impossible. Now,

Ext(F ) ⊆ Ext(V ∗) since F is an extremal subset of V ∗

⊆
⋃

n∈N

Kn

w∗

by Milman’s theorem.

Thus, Ext(F ) ⊆ F ∩
⋃

n∈N
Kn

w∗

⊆
⋃

n∈N
Kn

w∗

and so by Lemma 1, applied to the weak∗ compact

set S := F ∩
⋃

n∈N
Kn

w∗

, there exists an M ∈ N that that Ext(F ) ⊆ S ⊆
⋃

1≤n≤M Kn. Hence,

x∗ ∈ F = cow∗

Ext(F ) ⊆ co[
⋃

1≤n≤M Kn] ⊆ co[
⋃

1≤n≤M Cn] + εBX∗ ⊆ co[
⋃

n∈N
Cn] + εBX∗ .

Since x∗ ∈ ΣV was arbitrary, we have by the Bishop-Phelps theorem, which says that ΣV is dense
in ∂V ∗, that

∂V ∗ ⊆ co[
⋃

n∈N

Cn] + 2εBX∗ .

However, since 0 ∈ B (and hence in some Cn) it follows that K ⊆ V ∗ ⊆ co[
⋃

n∈N
Cn] + 2εBX∗ .

Since ε > 0 was arbitrary we are done. k��

There are many applications of this theorem. In particular, we have the following.

Corollary 1 Let K be a weak∗ compact convex subset of the dual of a Banach space X, let B be
a boundary for K and let fn : K → [0,∞) be weak∗ lower semi-continuous convex functions. If
{fn : n ∈ N} are equicontinuous with respect to the norm and lim

n→∞
fn(b∗) = 0 for each b∗ ∈ B then

lim
n→∞

fn(x∗) = 0 for each x∗ ∈ K.

Proof: Clearly, it is sufficient to show that lim supn→∞ fn(x∗) = 0 for each x∗ ∈ K. To this end,
fix ε > 0. For each n ∈ N, let Cn := {y∗ ∈ K : fk(y

∗) ≤ (ε/2) for all k ≥ n}. Then {Cn : n ∈ N} is
a countable cover of B by weak∗ compact convex subsets of K. Therefore, co[

⋃
n∈N

Cn] =
⋃

n∈N
Cn

is norm dense in K. Since {fn : n ∈ N} are equicontinuous (with respect to the norm) it follows
that lim supn→∞ fn(x∗) < ε for all x∗ ∈ K. k��
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The classical Rainwater’s theorem, [13] follows from this by setting: K := BX∗ ; B := Ext(K) and
for any bounded set {xn : n ∈ N} in X that converges to x ∈ X with respect to the topology of
pointwise convergence on Ext(BX∗), let fn : K → [0,∞) be defined by, fn(x∗) := |x∗(xn)− x∗(x)|.

As promised, we give a simple proof of James’ theorem valid for separable, closed and bounded
convex sets. In the proof of this theorem we shall denote the natural embedding of a Banach
space X into its second dual X∗∗ by, X̂ and similarly, we shall denote the natural embedding of an
element x ∈ X by, x̂.

Theorem 2 Let C be a closed and bounded convex subset of a Banach space X. If C is separable
and every continuous linear functional on X attains its supremum over C then C is weakly compact.

Proof: Let K := Ĉ
w∗

. To show that C is weakly compact it is sufficient to show that for every
ε > 0, K ⊆ Ĉ + 2εBX∗∗ . To this end, fix ε > 0 and let {xn : n ∈ N} be any dense subset of C. For
each n ∈ N, let Cn := K ∩ [x̂n + εBX∗∗ ]. Then {Cn : n ∈ N} is a cover of Ĉ by weak∗ closed convex
subsets of K. Since Ĉ is a boundary of K, K ⊆ co

⋃
n∈N

Cn ⊆ Ĉ + 2εBX∗∗ . k��

The notion of (I)-generation has been used by some other authors (see [7]) to provide a proof of
the full version of James’ theorem without recourse to Simons’ inequality.

If we are willing to invest a little more effort we can extend Theorem 2 to the setting where BX∗

is weak∗ sequentially compact. To see this we need the following lemma.

Lemma 2 Let C be a closed and bounded convex subset of a Banach space X. If (BX∗ ,weak∗)
is sequentially compact and every continuous linear functional on X attains its supremum over C
then for each F ∈ BX∗∗∗ there exists an x∗ ∈ BX∗ such that F |

bC
w
∗ = x̂∗|

bC
w
∗ .

Proof: Let K := Ĉ
w∗

and note that Ĉ is a boundary of K. Let Bp(K) [Cp(K)] denote the
bounded real-valued [weak∗ continuous real-valued] functions defined on K, endowed with the
topology of pointwise convergence on K. For an arbitrary subset Y of K, let τp(Y ) denote the

topology on B(K) of pointwise convergence on Y . Consider, S : (BX∗ ,weak∗) → (C(K), τp(Ĉ))

defined by, S(x∗) := x̂∗|K . Since S is continuous, S(BX∗) is sequentially τp(Ĉ)-compact. Hence,
from Corollary 1, S(BX∗) is sequentially τp(K)-compact. It then follows from Grothendieck’s
Theorem [1, III.4] that S(BX∗) is a compact subset of Cp(K) and so a compact subset of Bp(K).
In particular, S(BX∗) is a closed subset of Bp(K). Next, consider T : (BX∗∗∗ ,weak∗) → Bp(K)
defined by, T (F ) := F |K . Then T is continuous and so T (B cX∗

) is dense in T (BX∗∗∗), since B cX∗

is weak∗ dense in BX∗∗∗ by Goldstine’s Theorem. However, T (B cX∗
) = S(BX∗); which is closed in

Bp(K). Therefore, T (BX∗∗∗) = S(BX∗) = T (B cX∗
). This completes the proof. k��

Theorem 3 Let C be a closed and bounded convex subset of a Banach space X. If (BX∗ ,weak∗)
is sequentially compact and every continuous linear functional on X attains its supremum over C
then C is weakly compact.

Proof: Let K := Ĉ
w∗

. In order to obtain a contradiction, suppose that Ĉ ( K. Let F ∈ K \ Ĉ.
Then there exists a F ∈ BX∗∗∗ such that F (F ) > sup

bc∈ bC

F (ĉ). However, by Lemma 2 there exists

an x∗ ∈ BX∗ such that x̂∗|K = F |K . Therefore,

x̂∗(F ) = F (F ) > sup
bc∈ bC

F (ĉ) = sup
bc∈ bC

x̂∗(ĉ) = max
G∈K

x̂∗(G);

which contradicts the fact that F ∈ K. Therefore, K = Ĉ and so C is weakly compact. k��

For some related articles see, [10, 11, 12].
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