
Furstenberg’s structure theorem viaCHART groups

Warren B. Moors and Isaac Namioka

Abstract

We give an almost self-contained group theoretic proof of Furstenberg’s structure theorem as gener-
alized by Ellis: Each minimal compact distal flow is the result of a transfinite sequence of equicontinuous
extensions, and their limits, starting from a flow consisting of a singleton. The groups that we use are
CHART groups, and their basic properties are recalled at thebeginning of this paper.
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0 Introduction

The “CHART” in the title stands for “compact Hausdorff admissible right topological”, that is, a CHART
group(G, τ) is a groupG, with a compact Hausdorff topologyτ , such that right multiplicationx 7→ xy is
continuous for eachy ∈ G and left multiplicationx 7→ yx is continuous for eachy belonging to a dense
subset ofG. The purpose of the present note is to give an almost self-contained proof of the Furstenberg
structure theorem, as generalized by Ellis, using CHART groups.

In 1963, Furstenberg published his ground breaking study ofdistal flows [4] in which he proved, in part,
that each compact metric minimal distal flow is the result of atransfinite sequence of isometric extensions,
and their limits, starting from a trivial flow consisting of asingleton. In 1978 Ellis [3] generalized this
structure theorem to arbitrary compact distal flows, where equicontinuous extensions replaced isometric
extensions. The second author of the present note publishedin 1972 [8] a proof of Furstenberg’s structure
theorem using CHART groups and theirσ-topology. This approach is used again in the present note but
without metric or countability assumptions. The initial part of [8], which has to do with properties of the
σ-topology, will not be repeated in full here. Instead, the relevant facts are quoted, and for their proofs,
references to [8] and the more recent paper [9] are given. Apart from these, the paper is selfcontained. In
particular, no additional techniques from topological dynamics are used.

This note is structured as follows. There are four sections.Section 0 is the introduction. Section 1
contains preliminary material such as definitions and results from earlier papers to be used without proof.
In Section 2, the notions from topological dynamics, such asflow maps and equicontinuous extensions are
interpreted group theoretically, and finally a proof of the Furstenberg-Ellis structure theorem is given in
Section 3. One by-product of the present approach is that theproof, due to Milnes and Pym [6], of the
existence of a Haar measure for separable CHART groups, now works for arbitrary CHART groups. Thus,
CHART groups are the next best thing after compact Hausdorfftopological groups.
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1 Preliminaries

1.1 Flows

An actionof a semigroupS on a setX is a functionS ×X → X (denoted by(s, x) 7→ s · x) such that
s · (t · x) = (st) · x for all s, t ∈ S andx ∈ X. In the case whenX is a topological space and the map
x 7→ s · x is continuous, for eachs ∈ S, the action is called acontinuous actionor alternatively thatS acts
continuously onthe topological spaceX. A flow is a pair(S,X), whereX is a Hausdorff space andS is a
semigroup acting continuously onX. A compact flowis a flow(S,X) in which X is a compact Hausdorff
space. Aflow mapf : (S,X) → (S, Y ) of (S,X) into (S, Y ) is a continuous mapf : X → Y such that
f(s · x) = s · f(x) for all s ∈ S andx ∈ X. If f is an inclusion mapX ⊂ Y , then(S,X) is called a
subflowof (S, Y ). If the mapf is a quotient map, then(S, Y ) is said to be afactor of (S,X) and(S,X) is
said to be anextensionof (S, Y ). If f is a homeomorphism ofX ontoY , thenf is aflow isomorphismand
the flows(S,X) and(S, Y ) are said to beisomorphic. A flow is said to beminimal if it does not have any
proper subflow. Clearly if(S,X) is a compact flow, then(S,X) is minimal if and only if, for eachx ∈ X,
S · x = {s · x : s ∈ S} is dense inX.

1.2 Compact flows

Let (S,X) be a compact flow and define the mapη : S → XX by η(s)(x) = s · x for eachs ∈ S
andx ∈ X. ProvideXX with the product topologyτ , i.e. the topology of pointwise convergence. Then
(XX , τ) is a compact Hausdorff space with a semigroup structure given by the composition of maps. The
mappingη : S → XX is a homomorphism of semigroups and the closureΣ = η(S)

τ
in XX is a compact

subsemigroup ofXX . This Σ is called theenveloping semigroupof the flow (S,X). The enveloping
semigroupΣ has the following properties:

(i) The mapα 7→ αβ is continuous for eachβ ∈ Σ, i.e. the right multiplication is continuous.

(ii) The mapβ 7→ η(s)β is continuous for eachs ∈ S, i.e. left multiplication by members ofη(S) is
continuous.

The following theorem due to Ellis [1] is basic in the presentnote. For a proof, see [9, Proposition 3.1].

1.1 Theorem (Ellis)
Let Σ be the enveloping semigroup of a compact flow(S,X). Then the following statements are equivalent.

(a) Each member ofΣ is one-to-one.

(b) Each member ofΣ is onto.

(c) Σ is a group with the identity element idX : X → X.

A compact flow(S,X) is said to bedistal if one (hence all) of the conditions of the theorem above is
satisfied. Clearly condition (a) is equivalent to the statement: if x, y ∈ X and for some net{sγ} in S,
limγ sγ · x = limγ sγ · y, thenx = y.

The enveloping semigroup of a distal flow is called theEllis group of the flow. The Ellis group is a
compact group satisfying the continuity conditions (i) and(ii) above.
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1.3 Right topological groups

Abstracting the Ellis groups described above, we define aright topological groupto be a pair(G, τ),
whereG is a group andτ is a topology (not necessarily Hausdorff) onG such that right multiplication
is continuous,i.e. for eachy ∈ G the mapx 7→ xy is continuous. Similarly aleft topological groupis
defined by replacing the right multiplication by left multiplication x 7→ yx. If (G, τ) is both a right and left
topological group then it is called asemitopological group.

Let (G, τ) be a right topological group and letH be a (not necessarily closed) subgroup. Let(H, τ) be
the spaceH with the relativization to the topologyτ . Clearly(H, τ) is again a right topological group. We
let (G/H, τ) be the space{xH : x ∈ G} of left cosets ofH in G with the quotient topology induced from
(G, τ) by the quotient mapπ : G → G/H given byx 7→ xH. We remark thatπ is open since, ifU is
an open subset ofG, thenπ−1π(U) = UH =

⋃

{Ux : x ∈ H} which is open since right multiplications
are homeomorphisms. The following Lemma justifies our notation for relative and quotient topologies [8,
p.197], [9, Lemma 4.2].

1.2 Lemma
Let L, H be subgroups of a right topological group(G, τ) such thatH ⊂ L. Then regardingL/H as a
subset ofG/H, the relative topology induced onL/H from (G/H, τ) is identical with the quotient topology
induced from(L, τ) by the quotient mapL→ L/H.

1.4 Theσ-topology

Let (G, τ) be a right topological group and letϕ : G×G→ G be the map defined byϕ(x, y) = x−1y.
Then the quotient topology onG induced from(G×G, τ × τ) by the mapϕ is called theσ(G, τ)-topology
(or σ-topology, when there is no confusion). The following is a summary of the properties of theσ-topology
[8, Theorem 1.1], [9, Lemma 4.3].

1.3 Lemma
Let (G, τ) be a right topological group and letσ be itsσ- topology. Then

(a) (G,σ) is a semitopological group and the inverse mapx 7→ x−1 is σ-continuous.

(b) σ ⊂ τ .

(c) A subgroupH of G is σ-closed if and only if(G/H, τ) is Hausdorff.

Let (G, τ) be a right topological group and letΛ(G, τ) (or simplyΛ(G) when no confusion is possible)
be the set of allx ∈ G such that the mapy 7→ x · y is τ -continuous. It is easy to check that when(G, τ)
is compact and Hausdorff,Λ(G, τ) is a subgroup ofG. If Λ(G) is τ -dense inG, then(G, τ) is said to be
admissible. For instance, if(S,X) is a distal flow, then its Ellis group(Σ, τ) is admissible, because as seen
aboveη(S) ⊂ Λ(G) andη(S) is τ -dense inΣ.

1.4 Lemma
Let (G, τ) be a compact right topological group and letK be aσ-closed subgroup ofG. Let S be a
semigroup and letη : S → Λ(G) be a semigroup homomorphism. If we define a continuous actionof S on
the compact Hausdorff space(G/K, τ) by s · gK = η(s)gK, then the flow(S, (G/K, τ)) is distal. Ifη(S)
is dense inG, then this flow is also minimal.
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Proof. Supposeg1 andg2 are elements ofG such that for some net{sγ} in S, limγ sγ ·g1K = limγ sγ ·g2K
or limγ η(sγ)g1K = limγ η(sγ)g2K. Let k ∈ G be aτ -cluster point of the net{η(sγ)}. Thenkg1K =
kg1K or g1K = g2K. This proves that(S,G/K) is distal. If η(S) is dense inG, then for eachg ∈ G,
η(S)g is dense inG since(G, τ) is a right topological group. Hence the flow(S,G/K) is minimal.

The proof of the next proposition is found in [8, Theorem 1.2]or [9, Proposition 4.4].

1.5 Proposition
Let (G, τ) be an admissible right topological group. Then:

(a) The quotient mapϕ : (G×G, τ × τ)→ (G,σ) is open.

(b) If U is the family of allτ -open neighborhoods ofe in G then{U−1U : U ∈ U} is a base of open
neighborhoods ofe in (G,σ).

The following proposition is proved in [9, Proposition 4.5].

1.6 Proposition
Let (G, τ) be an admissible right topological group, letU be the family of allτ -open neighborhoods ofe in
(G, τ) and letN =

⋂

{U
τ

: U ∈ U}. Then:

(a) N =
⋂

{U−1U : U ∈ U} andN is aσ-closed (henceτ -closed) normal subgroup ofG.

(b) Forx ∈ G, x ∈ N if and only if there is a net whichτ -converges simultaneously to bothe andx.

(c) (G/N, τ) is a compact Hausdorff admissible right topological group.If (G, τ) is a semitopological
group, then so is(G/N, τ).

1.5 CHART groups

Let (G, τ) be a CHART group,i.e. a compact Hausdorff admissible right topological group andlet σ
be itsσ-topology. LetL be aσ-closed subgroup ofG. Recall that(L, σ) is semitopological group, hence it
is an admissible group. Then byN(L, σ) (or N(L) when there is no confusion) we denote the intersection
of all σ-closedσ-neighborhoods ofe in L. Then by Proposition 1.6 (a),N(L) is aσ(L, σ)-closed normal
subgroup ofL. Hence by Lemma 1.3(c),(L/N(L), σ) is a compact Hausdorff semitopological group.
Hence by Ellis’ theorem [1],(L/N(L), σ) is a compact Hausdorff topological group, and since the topology
of (L/N(L), τ) is stronger thanσ, (L/N(L), σ) = (L/N(L), τ). We can make the definition ofN(L) a
little more explicit. As above, letU be the family of all open neighborhoods ofe in (G, τ). Then by
Proposition 1.5(b),{U−1U ∩ L : U ∈ U} is a base of open neighborhoods ofe in (L, σ). Therefore by
Proposition 1.6(a),N(L) =

⋂

{(U−1U ∩ L)−1(U−1U ∩ L) : U ∈ U}. This formula and part (a) of the
following proposition are observations due to Milnes and Pym [6]. Part(b) is proved in [8, Proposition 2.1]
and parts (a) and (b) are proved in [9, Proposition 4.6].
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1.7 Proposition
Let (G, τ) be a CHART group. Then using the notation given above, we havethe following properties:

(a) If L is a normal subgroup ofG, then so isN(L).

(b) If m : (G/N(L), τ)× (L/N(L), τ) → (G/N(L), τ) is defined by(xN(L), yN(L)) 7→ xyN(L) for
eachx ∈ G andy ∈ L, thenm is well-defined and continuous.

Remark Let (G, τ) be a CHART group and letU be the family of all open neighborhoods ofe ∈ G.
Then if g ∈ G and g 6= e, then, for someU ∈ U , U ∩ Ug = ∅ or g 6∈ U−1U , sinceτ is Hausdorff.
Therefore

⋂

{U−1U : U ∈ U} = {e}. Suppose(G, τ) satisfies the first countability axiom. ThenU
admits a countable base{Un : n ∈ N}, and hence

⋂

{U−1
n Un : n ∈ N} = {e}, i.e. {e} is aGδ-point in

(G,σ). Let ϕ : (G ×G, τ × τ) → (G,σ) be the quotient map as in the Subsection 1.4. Then the diagonal
∆G = ϕ−1({e}) is aτ × τ -Gδ subset ofG×G. Hence(G, τ) is metrizable (see [5, Exercise 4.2B]), and by
[8, Theorem 2.1],(G, τ) is a topological group. Hencea CHART group which satisfies the first countability
axiom is a metrizable topological group.

2 Equicontinuous flow maps

2.1 Representation of flow maps between minimal distal flows

Let (S,X) and(S, Y ) be compact flows and letπ : (S,X)→ (S, Y ) be a quotient (i.e. continuous and
onto) flow map. LetΣX ,ΣY be the enveloping semigroups of(S,X) and(S, Y ) respectively. Then for each
λ ∈ ΣX there is aµ ∈ ΣY such thatπλ = µπ. To see this let{sγ} be a net inS such thatsγ · x → λ(x)
for eachx ∈ X. By taking a subnet, we may assume that, for someµ ∈ ΣY , sγ · y → µ(y) for eachy ∈ Y .
Thenπ(sγ · x) → π(λ(x)) andπ(sγ · x) = sγ · π(x) → µ(π(x)). It follows π(λ(x)) = µπ(x) for each
x ∈ X. Henceπλ = µπ. Sinceπ is onto, this equation shows thatµ is determined uniquely byλ alone.
Denoteµ = π∗(λ). Then we have the following relationship

(2.1) πλ = π∗(λ)π.

A straightforward verification shows thatπ∗ : ΣX → ΣY is a continuous onto homomorphism of semi-
groups.

Let us further assume that the flow(S,X) is a minimal distal flow. Then(S, Y ) is also minimal, since,
if y ∈ Y theny = π(x) for somex ∈ X andS ·x is dense inX and soπ(S ·x) = S · y is dense inY . Since
(S,K) is distal eachλ ∈ ΣX is an onto map by Theorem 1.1(b), and therefore,π∗(λ) is onto by equation
(2.1) above. Usingπ∗(ΣX) = ΣY , we see that each element ofΣY is onto. Hence the flow(S, Y ) is
distal by the same theorem. LetGX , GY be the Ellis groups of(S,X), (S, Y ) with identity elementseX , eY

respectively. Thenπ∗ : GX → GY satisfiesπ∗(eX) = eY andπ∗ is a continuous onto homomorphism of
groups.

Let x0 be a fixed base point ofX and lety0 = π(x0). Define the mapshX : GX → X andhY : GY →
Y by hX(g) = g(x0) andhY (g′) = g′(y0) for g ∈ GX , g′ ∈ GY . By the minimality of the flows, bothhX

andhY are onto and continuous. LetK = h−1

X (x0). ThenK is closed inGX and it can be checked directly
that it is a subgroup ofGX . Furthermore, forg1, g2 ∈ GX , hX(g1) = hX(g2) if and only if g−1

1 g2 ∈ K.
This means that the mapα : GX/K → X defined bygK 7→ g(x0) for g ∈ GX is a homeomorphism. Since
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X is Hausdorff,K is σ-closed inGX , by Lemma 1.3(c). Leth = πhX : GX → Y . Then forg ∈ GX , by
using (2.1),h(g) = π(g(x0)) = π∗(g)π(x0) = π∗(g)(y0) = hY π∗(g), i.e.

(2.2) πhX = h = hY π∗.

Now let L = h−1(y0) = π−1
∗

(H), whereH = h−1

Y (y0). Then sinceH is a closed subgroup ofGY and
π∗ is a continuous homomorphism,L is a closed subgroup ofGX . Forg1, g2 ∈ GX , h(g1) = h(g2) if and
only if π∗(g

−1
1 g2) = π∗(g1)

−1π∗(g2) ∈ H and this is the case if and only ifg−1
1 g2 ∈ L. So as before, the

mapβ : GX/L → Y given bygL 7→ h(g) = (π∗g)(y0) is a homeomorphism andL is σ-closed inGX .
From formula (2.2), it is clear thatK ⊂ L. Finally, we wish to transfer the flow mapπ : X → Y to a map
GX/K → GX/L. Let g ∈ GX . Then using (2.1),πα(gK) = π(g(x0)) = π∗g(y0) = h(g) = β(gL). Let
ρ : GX/K → GX/L be the map defined byρ(gK) = gL for g ∈ G. Then from above,πα = βρ.

Lastly, we show that the various maps introduced above are flow maps. Suppose that the action ofS
on X is given by the semigroup homomorphismη : S → Λ(GX ) (see Subsection 1.2), and writeG for
GX andη for ηX . Then the continuous actions ofS on G, G/K andG/L are given bys · g = η(s)g,
s · (gK) = (η(s)g)K ands · (gL) = (η(s)g)L for eachs ∈ S, g ∈ G. We first check thathX : G→ X is a
flow map. So lets ∈ S andg ∈ G. ThenhX(s · g) = h0(η(s)g) = η(s)(g(x0)) = η(s)hX (g) = s · hX(g).
HencehX is a flow map. Recall that the mapα : G/K → X is defined byα(gK) = hX(g) = g(x0).
Therefore fors ∈ S andg ∈ G, s · α(gK) = s · hX(g) = hX(s · g) = α((η(s)g)K) = α(s · (gK)), i.e.
α is a flow map. SincehX andπ are flow maps, so ish = πhX and consequently the mapβ is a flow map.
Clearly the mapρ is a flow map.

We summarize the discussion above as follows. The converse part of (i) follows from Lemma 1.4. Part
(ii) states that an arbitrary factor of the minimal distal flow (X,S) is represented by the quotient of the Ellis
group(G, τ) by aσ-closed subgroup.

2.1 Proposition
Let (S,X) be a minimal distal flow and let(G, τ) be its Ellis group. Then

(i) There exists aσ-closed subgroupK of G and a semigroup homomorphismη : S → Λ(G) with
dense range such that the flow(S,X) is isomorphic to the flow(S, (G/K, τ)) where the action ofS
on G/K is as given in Lemma 1.4. Conversely, given a CHART group(G, τ), aσ-closed subgroup
K and a semigroup homomorphism of a semigroupS onto a dense subsemigroup ofΛ(G), the flow
(S, (G/K, τ)), as defined in Lemma 1.4, is a minimal distal flow.

(ii) Let (S, Y ) be a factor of(S,X) by a quotient flow mapπ : X → Y . Then(S, Y ) is also a minimal
distal flow and there existσ-closed subgroupsK and L of (G, τ) with K ⊂ L and a semigroup
homeomorphismη : S → Λ(G) with dense range such that:

(a) there exist flow isomorphismsα : (S,G/K) → (S,X) andβ : (S,G/L) → (S, Y ) where the
actions ofS onG/K andG/L are as in Lemma 1.4;

(b) if ρ : (S,G/K) → (S,G/L) is the mapgK 7→ gL (g ∈ G), thenρ is a flow map and
πα = βρ.
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2.2 Equicontinuous flow maps

Let (S,X) be a minimal distal flow with Ellis group(G, τ) and letσ be itsσ-topology.To simplify our
notation, we will assume thatS is a dense subsemigroup ofΛ(G) rather than a homomorphic image ofS.
SinceX is compact and Hausdorff, it has a unique uniform structureUX which is the family of all open
neighborhood of the diagonal∆X = {(x, x) : x ∈ X} in X × X. A quotient flow mapπ : (S,X) →
(S, Y ) is said toequicontinuousif for each uniformityU ∈ UX there exists a uniformityV ∈ UX such
that if (x, y) ∈ V andπ(x) = π(y), thens(x, y) ∈ U for eachs ∈ S wheres(x, y) = (sx, sy). Let
M = {(x, y) ∈ X×X : π(x) = π(y)}. Since the mapt 7→ (tx, ty) is continuous for each(x, y) ∈ X×X,
we may state the last part of the definition asG(M ∩ V ) ⊂ U . Now, by the definition ofM , it is clear that
sM ⊂M for eachs ∈ S. Hence by the continuity noted above,gM ⊂M for eachg ∈ G and consequently
GM = M sinceG is a group. It follows thatG(M ∩ V ) = M ∩ GV . SinceU ∈ UX is arbitrary, we
conclude thatπ is equicontinuous if and only if

(2.3)
⋂

{M ∩GV ) : V ∈ UX} = ∆X .

Let (G, τ) be a CHART group and letK and L be σ-closed subgroups ofG with K ⊂ L. Let
X = (G/K, τ) andY = (G/L, τ) and letS be a dense subsemigroup ofΛ(G). ThenX,Y are com-
pact Hausdorff spaces becauseK,L areσ-closed subgroups by Lemma 1.3(c). LetS act onX andY by the
maps(s, gK) 7→ sgK and(s, gL) 7→ sgL. Then(S,X) and(S, Y ) are minimal distal flows by Proposition
2.1(i). Define the mapπ : X 7→ Y by π(gK) = gL. Thenπ : (S,X)→ (S, Y ) is a flow map.

2.2 Theorem
Using the notation given above, the following statements are equivalent:

(a) The mapπ is equicontinuous.

(b) The space((L/K), σ) is Hausdorff.

(c) N(L) ⊂ K, whereN(L) is as in Proposition 1.7.

Proof.

(a)⇒ (c). Suppose thatx ∈ N(L) and letp : G→ G/K = X be the quotient mapg 7→ gK. We must
prove thatx ∈ K, i.e. p(x) = p(e) or show that(p(e), p(x)) ∈ ∆G/K = ∆X . Sinceπ is equicontinuous by

(a), using (2.3) it is sufficient to show that, for eachV ∈ UX , (p(e), p(x)) ∈ (M ∩GV ) holds.

To this end, letW be an arbitrary neighborhood of(p(e), p(x)) in X×X. Next, choose a neighborhood
U of e in (G, τ) such that(p × p)(U × Ux) ⊂ W and(p × p)(U × U) ⊂ V . Here recall that the quotient
mapp : G→ X is open and hence the mapp× p : G×G→ G/K ×G/K is also open.

Now, sincex ∈ N(L), x ∈ (U−1U∩L)−1(U−1U∩L) or equivalently,(U−1U∩L)x∩(U−1U∩L) 6= ∅.
Choosez ∈ (U−1U ∩ L)x ∩ (U−1U ∩ L). Then there areu, v ∈ U such thatuz ∈ Ux andvz ∈ U .
(Note z ∈ L.) Consequently(u, uz) ∈ U × Ux and (u, uz) = g(v, vz) for g = uv−1. It follows that
(p× p)(u, uz) ∈ (p× p)(U ×Ux) ⊂W and(p× p)(u, uz) = g(p× p)(v, vz) ∈ g(p× p)(U ×U) ⊂ gV .
On the other hand, sincez ∈ L, (π× π)(p× p)(u, uz) = (uL, uzL) = (uL, uL), i.e. (p× p)(u, uz) ∈M .
Combining the inclusions noted above, we obtain that(p × p)(u, uz) ∈ (M ∩ gV ) ⊂ (M ∩ GV ). Since
(p×p)(u, uz) ∈W , we see thatW ∩ (M ∩GV ) 6= ∅. SinceW is an arbitrary neighborhood of(p(e), p(x))
in X ×X, (p(e), p(x)) ∈ (M ∩GV ) as desired.
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(c)⇒ (b). As noted at the beginning of Subsection 1.3, the quotient mapsL→ L/N(L) andL→ L/K
are continuous and open inτ andσ topologies. Hence the natural mapL/N(L)→ L/K is also continuous
and open inτ andσ. However since the two topologies agree onL/N(L) (see Subsection 1.5), they also
agree onL/K. SinceK is σ-closed,(L/K, τ) is Hausdorff (see Lemma 1.3(c)). Hence(L/K, σ) is
Hausdorff.

(b) ⇒ (a). As before letϕ : (G × G, τ × τ) → (G,σ) be the map(x, y) 7→ x−1y. Then by
the definition ofσ-topology (Subsection 1.4)ϕ is continuous, and by Proposition 1.5(a) it is also open.
Let p : G → G/K be the quotient map. LetV denote the family of all open neighborhoods ofe in
(G/K,σ). Then{V ∩ (L/K) : V ∈ V} is a base for the neighborhoods ofp(e) in (L/K, σ), hence
{V ∩ (L/K)

σ
: V ∈ V} is a base for the family of closed neighborhoods ofp(e) in (L/K, σ). Since

(L/K, σ) is Hausforff by (b),

{p(e)} =
⋂

{V ∩ (L/K)
σ

: V ∈ V}.

By applyingp−1 to the both sides of the above, we obtain:

K ⊂
⋂

{p−1(V ) ∩ L
σ

: V ∈ V} ⊂
⋂

{p−1((V ∩ L/K)
σ
) : V ∈ V} = K.

ThereforeK =
⋂

{p−1(V ) ∩ L
σ

: V ∈ V}. Similarly applyϕ−1 to the preceding to obtain:

ϕ−1(K) =
⋂

{(pϕ)−1(V ) ∩ ϕ−1(L)
τ

: V ∈ V}.

Since(p × p)−1(∆X) = ϕ−1(K), if U is an open neighborhood of the diagonal∆X ⊂ X × X =
(G/K ×G/K, τ × τ), then(p× p)−1(U) is anτ × τ - neighborhood ofϕ−1(K). Hence for someV ∈ V,

(2.4) ϕ−1(L) ∩ (pϕ)−1(V ) ⊂ (p× p)−1(U).

Note (pϕ)−1(V ) is an open neighborhood of∆G ⊂ (G × G, τ × τ). Sincep × p : (G × G, τ × τ) →
(G/K ×G/K, τ × τ) = (X ×X) is open, the setW = (p × p)((pϕ)−1(V )) is an open neighborhood of
∆X . Since for each subsetA of G, ϕ−1(A) = Gϕ−1(A) and since the mapp×p : G×G→ G/K×G/K
commutes with the action ofG, we haveGW = W . Also note thatϕ−1(L) = (p × p)−1(M). Hence by
applyingp × p to (2.4), we obtainM ∩ GW = W ∩M ⊂ U . [Here we used an easily provable fact: if
f : A→ B andC andD are subsets ofA andB respectively, thenf(C∩f−1(D)) = f(C)∩D.] It follows
thatM ∩GW ⊂ U . SinceU is an arbitrary open neighborhood of∆X ,

⋂

{M ∩GW ) : W ∈ UX} = ∆X

(see (2.3)). Thereforeπ : X → Y is equicontinuous.

3 The structure theorems

3.1 The basic theorem

Let (G, τ) be a CHART group and define inductively{Lξ} as follows: L0 = G,L1 = N(L0), L2 =
N(L1), · · · etc, where, as in Section 1 and 2, for a subgroupL of G, N(L) denotes the intersection of all
closed neighborhoods ofe in (L, σ). Then eachLξ is aσ-closed normal subgroup ofG, by Propositions
1.6, 1.7 and induction. Furthermore by Theorem 2.2 the mapG/Lξ+1 → G/Lξ is an equicontinuous flow

8



map,i.e. G/Lξ+1 is an equicontinuous extension ofG/Lξ . However, this inductive process stops as soon
asLξ+1 = Lξ. The next theorem guarantees that this is not the case so longasG/Lξ 6= {e}.

We need the following lemma due to Furstenberg [4]. Since itsproof is very simple, we give it here.

3.1 Lemma
Let (G, τ) be a compact right topological group and letω be a topology onG weaker thanτ such that(G,ω)
is also a right topological group. IfU is an open dense subset of(G,ω), thenU alsoτ -dense inG.

Proof. Let C = G \ U . Then by the hypothesis,C is aω-closed (henceτ -closed) nowhere dense subset of
G. If U is notτ -dense inG, thenC contains a nonemptyτ -open subset. By the compactness of(G, τ) there
exists a finite subsetF of G such thatG =

⋃

{Cg : g ∈ F}. Now eachCg is nowhere dense in(G,ω) since
each right multiplication is a homeomorphism there. This contradicts the fact that a nonempty topological
space can never be the union of a finite number of nowhere densesubsets.

3.2 Lemma
Let (G, τ) be a CHART group and letΛ = Λ(G). If A andB are nonempty open subsets of(G, τ), then
A−1B = (A ∩ Λ)−1B.

Proof. Let x ∈ A−1B. Then for somea ∈ A, ax ∈ B. SinceB is open andA ∩ Λ is dense inA, there is a
c ∈ A ∩ Λ such thatcx ∈ B. Hencex ∈ c−1B ⊂ (A ∩ Λ)−1B. HenceA−1B ⊂ (A ∩ Λ)−1B. The reverse
inclusion is obvious.

3.3 Lemma
Let (G, τ) be a compact Hausdorff right topological group. IfS is a subsemigroup ofΛ(G) then the closure
S of S in (G, τ) is a subgroup ofG.

Proof. The semigroupS acts onG continuously by the map(s, x) 7→ sx for (s, x) ∈ S×G. Since(G, τ) is
a compact Hausdorff right topological group, the enveloping semigroup of the flow(S,G) can be identified
with S, where eacht ∈ S acts onG by the left multiplicationx 7→ tx (x ∈ G). SinceG is a group each
left multiplication is onto. Hence by Theorem 1.1,S is a subgroup ofG.

3.4 Theorem
Let (G, τ) be a CHART group and letσ denote itsσ-topology. Suppose thatK andL areσ-closed subgroups
of G such thatK ⊂ L and K 6= L. Let H = N(L)K, whereN(L) is the intersection of all closed
neighborhoods ofe in (L, σ) (see Subsection 1.5). ThenH is aσ-closed subgroup ofL with H 6= L and
K ⊂ H.

Proof. As noted in Subsection 1.5, theσ and τ topologies agree onL/N(L). Since the quotient map
q : (L, τ) → (L/N(L), τ) is continuous,q(K) is τ -closed and henceσ-closed. Sinceq is alsoσ − σ
continuousq−1q(K) = KN(L) is σ-closed inL hence inG. As seen in the remark prior to Proposition
1.7,N(L) is normal inL. SinceK ⊂ L, H = KN(L) = N(L)K is a subgroup ofL (hence ofG). Clearly
H ⊂ L. So it remains to prove thatH 6= L.
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Let U denote the family of all open neighborhood ofe in (G, τ) and letV = {U−1U : U ∈ U}. ThenV
is a base for the system of neighborhoods ofe in (G,σ). Then{V ∩ L : V ∈ V} is a base for the system of
neighborhoods ofe in (L, σ). Then as seen in Subsection 1.5,

N(L) =
⋂

{(V ∩ L)−1(V ∩ L) : V ∈ V}.

The proof is by contradiction. So assume thatH = L. Then we have

L = KN(L) = N(L)K =
(

⋂

{(V ∩ L)−1(V ∩ L) : V ∈ V}
)

K.

Hence for eachV ∈ V, (V ∩ L)−1(V ∩ L)K = L or equivalently,(V ∩ L)K is dense in(L, σ), i.e.
(U−1U ∩L)K is open and dense in(L, σ) for eachU ∈ U . It follows from Lemma 3.1 that(U−1U ∩L)K
is open and dense in(L, τ) for eachU ∈ U .

SinceK 6= L, fix a pointa ∈ L \ K. SinceK is σ-closed,(G/K, τ) is Hausdorff by Lemma 1.3(c).
Let p : G → G/K be the quotient map. Then sincea 6∈ K, p(a) 6= p(e). Hence there is a continuous
function r : (G/K, τ) → [0, 1] such thatr(p(e)) = 0 and r ≡ 1 on a τ -neighborhood ofp(a). Let
f = rp : G → [0, 1]. Thenf is continuous on(G, τ), f(e) = 0 andf ≡ 1 on aτ -neighborhood of
a ∈ L \K. Note that ifg ∈ G thenf(g) = f(gk) for eachk ∈ K.

For the rest of the proof, the topology always refers toτ and we shall denoteΛ(G) by Λ. By induction
on n, we construct a sequence{Un : n ∈ N} in U , a sequence{Vn : n ∈ N} of non-empty open subsets
of G, each of which intersectsL, and sequences{un : n ∈ N} and{xn : n ∈ N} in G which satisfy the
following conditions.

(i) xn ∈ U−1
n−1Un−1K ∩ (Vn−1 ∩ Λ) = (Un−1 ∩ Λ)−1Un−1K ∩ (Vn−1 ∩ Λ), by Lemma 3.2.

(ii) un ∈ Un−1 ∩ Λ.

(iii) Vn ⊂ Vn ⊂ Vn−1 ⊂ f−1(1) and Vn ∩ L 6= ∅.

(iv) unVn ⊂ Un−1K.

(v) If Hn denotes the group generated by{u1, x1, u2, x2, · · · , un, xn} andHn is enumerated as
Hn = {hn

j : j ∈ N}. ThenHn ⊂ Λ, e ∈ Un ⊂ Un ⊂ Un−1 and for eacht ∈ Un,

(3.5) |f(hi
j t)− f(hi

j)| ≤ 1/n for 1 ≤ i, j ≤ n.

Construction. We letU0 = G and letV0 be the interior off−1(1) andu0, x0 are not defined. Assume
that n ∈ N and thatUk, Vk are defined for0 ≤ k < n andxk, uk are defined for0 < k < n. By our
assumptions there exists anx ∈ (Un−1 ∩ Λ)−1Un−1K ∩ (Vn−1 ∩ L). So there is aun ∈ Un−1 ∩ Λ such
thatunx ∈ Un−1K. Sinceun ∈ Λ, x ∈ Vn−1 andUn−1K is open, there is an open neighborhoodVn of x
such thatx ∈ Vn ⊂ Vn ⊂ Vn−1 andunVn ⊂ Un−1K. ThenVn ∩ L 6= ∅ sincex ∈ Vn ∩ L. Thus (ii)-(iv)
are satisfied. Letxn be any element ofVn ∩ Λ, then by (iv) and (ii), (i) is satisfied andHn ⊂ Λ is defined.
Finally since the mapt 7→ |f(gt)− f(g)| is continuous forg ∈ Λ, an open neighborhoodUn of e satisfying
(v) can be chosen. This completes the construction.

We let
U∞ =

⋂

{Un : n ∈ N} and H =
⋃

{Hn : n ∈ N}
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and letu∞, x∞ be cluster points of the sequences{un : n ∈ N}, {xn : n ∈ N} respectively. Clearly
u∞ ∈ U∞ andx∞ ∈ V0 andH is a subgroup ofG, by Lemma 3.3. By the construction, (3.5) is satisfied for
eacht ∈ UnK. Hencef(ht) = f(h) for eachh ∈ H and eacht ∈

⋂

{UnK : n ∈ N}. Therefore, if we let

S = {s ∈ H : f(hs) = f(h) for eachh ∈ H} = {s ∈ H : f(hs) = f(h) for eachh ∈ H},

then
⋂

{UnK : n ∈ N} ∩ H ⊂ S and S is a subgroup ofG. By (ii), u∞ ∈ U∞ ∩ H ⊂ S and by
(iv) unx∞ ∈ Un−1K ∩ H for eachn ∈ N. Henceu∞x∞ ∈

⋂

n∈N
Un−1K ∩ H ⊂ S. Therefore,

x∞ = u−1
∞

(u∞x∞) ∈ S−1S ⊂ S. Now, f(s) = 0 for all s ∈ S sincef(es) = f(e) = 0 for all s ∈ S.
Therefore,f(x∞) = 0. However, sincex∞ ∈ V0 ⊂ f−1(1), f(x∞) = 1. This contradiction completes the
proof.

3.2 Haar measure

3.5 Corollary
Let (G, τ) be a CHART group and letσ be itsσ-topology. Then there exists a transfinite sequence
{Lξ : 0 ≤ ξ ≤ η} of subgroups ofG such that

(a) L0 = G, Lη = {e} and for eachξ ≤ η, Lξ is a normalσ-closed subgroup ofG;

(b) Forξ < η, Lξ+1 ⊂ Lξ and(Lξ/Lξ+1, τ) is a non-trivial compact Hausdorff topological group;

(c) The map
m : (G/Lξ+1, τ)× (Lξ/Lξ+1, τ)→ (G/Lξ+1, τ)

defined bym(xLξ+1, yLξ+1) = xyLξ+1 for x ∈ G andy ∈ Lξ is well-defined and continuous;

(d) If ξ (≤ η) is a limit ordinal, thenLξ =
⋂

{Lζ : 0 ≤ ζ < ξ}.

Proof. We define{Lξ : 0 ≤ ξ ≤ η} inductively inξ. Let L0 = G. Supposeν ≤ η and assume inductively
that {Lξ : ξ < ν} have been defined so that (a), (d) are satisfied wheneverξ < ν and (b), (c) are true if
ξ+1 < ν. If ν is a limit ordinal, then letLν =

⋂

{Lξ : ξ < ν}. If ν is not a limit ordinal, thenν = ξ+1 and
Lξ is defined. IfLξ = {e}, then letη = ξ and stop the induction. IfLξ 6= {e}, let Lν = Lξ+1 = N(Lξ).
Then using Theorem 3.4 withL = Lξ andK = {e}, we see thatLξ+1 6= Lξ and thatLξ+1 is σ-closed inLξ

and henceσ-closed inG by the inductive hypothesis. By Proposition 1.7(a) and the inductive hypothesis,
Lξ+1 is a normal subgroup ofG and Proposition 1.7(b) shows the continuity property (c). The fact that
(Lξ/Lξ+1, τ) is a compact Hausdorff space is shown in Subsection 1.5. BecauseLξ+1 6= Lξ, this induction
must come to a stop. This completes the proof.

Let (G, τ) be a compact Hausdorff right topological group.

A probability measureµ defined on theσ-algebra of Borel subsets of(G, τ) is calledright invariant
if µ(As) = µ(A) for eachs ∈ G and Borel setA. Similarly, µ is calledleft invariant if µ(sA) = µ(A)
for eachs ∈ Λ(G) and each Borel setA. Following Milnes and Pym [6], we call a probability measureµ
defined on the Borel subsets ofG aHaar measureon (G, τ) if it is right invariant.

Milnes and Pym have shown that if a compact Hausdorff right topological group(G, τ) admits a trans-
finite sequence{Lξ : 0 ≤ ξ ≤ η} of subgroups ofG satisfying conditions (a)–(d) of the Corollary 3.5, then
(G, τ) has a unique Haar measure. The Haar measure is also left invariant. Hence we have the following
corollary, which is also due to Milnes and Pym [7, Theorem 12].
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3.6 Corollary
Each CHART group admits a unique Haar measure, which is also left invariant.

The next corollary was first proven in [4], in the case whenX is metrizable, and then in the general case
in [8, Corollary 4.1].

3.7 Corollary
Each distal flow(S,X) admits anS-invariant probability measure,i.e. a Borel probability measureµ onX
such thatµ(s ·A) = µ(A) for each Borel subsetA of X and eachs ∈ S.

Proof. Let (G, τ) be the Ellis CHART group of the flow(S,X) and letλ the Haar measure on(G, τ). Let
x0 be any element ofX and define the flow maph : G → X by, h(g) = g(x0), (see Section 2.1). Then
consider the Borel probability measureµ on X defined by,µ(A) = λ(h−1(A)) for each Borel subsetA of
X. It is now routine to verify thatµ is indeedS-invariant.

3.3 Inverse limit of compact flows

An inverse system{(S,Xγ), fβ
α , γ ∈ Γ} consists of a family{(S,Xγ) : γ ∈ Γ} of compact flows

indexed by a directed setΓ and a family{fβ
α : α, β ∈ Γ, α ≤ β} of maps such that, forα, β ∈ Γ with

α ≤ β, fβ
α : (S,Xβ)→ (S,Xα) is a flow map satisfyingfβ

αfγ
β = fγ

α wheneverα, β, γ ∈ Γ andα ≤ β ≤ γ.

In this case, theinverse limit
←−
lim{(S,Xγ), fβ

α , γ ∈ Γ} is defined to be the compact flow(S,X), where

X =
{

x ∈
∏

γ∈Γ

Xγ : pα(x) = fβ
α (pβ(x)) wheneverα, β ∈ Γ andα ≤ β

}

.

Here for eachγ ∈ Γ, pγ : X → Xγ is theγth projection and the action ofS onX is given by

(s · x)(γ) = s · (x(γ)) for eachs ∈ S, x ∈ X andγ ∈ Γ.

Now, let(G, τ) be a CHART group and letS be a subsemigroup ofΛ(G). Suppose that{Kγ : γ ∈ Γ} is
a family ofσ-closed subgroupsKγ of G indexed by a directed setΓ in such a way thatKβ ⊂ Kα whenever
α, β ∈ Γ andα ≤ β. For eachγ ∈ Γ, let Xγ = (G/Kγ , τ). Suppose the action ofS on G is given by a
semigroup homomorphismη : S → Λ(G) (see Subsection 1.2). Then we define the action ofS on Xγ by
s · gKγ = η(s)gKγ for eachs ∈ S andγ ∈ Γ. Then(S,Xγ) is a compact flow and we can make the family
{(S,Xγ) : γ ∈ Γ} into an inverse system of compact flows by defining the flow mapfβ

α : Xβ → Xα to be
gKβ 7→ gKα for α, β ∈ Γ with α ≤ β. Then{(S,Xγ), fβ

α , γ ∈ Γ} is an inverse system of compact flows.
We identify its inverse limit in the following lemma.

3.8 Lemma
Let the notation and symbols be as above. LetK =

⋂

{Kγ : γ ∈ Γ}. Then(S,G/K) is isomorphic to the

inverse limit
←−
lim{S,Xγ), fβ

α , γ ∈ Γ} of the system{(S,Xγ), fβ
α , γ ∈ Γ} of compact flows.

Proof. Let (S,X) denote the inverse limit of{(S,Xγ), fβ
α , γ ∈ Γ}. Defineh : G/K →

∏

{Xγ : γ ∈ Γ}
by pγ(h(gK)) = gKγ for eachg ∈ G andγ ∈ Γ. Then it is obvious thath(gK) ∈ X for eachg ∈ G and
the maph : G/K → X is continuous. We must show thath(G/K) = X andh is one-to-one. So suppose
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x ∈ X. Then for eachγ ∈ Γ, there existsgγ ∈ G such thatpγ(x) = gγKγ . By the definition of the inverse
limit, pα(x) = fβ

α (pβ(x)) wheneverα, β ∈ Γ andα ≤ β. This means thatgαKα = gβKα or, equivalently,
gβ ∈ gαKα wheneverα ≤ β. Let g∗ be a cluster point of the net{gγ : γ ∈ Γ}. Theng∗ ∈ gαKα for each
α ∈ Γ. It follows that for eachγ ∈ Γ, pγ(h(g∗K)) = g∗Kγ = pγKγ = pγ(x) sinceg∗ ∈ pγKγ . Hence
h(g∗K) = x or x ∈ h(G/K). Sincex ∈ X is arbitrary,h(G/K) = X. Now supposeh(gK) = h(g0K)
for someg, g0 ∈ G. Then for eachγ ∈ Γ, gKγ = g0Kγ and sog−1g0 ∈

⋂

{Kγ : γ ∈ Γ} = K. Hence
gK = g0K, whenceh is one-to-one. It is easy to check thath is a flow map. This completes the proof.

3.4 The Furstenberg structure theorem

The next lemma is a generalization of Corollary 3.5.

3.9 Lemma
Let (G, τ) be a CHART group and letσ be itsσ-topology. Suppose thatK andL areσ-closed subgroups
of G such thatK ⊂ L andK 6= L. Then there exists a transfinite sequence{Hξ : 0 ≤ ξ ≤ η} of σ-closed
subgroups ofG satisfying:

(a) H0 = L, Hη = K and, for eachξ ≤ η, K ⊂ Hξ ⊂ L;

(b) For eachξ < η, Hξ+1 = N(Hξ)K andHξ+1 6= Hξ;

(c) If ξ (≤ η) is a limit ordinal, thenHξ =
⋂

{Hζ : 0 ≤ ζ < ξ}.

Proof. We define{Hξ : 0 ≤ ξ ≤ η} inductively inξ starting withH0 = L. Suppose thatν ≤ η and assume
inductively that{Hξ : ξ < ν} have been defined so that (a), (c) are satisfied and (b) holds incaseξ +1 < ν.
If ν is a limit ordinal then defineHν =

⋂

{Hξ : ξ < ν}. If ν has a predecessor, sayξ, thenν = ξ + 1 and
Hξ has been defined. IfHξ = K, then we letξ = η and the proof is finished. Otherwise,Hξ 6= K andHξ

is σ-closed by the inductive hypothesis. Hence applying Theorem 3.4 toHξ andK (in the place ofL and
K), we conclude thatHξ+1 := N(Hξ)K is aσ-closed (inHξ hence inG) proper subgroup ofHξ. Since
Hξ+1 6= Hξ as long asHξ 6= K, this induction must come to an end.

The next theorem, due to Ellis [3], is a generalization of themain result of [4].

3.10 Theorem (Furstenberg, Ellis)
Let (S,X) be a minimal distal flow and let(S, Y ) be a factor (necessarily minimal distal) by a quotient

flow mapπ : (S,X) → (S, Y ). Then there exists an inverse system{(S,Xξ), π
β
α, 0 ≤ ξ ≤ η} of minimal

distal flows (indexed by ordinal numbers) having the following properties.

(i) (S,X0) = (S, Y ) and(S,Xη) = (S,X).

(ii) For each ξ ≤ η, (S,Xξ) is a factor of(S,X) and an extension of(S, Y ).

(iii) For each ξ < η, the flow mapπξ+1

ξ : (S,Xξ+1)→ (S,Xξ) is equicontinuous

(iv) If ξ (≤ η) is a limit ordinal, then

(S,Xξ) =
←−
lim{(S,Xζ), π

β
α, 0 ≤ ζ < ξ}.
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Proof. Let (G, τ) be the Ellis group of the flow(S,X). Then by Proposition 2.1(ii), there existσ-closed
subgroupsK andL of G such thatK ⊂ L and the flow mapπ : (S,X)→ (S, Y ) is represented by the map
ρ : (S,G/K) → (S,G/L). Therefore we setX = G/K, Y = G/L and useπ in place ofρ. Recall that
π(= ρ) is the mapgK 7→ gL for eachg ∈ G. In order to avoid the trivial case, we assume thatK 6= L.

Then by Lemma 3.9, we have a transfinite sequence{Hξ : 0 ≤ ξ ≤ η} of σ-closed subgroups of
G satisfying (a)–(c) there. For eachξ ∈ [0, η], let (S,Xξ) = (S,G/Hξ) where(S,G/Hξ) is defined
as in Lemma 1.4 and it is a minimal distal flow by that lemma. Property (a) implies (i) and (ii). For
0 ≤ α ≤ β ≤ η, defineπβ

α : G/Hβ(= Xβ)→ G/Hα(= Xα) byπβ
α(gHβ) = gHα. Then{(S,Xξ), π

β
α, 0 ≤

ξ ≤ η} is an inverse system of minimal distal flows. Suppose thatξ < η. Then by (b),Hξ+1 6= Hξ and

πξ+1

ξ : G/Hξ+1 → G/Hξ is equicontinuous by Theorem 2.2 sinceN(Hξ) ⊂ Hξ+1 by the definition of
Hξ+1. This proves (iii). Property (iv) follows from Lemma 3.9(c)and Lemma 3.8. This completes the
proof.
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