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Abstract

We give an almost self-contained group theoretic proof etamberg’s structure theorem as gener-
alized by Ellis: Each minimal compact distal flow is the résdib transfinite sequence of equicontinuous
extensions, and their limits, starting from a flow consigtof a singleton. The groups that we use are
CHART groups, and their basic properties are recalled dbdginning of this paper.
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0 Introduction

The “CHART” in the title stands for “compact Hausdorff adsilgde right topological”, that is, a CHART
group (G, 7) is a groupG, with a compact Hausdorff topology, such that right multiplication: — zy is
continuous for eacly € G and left multiplicationz — yx is continuous for eaclh belonging to a dense
subset ofG. The purpose of the present note is to give an almost setkiowd proof of the Furstenberg
structure theorem, as generalized by Ellis, using CHARTigso

In 1963, Furstenberg published his ground breaking studljstél flows [4] in which he proved, in part,
that each compact metric minimal distal flow is the result thasfinite sequence of isometric extensions,
and their limits, starting from a trivial flow consisting ofsingleton. In 1978 Ellis [3] generalized this
structure theorem to arbitrary compact distal flows, whepgiamntinuous extensions replaced isometric
extensions. The second author of the present note publishEai72 [8] a proof of Furstenberg’s structure
theorem using CHART groups and theirtopology. This approach is used again in the present ndte bu
without metric or countability assumptions. The initialrpaf [8], which has to do with properties of the
o-topology, will not be repeated in full here. Instead, thievant facts are quoted, and for their proofs,
references to [8] and the more recent paper [9] are givenrtAman these, the paper is selfcontained. In
particular, no additional techniques from topological ayrics are used.

This note is structured as follows. There are four sectid®sction O is the introduction. Section 1
contains preliminary material such as definitions and tedubm earlier papers to be used without proof.
In Section 2, the notions from topological dynamics, sucH@s maps and equicontinuous extensions are
interpreted group theoretically, and finally a proof of therdtenberg-Ellis structure theorem is given in
Section 3. One by-product of the present approach is thaprwaf, due to Milnes and Pym [6], of the
existence of a Haar measure for separable CHART groups, riksvior arbitrary CHART groups. Thus,
CHART groups are the next best thing after compact Haustapfilogical groups.



1 Preliminaries

1.1 Flows

An actionof a semigroup on a setX is a functionS x X — X (denoted by(s, ) — s - ) such that
s-(t-z) = (st)-xforall s,t € Sandz € X. Inthe case wheX is a topological space and the map
x — s - x is continuous, for eack € S, the action is called aontinuous actioror alternatively thatS acts
continuously orthe topological spac&’. A flowis a pair(.S, X ), whereX is a Hausdorff space anlis a
semigroup acting continuously oxi. A compact flows a flow (.S, X') in which X is a compact Hausdorff
space. Aflow mapf : (S, X) — (S,Y) of (S, X) into (S,Y) is a continuous map : X — Y such that
f(s-z) =s- f(x)forall s € Sandx € X. If fis an inclusion mapX C Y, then(S, X) is called a
subflowof (S,Y"). If the mapf is a quotient map, thef,Y") is said to be dactor of (S, X') and(S, X) is
said to be amextensiorof (S,Y"). If fis a homeomorphism oX ontoY’, thenf is aflow isomorphisnand
the flows(.S, X)) and(S,Y") are said to bésomorphic A flow is said to beminimalif it does not have any
proper subflow. Clearly ifS, X) is a compact flow, theqS, X') is minimal if and only if, for each: € X,
S-x={s-x:s€S}isdense inX.

1.2 Compact flows

Let (S, X) be a compact flow and define the map S — XX by n(s)(z) = s - = for eachs € S
andz € X. ProvideXX with the product topology, i.e. the topology of pointwise convergence. Then
(XX, 7) is a compact Hausdorff space with a semigroup structurendiyethe composition of maps. The
mappingy : S — X is a homomorphism of semigroups and the clostire 7(S)" in X is a compact
subsemigroup of{X. This ¥ is called theenveloping semigroupf the flow (S, X). The enveloping
semigroupX has the following properties:

(i) The mapa — «f is continuous for each € ¥, i.e. the right multiplication is continuous.

(i) The mapps — n(s)s is continuous for each € S, i.e. left multiplication by members ofy(S) is
continuous.

The following theorem due to Ellis [1] is basic in the preseote. For a proof, see [9, Proposition 3.1].

1.1 Theorem (Ellis)
LetY. be the enveloping semigroup of a compact fléivX). Then the following statements are equivalent.

(a) Each member OF is one-to-one.
(b) Each member df is onto.

(c) X is a group with the identity elementyd. X — X.

A compact flow(S, X) is said to bedistal if one (hence all) of the conditions of the theorem above is
satisfied. Clearly condition (a) is equivalent to the staemif z,y € X and for some nefs,} in S,
lim, s, - x = lim, s - y, thenz = y.

The enveloping semigroup of a distal flow is called &iés group of the flow. The Ellis group is a
compact group satisfying the continuity conditions (i) gindabove.



1.3 Right topological groups

Abstracting the Ellis groups described above, we defingta topological groupto be a pair(G, ),
whereG is a group andr is a topology (not necessarily Hausdorff) 6hsuch that right multiplication
is continuous,.e. for eachy € G the mapz — zy is continuous. Similarly deft topological groupis
defined by replacing the right multiplication by left muligation = — yz. If (G, 7) is both a right and left
topological group then it is calledssemitopological group

Let (G, 7) be a right topological group and I& be a (not necessarily closed) subgroup. &t ) be
the spacdd with the relativization to the topology. Clearly (H, 7) is again a right topological group. We
let (G/H, ) be the spacéxH : = € G} of left cosets ofH in G with the quotient topology induced from
(G, 7) by the quotient mapr : G — G/H given byx — zH. We remark thatr is open since, i/ is
an open subset d@f, thent 7 (U) = UH = |J{Uz : * € H} which is open since right multiplications
are homeomorphisms. The following Lemma justifies our manator relative and quotient topologies [8,
p.197], [9, Lemma 4.2].

1.2 Lemma

Let L, H be subgroups of a right topological groug, ) such thatd C L. Then regarding./H as a
subset of+/ H, the relative topology induced dry H from (G / H, T) is identical with the quotient topology
induced from(L, T) by the quotient map, — L/H.

1.4 Theo-topology

Let (G, 7) be a right topological group and let: G x G — G be the map defined by(xz,y) = z~1y.
Then the quotient topology af induced from(G x G, T x 7) by the mapp is called thes (G, 7)-topology
(or o-topology when there is no confusion). The following is a summary efgthoperties of the-topology
[8, Theorem 1.1], [9, Lemma 4.3].

1.3 Lemma
Let (G, 1) be a right topological group and letbe itso- topology. Then

(a) (G, o) is a semitopological group and the inverse map x~! is o-continuous.
(b) o C 7.
(c) A subgroupH of G is o-closed if and only ifG/H, ) is Hausdorff.

Let (G, ) be aright topological group and l&{G, 7) (or simply A(G) when no confusion is possible)
be the set of all: € G such that the map — =z - y is 7-continuous. It is easy to check that whes, )
is compact and Hausdorff\ (G, 7) is a subgroup ofy. If A(G) is 7-dense inG, then(G, 1) is said to be
admissible For instance, if S, X) is a distal flow, then its Ellis grouf®, 7) is admissible, because as seen
aboven(S) Cc A(G) andn(S) is T-dense inx.

1.4 Lemma

Let (G,7) be a compact right topological group and I€tbe ac-closed subgroup ofi. LetS be a
semigroup and lef : S — A(G) be a semigroup homomorphism. If we define a continuous aofiéhon
the compact Hausdorff spat@ /K, 1) by s - gK = n(s)gK, then the flow(S, (G/K, 1)) is distal. Ifn(S)

is dense iz, then this flow is also minimal.



Proof. Supposey; andg, are elements aoff such that for some nét. } in .S, lim, s - g1 K = lim, s, - g2 K
or lim, n(s,)g1 K = lim, n(s,)g2 K. Letk € G be ar-cluster point of the nefn(s,)}. Thenkg K =
kg1 K or 1 K = g2 K. This proves that{S, G/K) is distal. 1fn(S) is dense inG, then for eacty € G,
n(S)g is dense irG since(G, 7) is a right topological group. Hence the flgw, G/ K) is minimal.

The proof of the next proposition is found in [8, Theorem @]9, Proposition 4.4].

1.5 Proposition
Let (G, T) be an admissible right topological group. Then:

(a) The quotientmap : (G x G, x 7) — (G,0) is open.

(b) If U is the family of allT-open neighborhoods efin G then{U~'U : U € U} is a base of open
neighborhoods of in (G, o).

The following proposition is proved in [9, Proposition 4.5]

1.6 Proposition
Let (G, 1) be an admissible right topological group, lebe the family of all--open neighborhoods efin

(G,7) and letN = "\{U  : U € U}. Then:

(@ N={U"'U :U €U} andN is ac-closed (hence-closed) normal subgroup 6f.
(b) Forx € G,z € N if and only if there is a net which-converges simultaneously to batfandzx.

(c) (G/N, 1) is a compact Hausdorff admissible right topological grolfg.G, ) is a semitopological
group, then so i§G /N, T).

1.5 CHART groups

Let (G, 7) be a CHART groupi.e. a compact Hausdorff admissible right topological group ktd
be itso-topology. LetL be ac-closed subgroup af. Recall that L, o) is semitopological group, hence it
is an admissible group. Then bBy(L, o) (or N (L) when there is no confusion) we denote the intersection
of all o-closedo-neighborhoods of in L. Then by Proposition 1.6 (a}y(L) is ac (L, o)-closed normal
subgroup ofL. Hence by Lemma 1.3(c),L/N(L),o) is a compact Hausdorff semitopological group.
Hence by Ellis’ theorem [1],L /N (L), o) is a compact Hausdorff topological group, and since theltayo
of (L/N(L),7) is stronger thaw, (L/N(L),0) = (L/N(L),7). We can make the definition d¥ (L) a
little more explicit. As above, let/ be the family of all open neighborhoods efin (G, 7). Then by
Proposition 1.5(b){U-'UNL : U € U} is a base of open neighborhoodsedih (L, ). Therefore by
Proposition 1.6(@)N (L) = W{(U'UNL)"Y(U-UNL) : U € U}. This formula and part (a) of the
following proposition are observations due to Milnes andH§]. Part(b) is proved in [8, Proposition 2.1]
and parts (a) and (b) are proved in [9, Proposition 4.6].



1.7 Proposition
Let(G,T) be a CHART group. Then using the notation given above, we tieeséllowing properties:

(a) If L is a normal subgroup @f, then so isN (L).

(b) If m: (G/N(L),7) x (L/N(L),7) — (G/N(L),7) is defined bz N (L),yN (L)) — xyN (L) for
eachr € G andy € L, thenm is well-defined and continuous.

Remark Let (G,7) be a CHART group and lg# be the family of all open neighborhoods efc G.
Thenifg € G andg # e, then, for somd/ € U, UNUg = ( org ¢ U~'U, sincer is Hausdorff.
Therefore{U~'U : U € U} = {e}. Suppose(G,) satisfies the first countability axiom. Thén
admits a countable badé/,, : n € N}, and hencé\{U,, 'U,, : n € N} = {e}, i.e. {e} is aGs-point in
(G,0). Letyp : (G x G, x T) — (G, o) be the quotient map as in the Subsection 1.4. Then the dihgona
Ac = ¢ 1({e}) isar x -G subset of7 x G. Hence(G, 7) is metrizable (see [5, Exercise 4.2B]), and by
[8, Theorem 2.1](G, 7) is a topological group. Hen@CHART group which satisfies the first countability
axiom is a metrizable topological group.

2 Equicontinuous flow maps

2.1 Representation of flow maps between minimal distal flows

Let (S, X) and(S,Y") be compact flows and let: (S, X) — (S,Y") be a quotienti(e. continuous and
onto) flow map. Lek x, ¥y be the enveloping semigroups(@f, X') and(S, Y) respectively. Then for each
A\ € Xx there is au € Yy such thatrtA = p7. To see this le{s, } be a net inS such thats,, - © — A(x)
for eachz € X. By taking a subnet, we may assume that, for spn@Xy, s, -y — p(y) foreachy € Y.
Thenn(sy - ) — w(A(x)) andn(sy - z) = s, - 7(x) — p(w(x)). It follows 7w(A(z)) = pn(x) for each
x € X. Hencer A = um. Sincer is onto, this equation shows thatis determined uniquely by alone.
Denoten = 7.(A). Then we have the following relationship

(2.1) A = T (M)

A straightforward verification shows that, : ¥x — Xy is a continuous onto homomorphism of semi-
groups.

Let us further assume that the flgw, X') is a minimal distal flow. TheryS,Y") is also minimal, since,
if y € Y theny = 7(z) for somez € X andS -z is dense inX and sor(S-z) = S -y is dense irt’. Since
(S, K) is distal each\ € X x is an onto map by Theorem 1.1(b), and therefatg ) is onto by equation
(2.1) above. Usingr.(Xx) = Xy, we see that each element Bf- is onto. Hence the flowsS,Y) is
distal by the same theorem. L@&t;, Gy be the Ellis groups ofS, X), (S, Y") with identity elementgx, ey
respectively. Them, : Gx — Gy satisfiesr,(ex) = ey andm, is a continuous onto homomorphism of
groups.

Let 2y be a fixed base point of and letyy = 7(x¢). Define the mapéx : Gx — X andhy : Gy —
Y by hx(g9) = g(zo) andhy (¢') = ¢'(yo) for g € Gx, g € Gy. By the minimality of the flows, botth x
andhy are onto and continuous. L&t = h;(l(mo). ThenK is closed inG x and it can be checked directly
that it is a subgroup of7 x. Furthermore, fogi, g2 € Gx, hx(g1) = hx(g2) if and only if gflgg € K.
This means that the map: Gx /K — X defined byyK — g(z0) for g € Gx is a homeomorphism. Since



X is Hausdorff,K is o-closed inGx, by Lemma 1.3(c). Lek = nhx : Gx — Y. Thenforg € Gx, by
using (2.1),2(g) = m(g(x0)) = m(g)m(z0) = m:(9)(y0) = hyT:(g), i.€.

(2.2) rthx = h = hym,.

Now let L = h=1(yo) = m; *(H), whereH = hy'(yo). Then sinced is a closed subgroup ¢fy and
7, IS a continuous homomorphism,is a closed subgroup &f x. Forg, g2 € Gx, h(¢g1) = h(g2) ifand
only if 7.(g; ' g2) = m.(g91) " 'm.(g2) € H and this is the case if and onlydf ‘g, € L. So as before, the
mapg : Gx/L — Y given bygL — h(g) = (m.g)(yo) is @ homeomorphism anfl is o-closed inG x .
From formula (2.2), it is clear that C L. Finally, we wish to transfer the flow map: X — Y toa map
Gx/K — Gx/L. Letg € Gx. Then using (2.1)ra(gK) = 7(g(x0)) = mg(yo) = h(g) = B(gL). Let
p:Gx/K — Gx/L be the map defined by(¢K') = gL for g € G. Then from abovera = [p.

Lastly, we show that the various maps introduced above arerfiaps. Suppose that the actionf
on X is given by the semigroup homomorphism: S — A(Gx) (see Subsection 1.2), and writéfor
Gx andn for nx. Then the continuous actions 8fon G, G/K andG/L are given bys - g = 7(s)g,
s+ (gK) = (n(s)g)K ands- (¢gL) = (n(s)g)L for eachs € S, g € G. We first check thatx : G — X isa
flow map. Solets € S andg € G. Thenhx(s- g) = ho(n(s)g) = n(s)(g(z0)) = n(s)hx(g) = s- hx(g).
Hencehx is a flow map. Recall that the map: G/K — X is defined bya(gK) = hx(g) = g(xo).
Therefore fors € Sandg € G, s- a(g9K) = s-hx(g9) = hx(s-g) = a((n(s)g)K) = a(s - (¢K)), i.e.
ais a flow map. Sincé x andx are flow maps, so i8 = whx and consequently the mapis a flow map.
Clearly the map is a flow map.

We summarize the discussion above as follows. The convars®fi) follows from Lemma 1.4. Part
(i) states that an arbitrary factor of the minimal distalflQX, S) is represented by the quotient of the Ellis
group (G, 7) by ac-closed subgroup.

2.1 Proposition
Let (S, X) be a minimal distal flow and létz, T) be its Ellis group. Then

(i) There exists ar-closed subgroups of G and a semigroup homomorphisin: S — A(G) with
dense range such that the flo&;, X') is isomorphic to the flowS, (G/K,T)) where the action of
onG/K is as given in Lemma 1.4. Conversely, given a CHART grédpr), ac-closed subgroup
K and a semigroup homomorphism of a semigréupnto a dense subsemigroupofG), the flow
(S, (G/K,T)), as defined in Lemma 1.4, is a minimal distal flow.

(i) Let (S,Y') be a factor of S, X') by a quotient flow map : X — Y. Then(S,Y") is also a minimal
distal flow and there exist-closed subgroup& and L of (G,7) with K C L and a semigroup
homeomorphisny : S — A(G) with dense range such that:

(a) there exist flow isomorphisms: (S,G/K) — (S,X) andj : (S,G/L) — (S,Y) where the
actions ofS onG/K andG/L are as in Lemma 1.4;

(b) if p: (S,G/K) — (S,G/L) is the mapgK — gL (g € G), thenp is a flow map and
T = [p.



2.2 Equicontinuous flow maps

Let (S, X) be a minimal distal flow with Ellis groupG, 7) and leto be itso-topology. To simplify our
notation, we will assume thé is a dense subsemigroup &fG) rather than a homomorphic image 5t
Since X is compact and Hausdorff, it has a unique uniform structézewhich is the family of all open
neighborhood of the diagondlx = {(z,z) : z € X} in X x X. A quotient flow mapr : (S, X) —
(S,Y) is said toequicontinuousf for each uniformityU € Ux there exists a uniformity” € Ux such
that if (x,y) € V andn(z) = n(y), thens(z,y) € U for eachs € S wheres(z,y) = (sx,sy). Let
M ={(z,y) € X x X : w(x) = n(y)}. Since the map — (tzx, ty) is continuous for eactr,y) € X x X,
we may state the last part of the definition@&\/ N V) c U. Now, by the definition of\Z, it is clear that
sM c M for eachs € S. Hence by the continuity noted abovell ¢ M for eachg € G and consequently
GM = M sinceG is a group. It follows thatG(M N V) = M N GV. SinceU € Ux is arbitrary, we
conclude thatr is equicontinuous if and only if

(2.3) ({MNGV):V clUx} =Ax.

Let (G,7) be a CHART group and lekl’ and L be o-closed subgroups off with K C L. Let
X = (G/K,7)andY = (G/L,7) and letS be a dense subsemigroup &fG). ThenX,Y are com-
pact Hausdorff spaces becausel ares-closed subgroups by Lemma 1.3(c). ISeaict onX andY by the
maps(s, gK) — sgK and(s,gL) — sgL. Then(S, X) and(S,Y") are minimal distal flows by Proposition
2.1(i). Definethe mapg : X — Y by n(¢gK) = gL. Thenr : (S, X) — (5,Y) is a flow map.

2.2 Theorem
Using the notation given above, the following statemengseguivalent:

(a) The mapr is equicontinuous.
(b) The spac¢(L/K), o) is Hausdorff.
(¢) N(L) C K, whereN (L) is as in Proposition 1.7.

Proof.

(a) = (c). Suppose that € N(L) and letp : G — G/K = X be the quotient map — gK. We must
prove thatr € K, i.e. p(x) = p(e) or show tha{p(e), p(r)) € Ag/x = Ax. Sincer is equicontinuous by

(a), using (2.3) it is sufficient to show that, for edche Ux, (p(e),p(x)) € (M N GV') holds.

To this end, le¥ be an arbitrary neighborhood gf(e), p(x)) in X x X. Next, choose a neighborhood
Uofein (G,7)suchthatp x p)(U x Uz) C W and(p x p)(U x U) C V. Here recall that the quotient
mapp : G — X is open and hence the map< p: G x G — G/K x G/K is also open.

Now, sincer € N(L),z € (U~'UNL)~Y(U~*UNL) or equivalently(U1UNL)zN(UUNL) # 0.
Choosez € (U™'U N L)z N (U~'U N L). Then there are;,v € U such thatuz € Ux andvz € U.
(Note z € L.) Consequentlyu,uz) € U x Uz and (u,uz) = g(v,vz) for g = uv~!. It follows that
(p x p)(u,uz) € (px p)(U x Uz) C W and(p x p)(u, uz) = g(p x p)(v,vz) € g(p x p)(U xU) C gV
On the other hand, sincec L, (7 x 7)(p X p)(u,uz) = (uL,uzL) = (uL,ul),i.e. (p X p)(u,uz) € M.
Combining the inclusions noted above, we obtain fpak p)(u,uz) € (M NgV) C (M N GV). Since
(pxp)(u,uz) € W, we see thatV N (M NGV) # (). SinceW is an arbitrary neighborhood ¢b(e), p(z))
in X x X, (p(e),p(x)) € (M NGV) as desired.



(c) = (b). As noted at the beginning of Subsection 1.3, the quotiepistha— L/N (L) andL — L/K
are continuous and openinando topologies. Hence the natural mapN (L) — L/K is also continuous
and open inr ando. However since the two topologies agree lonV (L) (see Subsection 1.5), they also
agree onL/K. Since K is o-closed, (L/K, 1) is Hausdorff (see Lemma 1.3(c)). Hentg/K, o) is
Hausdorff.

(b) = (a). As before lety : (G x G,7 x 7) — (G,o) be the map(z,y) — z~'y. Then by
the definition ofo-topology (Subsection 1.4) is continuous, and by Proposition 1.5(a) it is also open.
Letp : G — G/K be the quotient map. L&Y denote the family of all open neighborhoods eofn
(G/K,o). Then{V N (L/K) : V € V}is a base for the neighborhoods pffe) in (L/K,o), hence
(VN (L/K)” : V e V}is a base for the family of closed neighborhoodsp6f) in (L/K, o). Since
(L/K, o) is Hausforff by (b),

{ple)} = VN (L/K)" :V eV}
By applyingp—! to the both sides of the above, we obtain:
Kc({p*WV)nL :vevic({p '(VNL/K)): VeV =K

ThereforekK = ({p~1(V)N L’ : V € V}. Similarly apply¢ ! to the preceding to obtain:

oK) = (o) T (V)N (L) : V eV}

Since(p x p) " H(Ax) = ¢ 1K), if U is an open neighborhood of the diagodsk C X x X =
(G/K x G/K,T x T), then(p x p)~}(U) is ant x 7- neighborhood of,~!(K). Hence for somé& € V,

(2.4) e (L) N (pe) (V) C (px p) 1 (U).

Note (pp)~1(V) is an open neighborhood & C (G x G,7 x 7). Sincep x p : (G x G, 7 x 7) —
(G/K x G/K,7 x ) = (X x X) is open, the sel = (p x p)((pp)~1(V)) is an open neighborhood of
Ax. Since for each subsetof G, o1 (A) = Gy~ (A) and since the mapxp : Gx G — G/K xG/K
commutes with the action @, we haveGW = W. Also note thatp=!(L) = (p x p)~!(M). Hence by
applyingp x p to (2.4), we obtainM N GW = W n M c U. [Here we used an easily provable fact: if
f: A — BandC andD are subsets ol and B respectively, therf (Cn f~1(D)) = f(C)n D.] It follows
that M N GW C U. SinceU is an arbitrary open neighborhood &fy, \{M NGW) : W € Ux} = Ax
(see (2.3)). Therefore : X — Y is equicontinuous.

3 The structure theorems

3.1 The basic theorem

Let (G,7) be a CHART group and define inductivefy.¢ } as follows: Ly = G, L1 = N(Ly),Ls =
N(Ly),--- etc, where, as in Section 1 and 2, for a subgréupf G, N (L) denotes the intersection of all
closed neighborhoods efin (L, o). Then eachl, is ac-closed normal subgroup @#, by Propositions
1.6, 1.7 and induction. Furthermore by Theorem 2.2 the Gap, 1 — G/L¢ is an equicontinuous flow
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map,i.e. G/L¢4q is an equicontinuous extension G/ L. However, this inductive process stops as soon
asL¢1 = Le. The next theorem guarantees that this is not the case s@$HgL: # {e}.

We need the following lemma due to Furstenberg [4]. Sincpritef is very simple, we give it here.

3.1 Lemma
Let(G, 1) be a compact right topological group anddebe a topology oz weaker than such thatG, w)
is also a right topological group. Uf is an open dense subset(6f,w), thenU alsor-dense inG.

Proof. Let C = G'\ U. Then by the hypothesi§/ is aw-closed (hence-closed) nowhere dense subset of
G. If U is notr-dense inG, thenC' contains a nonempty-open subset. By the compactness$@f ) there
exists a finite subseft of G such thatz = (J{Cyg : g € F'}. Now eachCg is nowhere dense ifG, w) since
each right multiplication is a homeomorphism there. Thistradicts the fact that a nonempty topological
space can never be the union of a finite number of nowhere debsets.

3.2 Lemma
Let (G, 1) be a CHART group and let = A(G). If A andB are nonempty open subsets(6f, ), then
A7'B=(AnA)!B.

Proof. Letz € A~'B. Then for some: € A, ax € B. SinceB is open andd N A is dense in4, there is a
c € AN Asuchthatr € B. Hencex € ¢ !B C (AN A)~!B. HenceA~!B c (AN A)~!B. The reverse
inclusion is obvious.

3.3 Lemma
Let (G, 1) be a compact Hausdorff right topological groupS s a subsemigroup df(G) then the closure
S of S'in (G, ) is a subgroup of;.

Proof. The semigrougs acts onGG continuously by the mafs, x) — sx for (s,z) € S x G. Since(G, 1) is
a compact Hausdorff right topological group, the envelgmamigroup of the flowsS, G) can be identified
with .S, where eacht € S acts onG by the left multiplicationz — tx (z € G). SinceG is a group each
left multiplication is onto. Hence by Theorem 14 js a subgroup of.

3.4 Theorem

Let(G, 1) be a CHART group and let denote itsr-topology. Suppose th&t andL areo-closed subgroups
of G such thatk C L andK # L. LetH = N(L)K, whereN (L) is the intersection of all closed
neighborhoods of in (L, o) (see Subsection 1.5). Théh is ac-closed subgroup df with H # L and
KCH.

Proof. As noted in Subsection 1.5, theand 7 topologies agree o, /N(L). Since the quotient map
q: (L,7) — (L/N(L),7) is continuousq(K) is 7-closed and hence-closed. Sincey is alsoo — o
continuousg—'¢(K) = KN(L) is o-closed inL hence inG. As seen in the remark prior to Proposition
1.7,N(L)isnormalinL. SinceK C L, H = KN(L) = N(L)K is a subgroup of. (hence ofG). Clearly
H C L. So it remains to prove thdf # L.



Let/ denote the family of all open neighborhoodedh (G, 7) and lety = {U~'U : U € U}. ThenV
is a base for the system of neighborhoods of (G, o). Then{V N L : V € V} is a base for the system of
neighborhoods of in (L, ¢). Then as seen in Subsection 1.5,

NIy =({VnL)y '(VAL):VeV}

The proof is by contradiction. So assume that= L. Then we have

L=KN(L)=N(L)K = <ﬂ{(v NL)"Y(VNL):Ve V}) K.

Hence for eacV € V, (VN L)~Y(V N L)K = L or equivalently,(V N L)K is dense inL, o), i.e.
(U~U N L)K is open and dense {{T, o) for eachU € U. It follows from Lemma 3.1 thatU U N L) K
is open and dense L, 7) for eachU € U.

SinceK # L, fixa pointa € L\ K. SinceK is o-closed,(G/K, ) is Hausdorff by Lemma 1.3(c).
Letp : G — G/K be the quotient map. Then sinee¢ K, p(a) # p(e). Hence there is a continuous
functionr : (G/K,7) — [0,1] such thatr(p(e)) = 0 andr = 1 on ar-neighborhood of(a). Let
f=rp: G — [0,1). Thenf is continuous onG,7), f(e) = 0 andf = 1 on ar-neighborhood of
a € L'\ K. Note thatifg € G thenf(g) = f(gk) for eachk € K.

For the rest of the proof, the topology always refers tand we shall denot&(G) by A. By induction
onn, we construct a sequengé&/,, : n € N} in U, a sequencgV,, : n € N} of non-empty open subsets
of G, each of which intersects, and sequencef,, : n € N} and{xz,, : n € N} in G which satisfy the
following conditions.

() =, €U U, 1 KN (Ve NA) = (Upo1 NA) U1 K0 (Vi1 NA), by Lemma 3.2.
(i) up € Up_1 NA.
(i) V, cV,, c V1 C f7H1) and V,, N L # 0.
(V) unV C U, 1 K.

(v) If H, denotes the group generatedfay, x1, ug, x2, - - - , uy, z,} andH, is enumerated as
H,={h}:jeN}.ThenH, CA, ec U, C U,, ¢ U,_; and for eacht € U,

(3.5) F(Ht) = f(h) < 1/n for 1<ij<n.

Construction. We let/y = G and letV; be the interior off ~1(1) andug, xo are not defined. Assume
thatn € N and thatUy, V. are defined fo0 < k < n andxy, u; are defined fob < k < n. By our
assumptions there exists anc (U,_1 N A)~'U, 1K N (V,,_1 N L). So there is ai,, € U,_1 N A such
thatu,z € U,_1K. Sinceu,, € A, x € V,,_1 andU,,_1 K is open, there is an open neighborhdgdof x
such thatz € V,, ¢ V,, C V,,_; andu,V,, C U,_1 K. ThenV,, N L # 0 sincez € V,, N L. Thus (ii)-(iv)
are satisfied. Let,, be any element o¥,, N A, then by (iv) and (ii), (i) is satisfied and,, C A is defined.
Finally since the map+— |f(gt) — f(g)| is continuous foy € A, an open neighborhoad,, of e satisfying
(v) can be chosen. This completes the construction.

We let o
Um:ﬂ{Un:nGN} and H:U{Hn:nEN}
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and letus,, T be cluster points of the sequencgs, : n € N}, {x, : n € N} respectively. Clearly
Uso € Uso andz o, € Vo andH is a subgroup of7, by Lemma 3.3. By the construction, (3.5) is satisfied for
eacht € U, K. Hencef (ht) = f(h) for eachh € H and each € "{U, K : n € N}. Therefore, if we let

S={se H: f(hs)= f(h)foreachh € H} = {s € H : f(hs) = f(h) for eachh € H},

then\{U,K : n € N} N H c S andS is a subgroup of7. By (i), us € Uss N H C S and by
(V) unzoo € U,—1K N H for eachn € N. HenceuwZoo € (,enUn—1K N H C S. Therefore,
Too = UL (UsoToo) € ST1S C S. Now, f(s) = 0 forall s € S sincef(es) = f(e) = 0foralls € S.
Therefore,f(ro,) = 0. However, sincer,, € Vo C f1(1), f(zs) = 1. This contradiction completes the
proof.

3.2 Haar measure

3.5 Corollary
Let(G,T) be a CHART group and let be itso-topology. Then there exists a transfinite sequence
{L¢ : 0 < & < n} of subgroups of: such that

(@ Lo =G, L, ={e} andforeaclt <, L¢ is anormab-closed subgroup af;
(b) For§ <m, Leyq C Le and(Lg/Le1, 7) Is a non-trivial compact Hausdorff topological group;

(c) The map
m: (G/Ley1,7) X (Lg/Leyr,7) — (G/Lgyr, T)
defined bym(xL¢y1,yLey1) = xyLeyq forx € G andy € L is well-defined and continuous;

(d) If¢ (< ) is alimit ordinal, thenL; = (\{L¢ : 0 < { <&}

Proof. We define{L, : 0 < ¢ < n} inductively in§. Let Ly = G. Supposer < n and assume inductively
that{L: : £ < v} have been defined so that (a), (d) are satisfied whergevers and (b), (c) are true if
£+1 <. Ifvisalimitordinal, thenlef, = {L¢ : £ < v}. If visnotalimit ordinal, thew = £+ 1 and
L¢ is defined. IfLs = {e}, then lety = ¢ and stop the induction. IE¢ # {e}, let L, = L¢ey = N(Lg).
Then using Theorem 3.4 with = L and K = {e}, we see thal¢; # L¢ and thatL¢,  is o-closed inLg¢
and hencer-closed inG by the inductive hypothesis. By Proposition 1.7(a) and titictive hypothesis,
L¢4 is a normal subgroup aofr and Proposition 1.7(b) shows the continuity property (che Tact that
(L¢/Lgsa, ) is a compact Hausdorff space is shown in Subsection 1.5.u8eda; # L, this induction
must come to a stop. This completes the proof.

Let (G, 7) be a compact Hausdorff right topological group.

A probability measure. defined on ther-algebra of Borel subsets ¢, 7) is calledright invariant
if u(As) = u(A) for eachs € G and Borel setd. Similarly, i is calledleft invariantif p(sA) = p(A)
for eachs € A(G) and each Borel set. Following Milnes and Pym [6], we call a probability measure
defined on the Borel subsets GfaHaar measuren (G, 7) if it is right invariant.

Milnes and Pym have shown that if a compact Hausdorff righbkogical group(G, ) admits a trans-
finite sequencg L : 0 < ¢ < n} of subgroups o+ satisfying conditions (a)—(d) of the Corollary 3.5, then
(G, ) has a unigue Haar measure. The Haar measure is also leflamvarience we have the following
corollary, which is also due to Milnes and Pym [7, Theorem 12]
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3.6 Corollary
Each CHART group admits a unique Haar measure, which is efsmVariant.

The next corollary was first proven in [4], in the case wtéis metrizable, and then in the general case
in [8, Corollary 4.1].

3.7 Corollary
Each distal flow( S, X') admits arnS-invariant probability measureg. a Borel probability measune on X
such thaju(s - A) = u(A) for each Borel subset of X and eachs € S.

Proof. Let (G, ) be the Ellis CHART group of the floWsS, X') and letA the Haar measure dit+, 7). Let
xo be any element oK and define the flow map : G — X by, h(g) = g(z¢), (See Section 2.1). Then
consider the Borel probability measyieon X defined byu(A) = A(h~1(A)) for each Borel subset of
X. Itis now routine to verify thaj is indeedS-invariant.

3.3 Inverse limit of compact flows

An inverse syster{(.S, X,Y),ff,y € I'} consists of a family{(S, X,) : v € I'} of compact flows
indexed by a directed sétand a family{fg s a,f € T',a < B} of maps such that, fot, 3 € T with
a< B, f5: (S, Xgz) — (S, X,) is aflowmap satisfyingﬂffg = fa whenevery, 3,7 € I'anda < 8 < 7.
In this case, thénverse limit 1iTn{(S, X5), 15~ e '} is defined to be the compact floi#, X ), where

X = {m € [ Xy : pa(z) = f2(ps(x)) whenevern, 3 € T andar < ﬂ}.
~yel

Here foreachy e I',p, : X — X, is the~™ projection and the action & on X is given by

(s-x)(y) =s-(x(y)) foreachs € S,z € X andy € I

Now, let(G, 7) be a CHART group and lef be a subsemigroup df(G). Suppose thafk, : v € I'} is

a family of o-closed subgroup&’, of GG indexed by a directed sétin such a way thaks C K, whenever
a,f e I'anda < 5. Foreachy € T, let X, = (G/K,, 7). Suppose the action ¢f on G is given by a
semigroup homomorphism : S — A(G) (see Subsection 1.2). Then we define the actiofl oh X, by
s-gK, =n(s)gK, for eachs € S andy € I'. Then(S, X,,) is a compact flow and we can make the family
{(S,Xy) : v € '} into an inverse system of compact flows by defining the flow [fﬁlp X3 — X, tobe
9K — gK, for a, € I' with o < 3. Then{(S, X,), 1B~ e I'} is an inverse system of compact flows.
We identify its inverse limit in the following lemma.

3.8 Lemma
Let the notation and symbols be as above. Ket (\{K, : v € I'}. Then(S,G/K) is isomorphic to the

inverse Iimitﬁ{s, X5), 18y e I'} of the systen{ (S, X,), f2ye I'} of compact flows.

Proof. Let (S, X') denote the inverse limit of(S, XW),ff,y € I'}. Defineh : G/K — [[{X, : vy €T}
by p(h(gK)) = gK, for eachg € G andy € I'. Then it is obvious thak(gK) € X for eachg € G and
the maph : G/K — X is continuous. We must show thatG/K) = X andh is one-to-one. So suppose
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x € X. Then for eachy € T', there existg), € G such thap, (z) = g, K. By the definition of the inverse
limit, p,(x) = fg(pg(m)) whenever, 5 € I' anda < . This means thaj, K, = gk, or, equivalently,
98 € 9oXo Wheneverr < 3. Let g, be a cluster point of the n€ty, : v € I'}. Theng, € g, K, for each
a € I'. It follows that for eachy € T', p(h(9:K)) = 9. K., = p, K, = py(z) sinceg, € p,K,. Hence
h(g.K) =z or x € h(G/K). Sincex € X is arbitrary,h(G/K) = X. Now supposé(gK) = h(goK)
for someg, go € G. Then for eachy € T, gK., = goK., and sog~'go € N{K, : v € I'} = K. Hence
gK = go K, whenceh is one-to-one. It is easy to check thais a flow map. This completes the proof.

3.4 The Furstenberg structure theorem
The next lemma is a generalization of Corollary 3.5.
3.9 Lemma
Let (G, 1) be a CHART group and let be itso-topology. Suppose thdt andL arec-closed subgroups

of G such that C L andK # L. Then there exists a transfinite sequefite : 0 < £ < n} of o-closed
subgroups of; satisfying:

(a) Hy= L, H,, = K and, foreaclf <n, K C H: C L,

(b) Foreacl <n, Hey1 = N(H¢)K andHgq # He;

(c) If¢ (< n)is alimit ordinal, thenHy = (\{H : 0 < ¢ <}
Proof. We define{ H, : 0 < £ < n} inductively in¢ starting withH, = L. Suppose that < n and assume
inductively that{ H, : £ < v} have been defined so that (a), (c) are satisfied and (b) hotdseg + 1 < v.
If v is a limit ordinal then definél, = ({H; : { < v}. If v has a predecessor, sgythenv = £ + 1 and
H¢ has been defined. ll; = K, then we let = n and the proof is finished. OtherwisH, # K and H,
is o-closed by the inductive hypothesis. Hence applying Thedet to H; and K (in the place ofL and

K), we conclude thatl,; := N(H¢)K is ac-closed (inH¢ hence inG) proper subgroup ofi;. Since
H¢yy # He as long adi; # K, this induction must come to an end.

The next theorem, due to Ellis [3], is a generalization ofrtian result of [4].

3.10 Theorem (Furstenberg, Ellis)
Let (S, X) be a minimal distal flow and I€tS,Y") be a factor (necessarily minimal distal) by a quotient

flow mapr : (S, X) — (S,Y). Then there exists an inverse syst&{f, Xg),wg,o < ¢ < n} of minimal
distal flows (indexed by ordinal numbers) having the follogvproperties.

(I) (S’XO) = (Sa Y) and(SaXn) = (SaX)
(i) Foreach¢ <, (S, X¢) is a factor of S, X') and an extension ¢6,Y).
(iii) For each ¢ < n, the flow maprg ™ : (S, Xeq1) — (S, Xe) is equicontinuous

(iv) If (< n)isalimitordinal, then

(S, X¢) = im{(S, X¢), 77,0 < ¢ < €}.

y Moy

13



Proof. Let (G, 7) be the Ellis group of the flowsS, X). Then by Proposition 2.1(ii), there existclosed
subgroupgk and L of G such that’ C L and the flow mapr : (S, X) — (S,Y) is represented by the map
p:(S,G/K) — (S,G/L). Therefore we sek = G/K, Y = G/L and user in place ofp. Recall that
m(= p)isthe mapgK — gL for eachg € G. In order to avoid the trivial case, we assume tha L.
Then by Lemma 3.9, we have a transfinite sequeffde : 0 < ¢ < n} of o-closed subgroups of
G satisfying (a)—(c) there. For eaghe [0,n], let (S, X¢) = (S,G/H¢) where (S,G/H¢) is defined
as in Lemma 1.4 and it is a minimal distal flow by that lemma. perty (a) implies (i) and (ii). For
0<a<g<ndefiners : G/Hs(= X3) — G/Hu(= Xo) bywa(gHp) = gHa. Then{(S, X¢), 74,0 <
¢ < n}is aninverse system of minimal distal flows. Suppose ¢hat . Then by (b),H¢1 # H¢ and
wé“ : G/He¢pw — G/Hg is equicontinuous by Theorem 2.2 sindg H¢) C Heyq by the definition of
H¢yy. This proves (iii). Property (iv) follows from Lemma 3.9(apd Lemma 3.8. This completes the
proof.
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