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Chapter 1

Continuity and Games

1.1 Introduction to game theory

These unpublished notes are very rough and NOT proof-read or corrected. They were
originally intended to be part of the monograph “Separate and Joint Continuity” by Jiling
Cao and myself, published in Chapman & Hall/CRC Monographs and Research Notes in
Mathematics, 2024, but were ultimately determined to be surplus to requirements.

Although a combinatorial game was described back at the beginning of the 17th century, the
notion of a positional game i.e., a two player game where the players alternate turns/moves
in order to achieve a predefined winning condition) with perfect information (i.e., the
players have available to them the same information concerning their next move, at the
time of making that move, as they would have at the end of the game) was not formally
introduced until the monograph of von Neumann and Morgenstern in 1944, [54]. In that
monograph the authors considered finite positional games and proved that each such game
can be reduced to a matrix game, and moreover, if the finite positional game is one with
perfect information, then the corresponding matrix game has a saddle point. For a proof of
this result and much more see, [54]. For more information on games also see [6,39,40,50,52].

However, infinite positional games with perfect information were discovered a little earlier.
In 1935, Stanislaw Mazur proposed a game related to the Baire category theorem, which
is described in Problem No. 43 of the Scottish book; its solution given by Stefan Banach
is dated August 4, 1935. This game, now known as the Banach-Mazur game, is the first
infinite positional game with perfect information. For more historical information on this
game see, [50].

In this chapter we shall, for the most part, restrict ourselves to games that are essentially
descendants of the Banach-Mazur game.

The first game that we shall consider is the Choquet game.

This game involves two players which we will call α and β. The “field/court” that the
game is played on is a fixed topological space (X, τ). The name of the game is the Choquet
game and is denoted by, Ch(X).

After naming the game we need to describe how to “play” the Ch(X)-game. The player
labeled β starts the game every time (life is not always fair). For his/her first move the
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player β must select nonempty open subset B1 of X. Next, α gets a turn. For α’s first
move he/she must select a nonempty open subset A1 of B1. This ends the first round of
the game.

In the second round, β goes first again and selects a nonempty open subset B2 ⊆ A1.
Player α then gets to respond by choosing a nonempty open subset A2 of B2. This ends
the second round of the game.

In general, after α and β have played the first n-rounds of the Ch(X)-game, β will have
selected nonempty open subsets B1, B2, . . . , Bn and α will have selected nonempty open
subsets A1, A2, . . . , An such that

An ⊆ Bn ⊆ An−1 ⊆ Bn−1 ⊆ · · · ⊆ A2 ⊆ B2 ⊆ A1 ⊆ B1.

At the start of the (n + 1)-round of the game, β goes first (again!) and selects nonempty
open subset Bn+1 of An. As with the previous n-rounds, the player α gets to respond to
this move by selecting a nonempty open subset An+1 of Bn+1.

Continuing this procedure indefinitely (i.e., continuing on forever) the players α and β
produce an infinite sequence

(
(Ak, Bk) : k ∈ N

)
called a play of the Ch(X)-game.

A partial play
(
(Ak, Bk) : 1 ≤ k ≤ n

)
of the Ch(X)-game consists of the first n-moves of a

play of the Ch(X)-game.

As with any game, we need to specify a rule to determine who wins (otherwise, it is a very
boring game). We shall declare that α wins a play

(
(Ak, Bk) : k ∈ N

)
of the Ch(X)-game

if:
⋂

k∈NAk =
⋂

k∈NBk ̸= ∅.

If α does not win a play of the Ch(X)-game then we declare that β wins that play of the
Ch(X)-game. So every play is won by either α or β and no play is won by both players.

Continuing further into game theory we need to introduce the notion of a strategy.

By a strategy t for the player β we mean a ‘rule’ that specifies each move of the player β in
every possible situation. More precisely, a strategy t := (tn : n ∈ N) for β is an inductively
defined sequence of τ -valued functions. The domain of t1 is the sequence of length zero,
denoted by ∅. That is, Dom(t1) = {∅} and t1(∅) ∈ (τ \ {∅}). If t1, t2, . . . , tk have been
defined then the domain of tk+1 is:

{(A1, . . . , Ak) ∈ τ k : (A1, . . . , Ak−1) ∈ Dom(tk) and ∅ ̸= Ak ⊆ tk(A1, . . . , Ak−1)}.

For each (A1, A2, . . . , Ak) ∈ Dom(tk+1), tk+1(A1, A2, . . . , Ak) := Bk+1 ∈ τ is defined so that
∅ ̸= Bk+1 ⊆ Ak.

A partial t-play is a finite sequence (A1, A2, . . . , An) such that (A1, A2, . . . , An) ∈ Dom(tn+1).
A t-play is an infinite sequence (An : n ∈ N) such that for each n ∈ N, (A1, A2, . . . , An) is
a partial t-play.

A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if each play of the
form:

(
(An, tn(A1, . . . , An−1)) : n ∈ N

)
is won by β.

Similarly we can define a strategy for α. By a strategy s for the player α we mean a
‘rule’ that specifies each move of the player α in every possible situation. More precisely,
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a strategy s := (sn : n ∈ N) for α is an inductively defined sequence of τ -valued functions.
The domain of s1 is

{
(B) : B ∈ τ \{∅}

}
and for each B1 ∈ Dom(s1), s1(B1) := A1 ∈ τ is

defined so that ∅ ̸= A1 ⊆ B1.

If s1, s2, . . . , sk have been defined then the domain of sk+1 is:

{(B1, . . . , Bk+1) ∈ τ k+1 : (B1, . . . , Bk) ∈ Dom(sk) and ∅ ̸= Bk+1 ⊆ sk(B1, . . . , Bk)}.

For each (B1, B2, . . . , Bk+1) ∈ Dom(sk+1), sk+1(B1, B2, . . . , Bk+1) := Ak+1 ∈ τ is defined
so that ∅ ̸= Ak+1 ⊆ Bk+1.

A partial s-play is a finite sequence (B1, B2, . . . , Bn) such that (B1, B2, . . . , Bn) ∈ Dom(sn).
An s-play is an infinite sequence (Bn : n ∈ N) such that for each n ∈ N, (B1, B2, . . . , Bn)
is a partial s-play.

A strategy s := (sn : n ∈ N) for the player α is called a winning strategy if each play of the
form:

(
(sn(B1, . . . , Bn), Bn) : n ∈ N

)
is won by α.

Note that since it is not possible for any play of the Ch(X)-game to be won by both
players, it is not possible for both players to possess a winning strategy in the Ch(X)-
game. Hence, if for example, the player α has a winning strategy in the Ch(X)-game then
it is not possible for the player β to also have a winning strategy in the Ch(X)-game.

A space (X, τ) is called weakly α-favourable if α has a winning strategy in the Ch(X)-game.

Exercise 1.1.1. Show that the following classes of topological spaces are weakly α-favourable
in the Choquet game.

(i) Regular feebly compact spaces. Recall that a topological (X, τ) is called feebly com-
pact if for every decreasing sequence (Un : n ∈ N) of nonempty open subsets of X,⋂

n∈N Un
τ ̸= ∅. It is known that all completely regular feebly compact spaces are

pseudo-compact i.e., every real-valued function defined on it is bounded, [12, p. 211].

(ii) All Čech-complete spaces (which includes all complete metric spaces), see [2, 15].

Another important example, at least from the perspective of the study of separate and
joint continuity, is the following example of a weakly α-favourable topological space.

Example 1.1.2. Let Γ be an uncountable set. For each countable subset C of Γ and f ∈ ΓΓ

let
N(f, C) := {g ∈ ΓΓ : g|C = f |C}.

Recall from Exercise 1.6.22 that {N(f, C) : f ∈ ΓΓ and C is a countable subset of Γ} is a
base for a topology on ΓΓ which we called the topology of coincidence on countable sets and
denoted τcount. Then (ΓΓ, τcount) is a weakly α-favourable space.

Proof. We shall inductively define a winning strategy s := (sn : n ∈ N) for the player α in
the Ch(X)-game.

Step 1. Suppose that B1 is a nonempty open subset of (ΓΓ, τcount), i.e., we may think of
B1 as the first move of the player β. Choose f 1

(B1)
∈ B1 and a countable subset C1

(B1)
of Γ

such that N(f 1
(B1)

, C1
(B1)

) ⊆ B1. Then define s1(B1) := N(f 1
(B1)

, C1
(B1)

).

Now, let n ∈ N and suppose that sj, f
j and Cj have been defined for every partial s-play

(B1, . . . , Bj) of length j with 1 ≤ j ≤ n so that:
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(i) f j
(B1,...,Bj)

∈ Bj;

(ii) Cj
(B1,...,Bj)

is a countable subset of Γ such that N(f j
(B1,...,Bj)

, Cj
(B1,...,Bj)

) ⊆ Bj and

(iii) sj(B1, . . . , Bj) := N(f j
(B1,...,Bj)

, Cj
(B1,...,Bj)

).

Step n+1. Let (B1, . . . , Bn+1) be a partial s-play of length n+1. Then Bn+1 is a nonempty
open subset of sn(B1, . . . , Bn) ⊆ Bn. Choose fn+1

(B1,...Bn+1)
∈ Bn+1 and a countable subset

Cn+1
(B1,...,Bn+1)

of Γ such that N(fn+1
(B1,...,Bn+1)

, Cn+1
(B1,...,Bn+1)

) ⊆ Bn+1. Then define,

sn+1(B1, . . . , Bn+1) := N(fn+1
(B1,...,Bn+1)

, Cn+1
(B1,...,Bn+1)

).

This completes the definition of s := (sn : n ∈ N).

So it remains to show that s is a winning strategy for the player α. To this end, let
(Bn : n ∈ N) be an arbitrary s-play. Let f : Γ → Γ be defined by, f(γ) := fm

(B1,...,Bm)(γ)

if γ ∈
⋃

n∈N C
n
(B1,...,Bn)

and m is the smallest natural number such that γ ∈ Cm
(B1,...,Bm). If

γ ̸∈
⋃

n∈N C
n
(B1,...,Bn)

, then let f(γ) := γ0, where γ0 is some fixed element of Γ. We claim

that f ∈
⋂

n∈N N(fn
(B1,...,Bn)

, Cn
(B1,...,Bn)

) =
⋂

n∈N Bn. To substantiate this claim let us fix

an n ∈ N. We will show that f ∈ N(fn
(B1,...,Bn)

, Cn
(B1,...,Bn)

). To this end, fix γ ∈ Cn
(B1,...,Bn)

.

Let m := min{k ∈ N : γ ∈ Ck
(B1,...,Bk)

}. Then 1 ≤ m ≤ n and γ ∈ Cm
(B1,...,Bm). Therefore,

by the definition of the function f , f(γ) = fm
(B1,...,Bm)(γ). On the other hand, since m ≤ n

N(fn
(B1,...,Bn), C

n
(B1,...,Bn)) ⊆ N(fm

(B1,...,Bm), C
m
(B1,...,Bm)).

In particular, fn
(B1,...,Bn)

∈ N(fm
(B1,...,Bm), C

m
(B1,...,Bm)) and so

f(γ) = fm
(B1,...,Bm)(γ) = fn

(B1,...,Bn)(γ) as γ ∈ Cm
(B1,...,Bm).

Since γ ∈ Cn
(B1,...,Bn)

was arbitrary, f ∈ N(fn
(B1,...,Bn)

, Cn
(B1,...,Bn)

). Furthermore, since n ∈ N
was arbitrary, f ∈

⋂
n∈N N(fn

(B1,...,Bn)
, Cn

(B1,...,Bn)
). This completes the proof.

Exercise 1.1.3. Let Γ be an uncountable set and let G∗ := {0, 1}Γ. Show that (G∗, τcount)
is weakly α-favourable. Hint: Modify the proof of Example 1.1.2.

Exercise 1.1.4. Let Γ be an uncountable set and let

GΓ := {f ∈ ΓΓ : f is a bijection and {γ ∈ Γ : f(γ) ̸= γ} is at most countable}.

Show that (GΓ, τcount) is a weakly α-favourable space. Hint: Modify the proof of Example
1.1.2.

Given that potentially, there are topological spaces (X, τ) where,

(i) the player β does not have a winning strategy and

(ii) the player α also fails to have a winning strategy,
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it makes sense to consider the following question.

“What topological spaces (X, τ) are characterised by the fact that the player β does not
have a winning strategy in the Ch(X)-game?”

The answer to this important question has many fathers, but before we get onto that,
let us first introduce some further notation that will expedite the proof of the following
theorem. Let (X, τ) be a topological space and let t := (tn ∈ N) be a strategy for the
player β in the Ch(X)-game played on (X, τ). If p is a partial t-play of the Ch(X)-game,
then we define the length of p to be n if p := (A1, . . . An) for some n, or 0, if p = ∅.
Furthermore, if p := (A1, . . . , An) is a partial t-play and An+1 is a nonempty open subset
of tn+1(A1, . . . , An), then we write (p,An+1) for the partial t-play (A1, . . . , An, An+1) of
length n + 1. Finally, if p := (A1, . . . An) is a partial t-play of length n, for some n ∈ N
and 1 ≤ m < n, then then we write p|m for the partial t-play (A1, . . . , Am) of length m. If
m = 0, then p|m = ∅.

Theorem 1.1.5 ([8, 35, 41, 45, 50]). A topological space (X, τ) is a Baire space, (i.e., the
intersection of every countable family of dense open sets is dense), if, and only if, the
player β does not have a winning strategy in the Ch(X)-game.

Proof. We shall first show that if β does not possess a winning strategy in the Ch(X)-game
then (X, τ) is a Baire space. To do this, we shall prove the contrapositive statement. So
let us suppose that (X, τ) is not a Baire space. Then there exists a sequence (On : n ∈ N)
of dense open subsets of X such that

⋂
n∈N On is not dense in X. Therefore, there exists a

nonempty open subsetW ofX such thatW∩
⋂

n∈NOn = ∅. We shall now inductively define
a winning strategy t := (tn : n ∈ N) for the player β. Let t1(∅) := W . Now, if n ∈ N and
(Aj : 1 ≤ j ≤ n) is any partial t-play of length n then we define tn+1(A1, . . . , An) := An∩On.

This defines a valid strategy t = (tn : n ∈ N) for β. Furthermore, t is clearly a winning
strategy for the player β as for any t-play (An : n ∈ N),

⋂
n∈N An ⊆ W ∩

⋂
n∈N On = ∅.

This completes this direction of the proof.

Next, suppose that (X, τ) is a Baire space. Let t := (tn : n ∈ N) be any strategy for the
player β in the Ch(X)-game. We need to show that there exists a t-play (An : n ∈ N)
where α wins, i.e.,

⋂
n∈N An ̸= ∅. For each n ∈ N, let Pn denote the set of all partial

t-plays of length n and for purely notional reasons, let us also set Λ0 := {∅} - the reason
for this will become clear shortly. We shall inductively define a sequence (Λn : n ∈ N) of
subsets such that the following properties are fulfilled. For each n ∈ N:

(an) Λn ⊆ Pn and tn+1(p) ∩ tn+1(p
′) = ∅ for every distinct p, p′ ∈ Λn;

(bn)
⋃
{tn+1(p) : p ∈ Λn} is dense in t1(∅);

(cn) for each p ∈ Λn, p|j ∈ Λj for all 0 ≤ j < n.

Step 1. Let Λ1 be a maximal subset of P1 with the property that t2(p) ∩ t2(p
′) = ∅ for

every distinct p, p′ ∈ Λ1 and p|0 ∈ Λ0 for every p ∈ Λ1. By Zorn’s Lemma such a maximal
subset exists.
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We claim that
⋃
{t2(p) : p ∈ Λ1} is dense in t1(∅). Indeed, if

⋃
{t2(p) : p ∈ Λ1} is not

dense in t1(∅), then there exists a nonempty open subset A of t1(∅) such that
⋃
{t2(p) : p ∈

Λ1} ∩ A = ∅. Note that (A) is a partial t-play of length 1. Let Λ∗ := Λ1 ∪ {(A)}. Then
Λ∗ satisfies Property (a1) and Property (c1). However, this contradicts the maximality of
Λ1. Hence,

⋃
{t2(p) : p ∈ Λ1} must be dense in t1(∅).

Let n ∈ N, and suppose the subsets Λk satisfying the Properties (ak), (bk) and (ck) have
been defined for each 1 ≤ k ≤ n.

Step n+1. Let Λn+1 be a maximal subset of Pn+1 with the property that tn+2(p)∩tn+2(p
′) =

∅ for every distinct p, p′ ∈ Λn+1 and p|j ∈ Λj for every p ∈ Λn+1 and every 0 ≤ j < n+ 1.
By Zorn’s Lemma such a maximal subset exists.

We claim that
⋃
{tn+2(p) : p ∈ Λn+1} is dense in t1(∅). Indeed, if

⋃
{tn+2(p) : p ∈ Λn+1}

is not dense in t1(∅), then there exists a nonempty open subset A of t1(∅) such that⋃
{tn+2(p) : p ∈ Λn+1} ∩A = ∅. Since,

⋃
{tn+1(p) : p ∈ Λn} is dense in t1(∅) there exists a

p ∈ Λn such that A′ := tn+1(p)∩A ̸= ∅. Then (p,A′) is a partial t-pay of length n+1. Let
Λ∗ := Λn+1 ∪ {(p,A′)}. Then Λ∗ satisfies Property (an+1) and Property (cn+1). However,
this contradicts the maximality of Λn+1. Hence,

⋃
{tn+2(p) : p ∈ Λn+1} must be dense in

t1(∅).
This completes the induction. For each n ∈ N, let Wn :=

⋃
{tn+1(p) : p ∈ Λn}. By

Property (bn) we have that each set Wn is a dense open subset of t1(∅) and since (X, τ) is
a Baire space,

⋂
n∈N Wn ̸= ∅. Let x ∈

⋂
n∈N Wn and let n ∈ N. By Property (an) there

exists a unique pn ∈ Λn such that x ∈ tn+1(pn).

We claim that if n < m then pm|n = pn. To see this, first note that pm|n ∈ Λn, by Property
(cm), and secondly, that x ∈ tn+1(pm|n) ∩ tn+1(pn). Therefore, by Property (an), it must
be the case that pm|n = pn. Thus, pm is a continuation of the partial t-play.

Let p := (An
n : n ∈ N), where for each n ∈ N, pn := (An

1 , . . . , A
n
n). Clearly, x ∈

⋂
n∈N A

n
n as

x ∈ tn+1(pn) = tn+1(A
n
1 , . . . , A

n
n) ⊆ An

n for all n ∈ N.

So it remains to show that p is a t-play. To this end, let n ∈ N. Then

An+1
n+1 ⊆ tn+1(A

n+1
1 , . . . , An+1

n ). (∗)

Now, by above, for each 1 ≤ j ≤ n, pn+1|j = pj. Therefore, for each 1 ≤ j ≤ n, An+1
j = Aj

j.
Substituting this into Equation (∗) we get that

An+1
n+1 ⊆ tn+1(A

1
1, . . . , A

n
n).

This shows that p is a t-play where α wins.

Since every weakly α-favourable topological space (X, τ) is β-unfavourable (i.e., the player
β does not possess a winning strategy in the Ch(X)-game played on (X, τ)). It follows,
from Theorem 1.1.5, that all weakly α-favourable spaces are Baire spaces [though, one
can directly show this, without too much bother, without recourse to Theorem 1.1.5].
However, the validity of the converse statement is not clear, i.e., are all Baire spaces
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weakly α-favourable? Or, equivalently, in terms of games, are all β-unfavourable spaces
weakly α-favourable?

The answer to this question is no.

One way to see this, is to first show that if (X, τ) and (Y, τ ′) are both weakly α-favourable
then so is (X × Y, τ × τ ′), [8]. Here, τ × τ ′ denotes the product topology on X × Y .

Since weakly α-favourable spaces are Baire spaces, the product X × Y will be a Baire
space. However, it is known that there exist Baire spaces (X, τ) and (Y, τ ′) such that
(X × Y, τ × τ ′) is not a Baire space, [14]. These spaces are known as barely Baire spaces.

Hence, it follows that at least one of these spaces is a Baire space in which the player α
does not possess a winning strategy in the Ch(X)-game, or, in light of Theorem 1.1.5, a
space in which neither player, α nor β, has a winning strategy. Such games, where neither
player has a winning strategy, are called undetermined games.

More simply, one can show that any Bernstein subset of R, with the relative topology,
is a Baire space that is not weakly α-favourable (i.e., neither player possesses a winning
strategy, or if you prefer, the Choquet game on a Bernstein set is an undetermined game).

Recall that a subset B of R is called a Bernstein set if neither B nor its complement
contains a perfect compact subset, [42, p.23]. In [42] the construction of a Bernstein set is
given.

So, in summary, there are topological spaces (X, τ) in which neither player, α nor β,
possesses a winning strategy in the Ch(X)-game played on (X, τ).

Exercise 1.1.6. Let (X, τ) be a weakly α-favourable topological space and let U be a
nonempty open subset of (X, τ). Show that U , equipped with the relative topology inherited
from (X, τ), is also weakly α-favourable.

Before we continue further into game theory, let us pause for a moment, to address the
anxiety that you may be feeling.

The phrasing of results in terms of “players”,“winners” and “strategies” etc. probably seems
very foreign to you, and you are most-likely deciding whether it is worth all the effort to
learn this exotic area of mathematics, when all you want, is to learn about “Separate and
Joint Continuity”.

Well, let us try to alleviate your fears. Firstly, all the phrasing in terms of “games”,
“winners” and “strategies” etc. are just window dressing. Lying underneath these terms
are basic notions from mathematics. In particular, everything concerning the Choquet
game can be simply rephrased in terms of trees and induction. So if one really wants to,
one can remove all the game terminology and replace it with more traditionally sounding
terminology.

However, below are a few passages that hopefully convince you to “stick” with the game
theory terminology.

The use of Banach-Mazur type games can often simplify the presentation of certain in-
ductive arguments. One can design a game that exactly suits/fits the particular inductive
argument under consideration. That is, the game can be tailor made to fit the situation.
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The proof then divides into two parts. In one part we use the tailor made game to expedite
the proof of the inductive argument. Strategies offering an effect way of recording the in-
ductive hypotheses. The other part of the proof is then to determine those space/situations
where the game conditions are satisfied. This dividing the proof into two parts is an im-
portant feature of the game approach - watch out for this in the future.

Another feature of the game formalism is the possibility of considering spaces where neither
player possesses a winning strategy (see Theorem 1.1.5). Initially perhaps, it is not at all
clear, how one might use the assumption: “I do not possess a winning strategy.” However,
the way in which one usually exploits the hypothesis/condition that β does not possess a
winning strategy is the following:

One uses a proof by contradiction. That is, assume that the conclusion of the statement
(that one wants to prove) is false. Then use this additional information to construct a
strategy t for the player β. The fact that t is not a winning strategy for the player β then
yields the existence of a play

(
(An, Bn) : n ∈ N

)
where α wins. This play

(
(An, Bn) : n ∈ N

)
is then used to obtain the required contradiction.

Games are used in many places within analysis. Some of these are listed below. The study
of the Namioka property; the study of weak Asplund spaces and Gâteaux differentiability
spaces; in the theory of selections (of set-valued mappings); in optimization of contin-
uous and lower semi-continuous functions; in active boundaries of set-valued mappings
(involves a game defined on filter bases); the study of closed graph theorems; the study
of fragmentability and σ-fragmentability; in Baire category arguments; in differentiability
theory; in the study semitopological groups/topological groups; Plus many other places.

1.2 Namioka spaces defined by games

For this section of the Chapter we will require the ensuing generalisation the the Stone-
Weierstrass Theorem (see Theorem 1.6.18).

Corollary 1.2.1. Let (Y, τ ′) be a compact topological space and let L be a sub-lattice of

C(Y ). If f ∈ L
τp(Y ) ⊆ RY and dist(f, C(Y )) < ε then there exists an l ∈ L such that

∥f − l∥∞ < 2ε. Here, L
τp(Y )

denote the closure of L in (RY , τp(Y )).

Proof. Choose g ∈ C(Y ) such that r := ∥f−g∥∞ < ε. Then for each pair of points x, y ∈ Y ,
there exists an l(x,y) ∈ L such that |f(x)− l(x,y)(x)| < (ε−r) and |f(y)− l(x,y)(y)| < (ε−r).
Hence,

|g(x)− l(x,y)(x)| ≤ |g(x)− f(x)|+ |f(x)− l(x,y)(x)| < r + (ε− r) = ε

and
|g(y)− l(x,y)(y)| ≤ |g(y)− f(y)|+ |f(y)− l(x,y)(y)| < r + (ε− r) = ε.

Therefore, by Theorem 1.6.18, there exists an l ∈ L such that ∥g − l∥∞ < ε. Thus,

∥f − l∥∞ ≤ ∥f − g∥∞ + ∥g − l∥∞ < ε+ ε = 2ε.

This completes the proof.
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Before we can state our most general theorem on Namioka spaces we will need to first
recall the definition of a much studied class of topological spaces. Our formulation of this
definition depends upon the notion of an “usco” mapping; which is what we present next.

Let (X, τ) and (Y, τ ′) be topological spaces. We shall say that a set-valued mapping
Φ : X → 2Y is an usco on X if:

(i) Φ(x) is a nonempty compact subset of (Y, τ ′), for each x ∈ X and

(ii) for each open subset W of (Y, τ ′), {x ∈ X : Φ(x) ⊆ W} is an open subset of (X, τ).

Building on this definition, we will say that a topological space (X, τ) is K-countably
determined if (i) (X, τ) is completely regular and (ii) there exists a separable metric space
(S, d) and an usco mapping Φ : S → 2X such that X = Φ(S). This is, X is the usco image
a separable metric space.

It is easy to see that all separable metric spaces and all compact Hausdorff spaces are
K-countably determined. On the other hand, it is reasonably straightforward to show that
all K-countably determined topological spaces satisfy the Lindelöf property.

Proposition 1.2.2. Let (Y, τ ′) be a compact Hausdorff space and let f : X → Cp(Y ) be
a continuous function acting from a Baire space (X, τ). Suppose that 0 < ε is given. If
for each nonempty open subset U of X there exists a nonempty open subset V of U and a
K-countably determined subset A of Cp(Y ) such that f(V ) ⊆ A+ εBC(Y ) then

Oε :=
⋃
{W ∈ τ : ∥ · ∥∞ − diam[f(W )] ≤ 8ε}

is dense in (X, τ).

Proof. Suppose, in order to obtain a contradiction, that Oε is not dense in (X, τ). Then
there exists a nonempty open subset U of X such that U ∩ Oε = ∅. Note that without
loss of generality we may assume that f(U) is norm bounded in C(Y ). Indeed, if for each
n ∈ N, Un := {x ∈ U : f(x) ∈ nBC(Y )}, then {Un : n ∈ N} is a closed cover of U . Since U
is of the second Baire category there must exist a k0 ∈ N such that int(Uk0) ∩ U ̸= ∅. If
U ′ := int(Uk0) ∩ U then ∅ ̸= U ′ ⊆ U , f(U ′) is norm bounded and U ′ ∩Oε = ∅.

By the hypothesis there exists a nonempty open subset V of U and a K-countably deter-
mined subset A of Cp(Y ) such that f(V ) ⊆ A+ εBC(Y ). Furthermore, by the definition of
a K-countably determined set there exists a separable metric space (S, d) and a τp(Y )-usco
Φ : S → 2C(Y ) such that A = Φ(S). Let (Wn : n ∈ N) be a countable base for the topology
on (S, d). For each n ∈ N, let

Cn := Φ(Wn)
τp(Y )

+ εB

where, B := {h ∈ RY : |h(y)| ≤ 1 for all y ∈ Y } and the closure is taken in (RY , τp(Y )).

We shall inductively define a (necessarily non-winning) strategy t := (tn : n ∈ N) for the
player β in the Choquet-game played on (X, τ).

Base Step. Set A0 := U , choose l(∅) ∈ f(A0) and let L(∅) denote the finite lattice (in
C(Y )) generated by l(∅). (In this case L(∅) = {l(∅)}.) Since U ∩ Oε = ∅, it follows
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that f(U) ̸⊆ L(∅) + (4ε)BC(Y ). Therefore, there exists a point x ∈ A0 such that f(x) ̸∈
[L(∅)+(4ε)BC(Y )]. Now, because: (i) L(∅)+(4ε)BC(Y ) is a closed set; (ii) the τp(Y )-topology
is regular and (iii) the function f is τp(Y )-continuous, there exists an open neighbourhood
V of x, contained in A0, such that

f(V )
τp(Y )

∩ [L(∅) + (4ε)BC(Y )] = ∅.

Now, by possibly making V smaller, we may assume that either, f(V )
τp(Y )

⊆ C1, or else,

f(V )
τp(Y )

∩ C1 = ∅. We then define, t1(∅) := V .

Now, suppose that the points l(A1, . . . , Aj−1), the finite sub-lattices L(A1, . . . , Aj−1) of
C(Y ) and the strategies tj have been defined for each partial t-play (A1, . . . , Aj−1) of
length (j − 1) with 1 ≤ j ≤ n so that:

(Aj) f(tj(A1, . . . , Aj−1))
τp(Y )

∩ [L(A1, . . . , Aj−1) + (4ε)B] = ∅, where L(A1, . . . , Aj−1)
denotes the finite sub-lattice of C(Y ) generated by {l(∅), l(A1), . . . , l(A1, . . . , Aj−1)}.

(Bj) either, f(tj(A1, . . . , Aj−1))
τp(Y )

⊆ Cj, or else, f(tj(A1, . . . , Aj−1))
τp(Y )

∩ Cj = ∅.

Step n+ 1. Let (A1, . . . , An) be a partial t-play of length n. Then

∅ ̸= An ⊆ tn(A1, . . . , An−1) ⊆ An−1 ⊆ U.

Choose, l(A1, . . . , An) ∈ f(An) and let L(A1, . . . , An) denote the finite sub-lattice of C(Y )
generated by {l(∅), l(A1), . . . , l(A1, . . . , An)}. Note that L(A1, . . . , An−1) ⊆ L(A1, . . . , An).

Since An ∩Oε = ∅ we have, by Lemma 1.6.21, that f(An) ̸⊆ [L(A1, . . . , An) + (4ε)BC(Y )].
Therefore, there exists a point x ∈ An such that f(x) ̸∈ [L(A1, . . . , An)+ (4ε)BC(Y )]. Now,
because: (i) L(A1, . . . , An) + (4ε)BC(Y ) is a closed set (it is a finite union of closed balls);
(ii) the τp(Y )-topology is regular and (iii) the function f is τp(Y )-continuous, there exists
an open neighbourhood V of x, contained in An, such that

f(V )
τp(Y )

∩ [L(A1, . . . , An)) + (4ε)BC(Y )] = ∅.

Now, by possibly making V smaller, we may assume that either, f(V )
τp(Y )

⊆ Cn+1, or

else, f(V )
τp(Y )

∩ Cn+1 = ∅. We then define, tn+1(A1, . . . , An) := V . This completes the
definition of t := (tn : n ∈ N).
Since (X, τ) is a Baire space we have, via Theorem 1.1.5, that t is not a winning strategy
for the player β. Hence there exists a t-play (An : n ∈ N) where α wins, i.e.,

⋂∞
n=1An ̸= ∅

Let g ∈ f(
⋂∞

n=1 An) ⊆ f(U) ⊆ A + εBC(Y ) = Φ(S) + εBC(Y ). Therefore, there exists a
point s ∈ S such that g ∈ Φ(s) + εBC(Y ) ⊆ Φ(s) + εB.

Let (Wnk
: k ∈ N) be a local base for the d-topology at s ∈ S. Fix k ∈ N. Since,

g ∈ Φ(s) + εB ⊆ Φ(Wnk
)
τp(Y )

+ εB = Cnk

it follows from (Bnk
) that f(tnk

(A1, . . . , Ank−1))
τp(Y )

⊆ Cnk
.
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Let l∞ ∈ RY be a τp(Y )-cluster-point of (l(A1, . . . , Ank−1) : k ∈ N). Note that such a
cluster-point exists since the sequence (l(A1, . . . , Ank−1) : k ∈ N) is pointwise bounded (in
fact, uniformly bounded) in RY . Furthermore,

l∞ ∈
⋂∞

k=1f(tnk
(A1, . . . , Ank−1))

τp(Y )
as l(A1, . . . , Ank−1) ∈ f(tnk

(A1, . . . , Ank−1)) ∀k ∈ N
⊆

⋂∞
k=1Cnk

=
⋂∞

k=1[Φ(Wnk
)
τp(Y )

+ εB]

= Φ(s) + εB since, Φ is an usco.

Thus, dist(l∞, C(Y )) ≤ ε < 2ε. Now, since L(A1, . . . , An−1) ⊆ L(A1, . . . , An) for all n ∈ N,⋃∞
n=1 L(A1, . . . , An) is a sub-lattice of C(Y ). Therefore, by Corollary 1.2.1, there exists an

l ∈
⋃∞

n=1 L(A1, . . . , An) such that ∥l∞ − l∥∞ < 4ε since, l∞ ∈
⋃∞

n=1 L(A1, . . . , An)
τp(Y )

.

On the other hand, since

l∞ ∈
⋂∞

k=1f(tnk
(A1, . . . , Ank−1))

τp(Y )
=

⋂∞
k=1f(tk(A1, . . . , Ak−1))

τp(Y )

we have, by Property (Ak), that l∞ ̸∈ L(A1, . . . , Ak−1) + (4ε)B, for each k ∈ N. However,
this contradicts the fact that l ∈ L(A1, . . . , Ak−1) for some k ∈ N. Thus, it must be the
case that Oε is dense in (X, τ).

Theorem 1.2.3. Let (Y, τ ′) be a compact Hausdorff space and let f : X → Cp(Y ) be a
continuous function acting from a Baire space (X, τ). If, for each 0 < ε and nonempty open
subset U of X, there exists a nonempty open subset V of U and a K-countably determined
subset A of Cp(Y ) such that f(V ) ⊆ A+ εBC(Y ), then f is norm continuous at the points
of a dense and Gδ subset of (X, τ).

Proof. Fix 0 < ε and consider the set

Oε :=
⋃
{W ∈ τ : ∥ · ∥∞ − diam[f(W )] ≤ ε}.

Clearly, Oε is open, as it is a union of open sets and, by Proposition 1.2.2 it follows that
Oε is also dense in (X, τ). Therefore,

⋂
n∈N O 1

n
is a dense and Gδ subset of (X, τ). So to

complete the proof it only remains to observe that f is norm continuous at each point of⋂
n∈N O 1

n
.

Corollary 1.2.4. Let (Y, τ ′) be a compact Hausdorff space and let f : X → Cp(Y ) be a
continuous function acting from a Baire space (X, τ). If Cp(Y ) is K-countably determined
then f is norm continuous at the points of a dense and Gδ subset of (X, τ).

Proof. This follows directly from Theorem 1.2.3.

A compact Hausdorff space (Y, τ ′) for which Cp(Y ) is K-countably determined is called a
Gul’ko compact. These spaces were first considered in [18,48] and then later in [53]. Since
these spaces were first introduced they have been extensively studied, particularly in regard
to renorming theory. Indeed, if G denotes that class of all Gul’ko compacta then it is known
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that G is stable under taking: continuous images; closed subspaces; countable products
and finite unions, [48]. Furthermore, it is known that all Gul’ko compacta are Corson
compact, [18] and that all Gul’ko compacta are fragmentable by a complete metric, [43].
It is also know that if (Y, τ ′) ∈ G then (BC(Y )∗ ,weak

∗) ∈ G, see [46]. For more information
on G see [13, Chapter 7].

In order to say something more about the implications K-countably determined sets have
concerning norm continuity of pointwise continuous mappings, we need to explore further
some of their basic properties.

Exercise 1.2.5. This exercise concerns the basic properties of usco mappings.

(a) Let (X1, τ1), (X2, τ2), (Y1, τ
′
1) and (Y2, τ

′
2) be topological spaces. Show that if Φ1 :

X1 → 2Y1 and Φ2 : X2 → 2Y2 are usco mappings then the mapping Φ : X1 × X2 →
2Y1×Y2 defined by,

Φ(x1, x2) := Φ1(x1)× Φ2(x2) for all (x1, x2) ∈ X1 ×X2

is an usco on X1 ×X2.

(b) Let (Xi, τi), i ∈ N and (Yi, τ
′
i), i ∈ N be topological spaces. Show that if for each i ∈ N

the mapping Φi : Xi → 2Yi is an usco mapping then the mapping Φ :
∏

i∈N Xi →
2
∏

i∈N Yi defined by,

Φ(x1, x2, . . . , xn, . . .) :=
∏

i∈NΦi(xi) for all (x1, x2, . . . , xn, . . .) ∈
∏

i∈N Xi

is an usco on
∏

i∈N Xi.

(c) Let Φ : X → 2Y be an usco mapping acting from a topological space (X, τ) into
subsets of a topological space (Y, τ ′) and let f : Y → Z be a continuous mapping from
Y into a topological space (Z, τ ′′). Then the mapping (f ◦ Φ) : X → 2Z defined by,

(f ◦ Φ)(x) := {f(y) ∈ Z : y ∈ Φ(x)} all x ∈ X

is an usco on X.

Exercise 1.2.6. We can now use Exercise 1.2.5 to deduce some facts concerning K-
countably determined spaces.

(a) Show that if (X, τ) and (Y, τ ′) are K countably determined topological spaces then so
is (X × Y, τ × τ ′). Hint: use Exercise 1.2.5 part (a).

(b) Show that if (Xi, τi), i ∈ N are K-countably determined topological spaces then so is∏
i∈N Xi, endowed with the product topology. Hint: use Exercise 1.2.5 part (b).

(c) Show that if (X, τ) is a K-countably determined topological space and f : (X, τ) →
(Y, τ ′) is a continuous function into a completely regular space (Y, τ ′) then f(X),
with the relative topology, is a K-countably determined space. Hint: use Exercise
1.2.5 part (c).
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(d) Let (X, τ) be a completely regular topological space. If (Xi : i ∈ N) are K-countably
determined subspaces of X then so is

⋃
i∈N Xi. Hint: note that (i) N ×

∏
i∈N Xi,

endowed with the product topology, is a K-countably determined space; (ii) if f :
N×

∏
i∈N Xi → X defined by, f(m, (xi)

∞
i=1) := xm for all (m, (xi)

∞
i=1) ∈ N×

∏
i∈NXi

then f is a continuous function; (iii) f(N×
∏

i∈NXi) =
⋃

i∈N Xi.

We can now establish a very useful fact concerning K-countably determined subspaces of
C(Y )-spaces, in the case when (Y, τ ′) is a compact Hausdorff space.

Proposition 1.2.7. Let (K, τ ′) be a compact Hausdorff topological space and let A be a
K-countably determined subspace of Cp(Y ). Then L(A) - the smallest sub-lattice in C(Y ),
containing A, is also a K-countable determined topological space.

Proof. Let us start by recalling that the functions M : Cp(Y ) × Cp(Y ) → Cp(Y ) and
m : Cp(Y ) × Cp(Y ) → Cp(Y ) defined by, M(f, g) := f ∨ g and m(f, g) := f ∧ g for all
(f, g) ∈ C(Y )× C(Y ), are continuous, see Exercise 1.6.17.

Let L be an arbitrary sub-lattice of C(Y ) containing the set A. We will inductively define
an increasing sequence (An : n ∈ N) of K-countably determined subspaces of Cp(Y ).

Base Step. Let A0 := A.

Next, suppose that A0, A1, . . . , An have been defined so that:

(i) Aj+1 := M(Aj × Aj) if 0 ≤ j < n and j is even;

(ii) Aj+1 := m(Aj × Aj) if 0 ≤ j < n and j is odd;

(iii) each Aj, with 0 ≤ j ≤ n, is K-countably determined;

(iv) Aj ⊆ Aj+1 ⊆ L for all 0 ≤ j < n.

Step n + 1. If n is even then define An+1 := M(An × An). If n is odd then define
An+1 := m(An × An). By Exercise 1.2.6 parts (a) and (c) we have, in both cases, that
An+1 is K-countably determined. Furthermore, since M(f, f) = f and m(f, f) = f for all
f ∈ C(Y ) we have that An ⊆ An+1. Finally, An+1 ⊆ L since An ⊆ L, by assumption, and
L is a sub-lattice.

This completes the induction. Let A∞ :=
⋃

n∈N An. It follows from Properties (i), (ii) and
(iv) that A∞ is a sub-lattice of L. Since L was an arbitrary sub-lattice containing the set
A we must have that A∞ is the smallest sub-lattice in C(Y ), containing A. To see that A∞
is K-countably determined we just appeal to Property (iii) and Exercise 1.2.6 part (d).

Corollary 1.2.8. Let (Y, τ ′) be a compact Hausdorff space and let f : X → Cp(Y ) be a
continuous function acting from a Baire space (X, τ). If (X, τ) has a dense K-countably
determined subset then f is norm continuous at the points of a dense and Gδ subset of
(X, τ).

Proof. Let K be a dense, K-countably determined subspace of (X, τ). Then, by Exercise
1.2.6 part (c) f(K) is a K-countably determined subspace of Cp(Y ). Therefore, by Propo-
sition 1.2.7, L(f(K)) - the smallest sub-lattice in C(Y ) that contains f(K), is K-countably
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determined. Furthermore,

f(X) = f(K
τ
) ⊆ f(K)

τp(Y )
since f is τp(Y )-continuous

⊆ L(f(K))
τp(Y )

= L(f(K))
∥·∥∞

by, Exercise 1.6.19.

Thus, for each 0 < ε, f(X) ⊆ L(f(K)) + εBC(Y ). The result now directly follows from
Theorem 1.2.3.

By appealing to game theory we can improve upon Corollary 1.2.8.

Let P be a nonempty collection of subsets of a topological space (X, τ). We shall use this
collection of sets to generalise the Choquet game played on (X, τ). As before the game
involves two players which we will call α and β. The game is played on the topological
space (X, τ) and is called the GP-game played on (X, τ).

As with the Choquet game we need to describe how to “play” the GP-game. The player
labeled β starts the game. For his/her first move the player β must select nonempty open
subset B1 of X. Next, α selects a pair (A1, K1) consisting of a nonempty open subset A1

of B1 and a set K1 ∈ P .

In the second round, β goes first again and selects a nonempty open subset B2 ⊆ A1.
Player α then gets to respond by choosing a pair (A2, K2) consisting of a nonempty open
subset A2 of B2 and a subset K2 ∈ P .

In general, after α and β have played the first n-rounds of the GP-game, β will have selected
nonempty open subsets B1, B2, . . . , Bn and α will have selected pairs

(A1, K1), (A2, K2), . . . , (An, Kn)

consisting of nonempty open sets Aj of Bj and subsets Kj ∈ P such that

An ⊆ Bn ⊆ An−1 ⊆ Bn−1 ⊆ · · · ⊆ A2 ⊆ B2 ⊆ A1 ⊆ B1.

At the start of the (n+1)-round of the game, β goes first and selects nonempty open subset
Bn+1 of An. Then player α gets to respond to this move by selecting a pair (An+1, Kn+1)
consisting of a nonempty open subset An+1 of Bn+1 and Kn+1 ∈ P .

Continuing this procedure indefinitely (i.e., continuing on forever) the players α and β
produce an infinite sequence

(
((Ak, Kk), Bk) : k ∈ N

)
called a play of the GP-game.

A partial play
(
((Ak, Kk), Bk) : 1 ≤ k ≤ n

)
of the GP-game consists of the first n-moves of

a play of the GP-game.

We shall declare that α wins a play
(
((Ak, Kk), Bk) : k ∈ N

)
of the GP-game if:

(
⋂

n∈NAn) ∩
⋃

n∈NKn

τ
̸= ∅.

If α does not win a play of the GP-game then we declare that β wins that play of the
GP-game. As with the Choquet game we need to define the notion of a strategy.

By a strategy t for the player β we mean a ‘rule’ that specifies each move of the player β in
every possible situation. More precisely, a strategy t := (tn : n ∈ N) for β is an inductively
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defined sequence of τ -valued functions. The domain of t1 is the sequence of length zero,
denoted by ∅. That is, Dom(t1) = {∅} and t1(∅) ∈ (τ \ {∅}). If t1, t2, . . . , tk have been
defined then the domain of tk+1 is:

{((A1, K1), . . . , (Ak, Kk)) ∈ (τ × P)k : ((A1, K1), . . . , (Ak−1, Kk−1)) ∈ Dom(tk) and

∅ ̸= Ak ⊆ tk(A1, . . . , Ak−1)}.

For each ((A1, K1), . . . , (Ak, Kk)) ∈ Dom(tk+1), tk+1((A1, K1), . . . , (Ak, Kk)) := Bk+1 ∈ τ
is defined so that ∅ ̸= Bk+1 ⊆ Ak.

A partial t-play is a finite sequence ((A1, K1), . . . , (An, Kn)) such that

((A1, K1), . . . , (An, Kn)) ∈ Dom(tn+1).

A t-play is an infinite sequence ((An, Kn) : n ∈ N) such that ((A1, K1), . . . , (An, Kn)) is a
partial t-play for each n ∈ N, .
A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if each play of the
form:

(
((An, Kn), tn((A1, K1), . . . , (An−1, Kn−1))) : n ∈ N

)
is won by β.

Similarly we can define a strategy for α. By a strategy s for the player α we mean a
‘rule’ that specifies each move of the player α in every possible situation. More precisely,
a strategy s := (sn : n ∈ N) for α is an inductively defined sequence of τ × P-valued
functions. The domain of s1 is

{
(B) : B ∈ τ \{∅}

}
and for each B1 ∈ Dom(s1), s1(B1) :=

(A1, K1) ∈ τ × P is defined so that ∅ ̸= A1 ⊆ B1.

If s1, s2, . . . , sk have been defined then the domain of sk+1 is:

{(B1, . . . , Bk+1) ∈ τ k+1 : (B1, . . . , Bk) ∈ Dom(sk) and ∅ ̸= Bk+1 ⊆ Ak

where (Ak, Kk) := sk(B1, . . . , Bk)}.

For each (B1, B2, . . . , Bk+1) ∈ Dom(sk+1), sk+1(B1, B2, . . . , Bk+1) := (Ak+1, Kk+1) ∈ τ ×P
is defined so that ∅ ̸= Ak+1 ⊆ Bk+1.

A partial s-play is a finite sequence (B1, B2, . . . , Bn) such that (B1, B2, . . . , Bn) ∈ Dom(sn).
An s-play is an infinite sequence (Bn : n ∈ N) such that for each n ∈ N, (B1, B2, . . . , Bn)
is a partial s-play.

A strategy s := (sn : n ∈ N) for the player α is called a winning strategy if each play of the
form:

(
(sn(B1, . . . , Bn), Bn) : n ∈ N

)
is won by α.

The following result, while not surprising, serves to demonstrate the structure of game
theoretic proofs.

Proposition 1.2.9. Let P be a nonempty collection of subsets of a (X, τ) be a topological
space. If (X, τ) is β unfavourable in the GP-game played on (X, τ) (i.e., the player β does
not possess a winning strategy in the GP-game), then (X, τ) is a Baire space.

Proof. We shall consider the converse statement. To that end, let us suppose that (X, τ)
is not a Baire space. Then, by Theorem 1.1.5, the player β has a winning strategy t :=
(tn : n ∈ N) in the Ch(X)-game, i.e.,

⋂
n∈N An = ∅ for every t-play (An : n ∈ N). We shall
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use the strategy t to inductively construct a winning strategy t′ := (t′n : n ∈ N) for the
player β in the GP-game played on (X, τ). This will then show that (X, τ) is β favourable
in the GP-game (i.e., not β unfavourable).

Step 1. Let t′1(∅) := t1(∅).
Now, let n ∈ N and suppose that t′j have been defined for every partial t′-play

((A1, K1), . . . , (Aj−1, Kj−1))

of length (j − 1) with 1 ≤ j ≤ n so that: (A1, . . . , Aj−1) is a partial t-play and

t′j((A1, K1), . . . , (Aj−1, Kj−1)) := tj(A1, . . . , Aj−1).

Step n+ 1. Let ((A1, K1), . . . , (An, Kn)) be a partial t′-play of length n. Then,

An ⊆ t′n((A1, K1), . . . , (An−1, Kn−1)) = tn(A1, . . . , An−1) ⊆ An−1.

Since, by assuption (A1, . . . , An−1) is a partial t-play and An ⊆ tn(A1, . . . , An−1) we have
that (A1, . . . , An) is a partial t-play of length n. In particular, tn+1(A1, . . . , An) is defined.
Let t′n+1((A1, K1), . . . , (An, Kn)) := tn+1(A1, . . . , An). This completes the definition of
t′ := (t′n : n ∈ N).
We now show that t′ is indeed a winning strategy for the player β in the GP-game. To
this end, let ((An, Kn) : n ∈ N) be an arbitrary t′-play. By construction (An : n ∈ N) is a
t-play and so

⋂
n∈N An = ∅. Thus, in particular, (

⋂
n∈NAn) ∩

⋃
n∈NKn

τ
= ∅. This shows

that t′ is a winning strategy for the player β in the GP-game played on (X, τ).

Theorem 1.2.10 ([44]). Let (Y, τ ′) be a compact Hausdorff space and let f : X → Cp(Y )
be a continuous function acting from a topological space (X, τ). If (X, τ) is β-unfavourable
in the Gcd-game played on (X, τ), then f is norm continuous at the points of a dense and
Gδ subset of (X, τ).

Proof. We shall suppose, in order to obtain a contradiction, that

C(f) := {x ∈ X : f is norm continuous at x}

is not residual in (X, τ). Then, by Theorem 1.2.3, there must exist an 0 < ε and a
nonempty open subset U of X such that, for every nonempty open subset V of U and
every K-countably determined subset A of Cp(Y ), there exists a point x ∈ V , such that
f(x) ̸∈ A+ εBC(Y ).

We will use this assumption to create a (necessarily non-winning) strategy t := (tn : n ∈ N)
for the player β in the Gcd-game played on (X, τ).

Base Step. Set A0 := U , K0 := {t} for some t ∈ A0 and let L(∅) denote the lattice
generated by f(K0). (In this case L(∅) := {f(t)}.) By assumption f(A0) ̸⊆ L(∅)+ εBC(Y ).
Therefore, there exists a point x ∈ A0 such that f(x) ̸∈ L(∅) + εBC(Y ). Now, because
L(∅)+ εBC(Y ) is τp(Y )-closed there exists an open neighbourhood V of x, contained in A0,
such that f(V ) ∩ [L(∅) + εBC(Y )] = ∅. Then we define t1(∅) := V .

Now, suppose that the strategies tj have been defined for each partial t-play

((A1, K1), . . . , (Aj−1, Kj−1))

of length (j − 1) with 1 ≤ j ≤ n so that:
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(Aj) tj((A1, K1), . . . , (Aj−1, Kj−1)) is a nonempty open subset of Aj−1;

(Bj) f(tj((A1, K1), . . . , (Aj−1, Kj−1)))∩ [L((A1, K1), . . . , (Aj−1, Kj−1))+(ε/2)BC(Y )] = ∅,
where L((A1, K1), . . . , (Aj−1, Kj−1)) denotes the lattice generated by,

f(K0) ∪ f(K1) ∪ · · · ∪ f(Kj−1).

Step n+ 1. Let ((A1, K1), . . . , (An, Kn)) be a partial t-play of length n. Then

∅ ̸= An ⊆ tn((A1, K1), . . . , (An−1, Kn−1)) ⊆ U

andKn is a K-countably determined subset of (X, τ). Let L((A1, K1), . . . , (An, Kn)) denote
the lattice generated by, f(K0) ∪ f(K1) · · · ∪ f(Kn). By Exercise 1.2.6 part (a), part (c)
and Proposition 1.2.7 we see that L((A1, K1), . . . , (An, Kn)) is K-countably determined.
Hence, by assumption, f(An) ̸⊆ [L((A1, K1), . . . , (An, Kn)) + εBC(Y )]. Therefore, there
exists a point x ∈ An such that f(x) ̸∈ [L((A1, K1), . . . , (An, Kn)) + εBC(Y )]. Thus, by

Lemma ??, f(x) ̸∈ [L((A1, K1), . . . , (An, Kn)) + (ε/2)BC(Y )]
τp(Y )

. It now follows from the
τp(Y )-continuity of f that there exists an open neighbourhood V of x, contained in An

such that

f(V ) ∩ [L((A1, K1), . . . , (An, Kn)) + (ε/2)BC(Y )]
τp(Y )

= ∅.

We now define tn+1((A1, K1), . . . , (An, Kn)) := V . This then completes the definition of
t := (tn : n ∈ N).

Since (X, τ) is β-unfavourable in the Gcd-game, t is not a winning strategy. Hence there

exists a t-play ((An, Kn) : n ∈ N) where α wins, i.e., (
⋂

n∈N An) ∩
⋃

n∈N Kn

τ
̸= ∅. Let

t ∈ (
⋂

n∈N An) ∩
⋃

n∈N Kn

τ
. Then,

f(t) ∈ f
(⋃

n∈NKn

τ
)

⊆ f(
⋃

n∈NKn)
τp(Y )

since, f is τp(Y )-continuous

=
⋃

n∈Nf(Kn)
τp(Y )

⊆
⋃

n∈NL((A1, K1), . . . , (An, Kn))
τp(Y )

.

Since L((A1, K1), . . . , (An, Kn)) ⊆ L((A1, K1), . . . , (An+1, Kn+1)) for all n ∈ N,⋃
n∈NL((A1, K1), . . . , (An, Kn))

is a sub-lattice of C(Y ). Thus, by Exercise 1.6.19, f(t) ∈
⋃

n∈NL((A1, K1), . . . , (An, Kn))
∥·∥∞

.
In particular, there exists an l ∈ L((A1, K1), . . . , (Am, Km)) for some m ∈ N, such that
∥f(t)− l∥∞ < ε/2. However, this contradicts Property (Bm+1) since

t ∈ tm+1((A1, K1), . . . , (Am, Km)) and ∥f(t)− l∥∞ < ε/2.

Thus, it must be the case that f is norm continuous at the points of a dense and Gδ subset
of (X, τ).

17



When Theorem 1.2.10 came out it generalised several earlier results which we now present.

In the following Corollary the Gp-game will denote the GP-game when P is the set of all
singleton subsets of (X, τ); the GK-game will denote the GP-game when P is the set of all
compact subsets of (X, τ) and the Gka-game will denote the GP-game when P is the set
of all K-analytic subsets of (X, τ). Recall that s subset K of a topological space (X, τ) is
K-analytic if it is the usco image of NN, endowed with the Baire metric, [48].

Corollary 1.2.11. Let (Y, τ ′) be a compact Hausdorff space and let f : X → Cp(Y ) be a
continuous function acting from a Baire space (X, τ).

(i) If (X, τ) is β-unfavourable in the Gp-game played on (X, τ), [45] or

(ii) (X, τ) is β-unfavourable in the GK-game played on (X, τ), [49] or

(iii) (X, τ) is β-unfavourable in the Gka-game played on (X, τ), [9]

then f is norm continuous at the points of a dense and Gδ subset of (X, τ).

One of the short comings of Theorem 1.2.10 is that it is not particularly easy to directly
show that a given topological space is β-unfavourable in the Gcd-game played on (X, τ).
One way to over come this problem is to consider Baire spaces where the player α has a
strategy that is “almost” a winning strategy. In this way one can show, in a more natural
way, that many Baire spaces are actually β-unfavourable in the Gcd-game,

Let P be a nonempty collection of subsets of a topological space (X, τ). We shall say
that a topological space (X, τ) is conditionally α-favourable in the GP-game if the player
α possesses a strategy s := (sn : n ∈ N) such that for every s-play (Bn : n ∈ N) either,⋂

n∈N Bn = ∅ or else, (
⋂

n∈NBn)∩
⋃

n∈N Kn ̸= ∅, where (An, Kn) := sn(B1, . . . , Bn) for all
n ∈ N.

Theorem 1.2.12. Let P be a nonempty collection of subsets of a Baire space (X, τ). If
(X, τ) is conditionally α-favourable in the GP-game then, (X, τ) is β-unfavourable in the
GP-game played on (X, τ).

Proof. We shall start by introducing some notation. Let π : 2X × 2X → 2X be defined by,
π(A,B) := A for all (A,B) ∈ 2X × 2X . Let t := (tn : n ∈ N) be an arbitrary strategy
for the player β in the Gcd-game played on (X, τ). Our goal is to construct a t-play where
player α wins.

Let s := (sn : n ∈ N) be a strategy for the player α in the Gcd-game played on (X, τ) such
that for every s-play (Bn : n ∈ N) either,

⋂
n∈N Bn = ∅ or else

⋃
n∈N Kn ∩

⋂
n∈N Bn ̸= ∅,

where (An, Kn) := sn(B1, . . . , Bn) for all n ∈ N.

We shall now consider the Ch(X)-game. Specifically, we shall inductively define a strategy
t′ := (t′n : n ∈ N) for the player β in the Ch(X)-game.

Step 1. Define t′1(∅) := π(s1(t1(∅))).

Now, let n ∈ N and suppose that t′j have been defined for every partial t′-play (A1, . . . , Aj−1)
of length (j − 1) with 1 ≤ j ≤ n so that:
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(i) (A1, . . . , Aj−1) is a partial t-play and

(ii) (t1(∅), . . . , tj(A1, . . . , Aj−1)) is a partial s-play and

(iii) t′j(A1, . . . , Aj−1) := π(sj(t1(∅), . . . , tj(A1, . . . , Aj−1))).

Step n+ 1. Let (A1, . . . , An) be a partial t′-play of length n. Then

An ⊆ t′n(A1, . . . , An−1) = π(sn(t1(∅), . . . , tn(A1, . . . , An−1))) ⊆ tn(A1, . . . , An−1).

Since, by assumption, (A1, . . . , An−1) is a partial t-play and An ⊆ tn(A1, . . . , An−1) we have
that (A1, . . . , An) be a partial t-play. Therefore, tn+1(A1, . . . , An) is defined. Moreover,

tn+1(A1, . . . , An) ⊆ An ⊆ π(sn(t1(∅), . . . , tn(A1, . . . , An−1))). (∗)

Since, by assumption, (t1(∅), . . . , tn(A1, . . . , An−1)) is a partial s-play and by (∗) we have
that (t1(∅), . . . , tn+1(A1, . . . , An)) is a partial s-play. We then define

t′n+1(A1, . . . , An) := π(sn+1(t1(∅), . . . , tn+1(A1, . . . , An))).

This completes the definition of t′ := (t′n : n ∈ N). Since (X, τ) is a Baire space we
have, via Theorem 1.1.5, that there is a t′-play (An : n ∈ N) of the Ch(X)-game where
α wins, i.e.,

⋂
n∈N An ̸= ∅. Since, by the construction of the strategy t′, we have that

(tn(A1, . . . , An−1) : n ∈ N) is an s-play, we must have that
⋃

n∈N Kn ∩
⋂

n∈NAn ̸= ∅,
where (Bn, Kn) := sn(A1, . . . , An) for all n ∈ N, as

⋂
n∈N An ̸= ∅. Thus, again by the

construction of the strategy t′, (An : n ∈ N) is a t-play. Hence, (An : n ∈ N) is a t-play
where α wins, in the GP-game played on (X, τ). This completes the proof.

The previous theorem is useful because there is a large class of spaces that are easily shown
to be conditionally α-favourable in the Gcd-game.

Exercise 1.2.13. Let (X, τ) be a topological space. Show that (X, τ) is conditionally α-
favourable in the Gcd-game played on (X, τ) if:

(i) (X, τ) is pointwise countably complete (which includes all metric spaces, p-spaces and
all Čech-complete spaces);

(ii) (X, τ) is fragmented by a metric whose topology on X is at least as strong as τ ;

(iii) (X, τ) contains, as a dense subset, a K-countably determined subspace (which includes
all separable spaces).

For the class of completely regular conditionally α-favourable spaces we have the following
characterisation of Namioka spaces.

Theorem 1.2.14. Let (X, τ) be a completely regular topological space that is conditionally
α-favourable in the Gcd-game played on (X, τ). Then (X, τ) is a Namioka space if, and
only if, (X, τ) is a Baire space.
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Proof. Suppose that (X, τ) is a completely regular Namioka space. Then, by Theorem ??,
(X, τ) is a Baire space. Conversely, if (X, τ) is conditionally α-favourable in the Gcd-game
and a Baire space then, by Theorem 1.2.12, (X, τ) is β-unfavourable in the GP-game played
on (X, τ). Therefore, by Theorem 1.2.10, (X, τ) is a Namioka space.

To further increase the significance of Theorem 1.2.10 we will show that, in addition to
the earlier examples of conditionally α-favourable, in the Gcd-game, spaces there is another
large class of topological spaces that are also conditionally α-favourable, in the Gcd-game.

Let (X, τ) be a Hausdorff topological space and let Y ⊆ X. A family α of subsets of X is
said to separate Y from X \ Y if, for every pair of points y ∈ Y and x ∈ X \ Y , there is
some H ∈ α which contains one of the points (no matter which one) and does not contain
the other.

Since the space (X, τ) is Hausdorff the family of all open sets in X certainly separates Y
from X \ Y , whatever Y ⊆ X. Among all families α of open sets which separate Y from
X \ Y there is one with least cardinality. It is this least cardinal number which we denote
by sX(Y ) and call the separation index of Y in X or, simply, separation of Y in X, [32, p.
205]. For example, if the set Y is open (or closed) in X, then sX(Y ) = 1 because the
set Y (or its complement) separates Y from X \ Y . More generally, since every family
α that separates Y from X \ Y also separates X \ Y from Y = X \ (X \ Y ), we have
sX(Y ) = sX(X \ Y ).

If a family α of open sets separates Y from X \ Y , then so does also the family of closed
sets {X \ H : H ∈ α}. Therefore, in the definition of sX(Y ) one could take families of
closed sets or even “mixed” families of sets which are either closed or open.

There is a close relation between sX(Y ) and sY (Y ), the separation index of Y in Y . Clearly,
sY (Y ) ≤ sX(Y ). On the other hand, the open set X \ Y can be added to any family α
of closed subsets of Y that separates Y from Y \ Y . The new family α′ = α ∪ {X \ Y }
separates Y from X \ Y . Hence sX(Y ) ≤ sY (Y ) + 1. In particular, if sY (Y ) is infinite,
then sX(Y ) = sY (Y ). Therefore, the important case is when X = Y . As will become clear
later in this section, every completely regular space (Y, τ ′) has one and the same separation
index in every compactification of Y . This is why we will write s(Y ) instead of sX(Y ) and
will use the term separation of Y instead of separation of Y in X.

Given an infinite cardinal number s we denote by Θ(X, s) the family of all subsets Y ⊆ X
for which sX(Y ) ≤ s. Θ(X, s) contains all open subsets and all closed subsets of X. In the
special case when s = ℵ0, we say that the members of Θ(X, s) have countable separation
in X. It is easy to see that if s is an infinite cardinal number then the family Θ(X, s) is
closed under taking countable unions, countable intersections and the Souslin operation.
In particular, for every infinite cardinal s the family Θ(X, s) contains all Borel subsets of
X and all other subsets that can be obtained from the Borel sets by means of the Souslin
operation. Therefore, all such sets have countable separation index in X. Other examples
of subsets with countable separation are given by the following exercise.

Exercise 1.2.15. Let (Y, τ) be the continuous image of some separable metric space (Z, d).
Then sX(Y ) is at most countable for every regular Hausdorff space (X, τ ′) containing Y .
Hint: Let (Ui : i ∈ N) be a countable topological base for (Z, d) and let h : Z → Y be a
continuous mapping onto Y . Verify that the family (h(Ui) : i ∈ N) separates Y from X \Y .
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We now present one of the fundamental properties of the separation index.

Theorem 1.2.16 ( [32]). Let (X1, τ) and (Y1, τ
′) be compact Hausdorff spaces and let

h : X1 → Y1 a continuous mapping from X1 onto Y1. Suppose X and Y are respectively,
subsets of X1 and Y1, such that Y = f(X) and X = h−1(Y ). Then either, sX1(X) and
sY1(Y ) are both finite, or else, both infinite. In the latter case, sX1(X) = sY1(Y ).

Proof. Let α be a family of open subsets of Y1 which separates Y from Y1 \ Y . Consider
the family α′ = {H ′ ∈ 2X1 : H ′ = h−1(H) for some H ∈ α} which consists of open subsets
of X1. It is clear that α

′ separates X from X1 \X. This shows that sX1(X) ≤ sY1(Y ).

We will now prove that the inverse inequality also holds. Suppose α is a family of closed
subsets of X1 that separates X from X1 \ X. Without loss of generality we may assume
that the family α is closed under taking finite intersections. If this is not the case, then we
can add to α all such intersections. If α was an infinite family, the new family will have the
same infinite cardinality. If α was finite, the new family will be finite again. We will prove
now that h(α) := {h(F ) : F ∈ α} (a family consisting of closed subsets of Y1) separates
Y from Y1 \ Y . Indeed, let a ∈ Y , b ∈ Y1 \ Y and put A := h−1(a), B := h−1(b). Let us
assume, for the purpose of obtaining a contradiction, that a and b cannot be separated by
sets of the type h(F ), where F ∈ α. Then the families αA := {F ∈ α : F ∩ A ̸= ∅} and
αB := {F ∈ α : F ∩ B ̸= ∅} coincide. Indeed, if there is some F ∈ αA \ αB, then h(F )
would contain a but not b and we would have the separation. Similarly if there is some
F ∈ αB \ αA, then h(F ) would contain b but not a and we would have the separation in
this case too.

Put α∗ := αA = αB. Note that α∗ is a nonempty family. Indeed, take some u ∈ A ⊆ X
and v ∈ B ⊆ X1 \ X. Then there exists an F ∈ α which contains one of the points u, v
but not the other. If u ∈ F then F ∈ αA = α∗ and if v ∈ F then F ∈ αB = α∗. So in
either case, F ∈ α∗.

Denote by ∆ the set of all subfamilies δ ⊆ α∗ for which
⋂
{F : F ∈ δ} ∩ A ̸= ∅. For

every finite δ
′ ⊆ δ ∈ ∆ the set

⋂
{F : F ∈ δ

′} belongs to α (as α is closed under finite
intersections) and intersects A. Therefore,

⋂
{F : F ∈ δ

′} is a member of αA. Since
αA = αB it follows that

⋂
{F : F ∈ δ

′} ∩ B ̸= ∅. Since B is compact, this implies that⋂
{F : F ∈ δ} ∩B ̸= ∅.

Next, note that ∆ ̸= ∅. To see this, simply take F ∈ α∗ ̸= ∅ and note that {F} ∈ ∆.

Order ∆ by set inclusion. Using the compactness of the set A once again we see that the
union of any increasing chain of elements of ∆ is again in ∆. Thus, by Zorn’s lemma, there
exists a family δmax ⊆ α∗, which is a maximal element of (∆,⊆).

There exist points u0 ∈
⋂
{F : F ∈ δmax}∩A ⊆ X and v0 ∈

⋂
{F : F ∈ δmax}∩B ⊆ X1\X.

Since α separates the points u0 and v0, there is some F0 ∈ α which contains just one of
these points. We consider the two cases.

If u0 ∈ F0 then F0 ∈ αA = α∗ and the family {F0} ∪ δmax belongs to ∆. This implies,
because of the maximality of δmax, that F0 ∈ δmax. Therefore, v0 ∈ F0 which is the desired
contradiction.
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If v0 ∈ F0 then F0 ∈ αB = α∗ and the family {F0} ∪ δmax belongs to ∆. To see this last
assertion consider the following. For every finite δ

′ ⊆ δmax the set
⋂
{F : F ∈ δ

′} ∩ F0

belongs to α (as α is closed under finite intersections) and intersects B, indeed v0 ∈
⋂
{F :

F ∈ δ
′} ∩ F0 ∩ B. Therefore,

⋂
{F : F ∈ δ

′} ∩ F0 ∈ αB. Since αB = αA,
⋂
{F : F ∈

δ
′} ∩ F0 ∩ A ̸= ∅. As A is compact, this implies that

⋂
{F : F ∈ δmax} ∩ F0 ∩ A ̸= ∅.

Thus, {F0} ∪ δmax ∈ ∆.

However, because of the maximality of δmax, we must have that F0 ∈ δmax. Therefore,
u0 ∈ F0, which is the desired contradiction.

Since, in both cases, we obtained our desired contradiction, we have proven the claim.

Theorem 1.2.17 ([32]). Let (X, τ) be a completely regular space. If X has finite a sep-
aration index in some compact Hausdorff space, then it has finite separation index in any
compact Hausdorff space. If X has infinite separation index in some compact Hausdoff
space, then it has the same separation index in any compact Hausdorff space. In partic-
ular, if (βX, τβ) is the Stone-Čech compactification of (X, τ), then sbX(X) = sβX(X) for
every Hausdorff compactification (bX, τb) of (X, τ).

Proof. We appeal to Theorem 1.2.16 with X = Y , X1 := βX and Y1 := bY , for some
compactification of Y and h is the unique continuous extension of the identity mapping
i : X → Y to a mapping from βX onto bY ,

The above theorem allows us to use the terms “separation index of X” or simply, “separa-
tion of X” without mentioning the larger compact Hausdorff space where the separation
index of X is measured. Correspondingly, we will denote this index simply by s(X).

The next assertion shows further that the separation index is preserved under perfect
mappings, i.e., continuous surjective mappings that send closed sets to closed sets and
have the property that every point in their codomain has a compact preimage.

Corollary 1.2.18. Let h : X → Y be a perfect mapping from a completely regular space
(X, τ) onto a completely regular space (Y, τ ′). Then s(X) and s(Y ) are simultaneously
finite or infinite. In the latter case (i.e., both infinite) we have that s(X) = s(Y ).

Proof. Let h : X → Y be a perfect mapping and let h∗ : βX → βY be the unique
continuous extension of h to βX. Then: (i) h∗ is continuous; (ii) h∗ is surjective and (iii)
h∗(X) = h(X) = Y . So, to apply Theorem 1.2.16, we need only show that (h∗)−1(Y ) = X.
In fact, because X = h−1(Y ) ⊆ (h∗)−1(Y ) we need only show that (h∗)−1(Y ) ⊆ X.
Therefore, in order to obtain a contradiction, let us assume that (h∗)−1(Y ) ̸⊆ X. Then
there exists a point x ∈ (h∗)−1(Y ) \X.

Let y := h∗(x) ∈ Y . Now, h−1(y) is a nonempty compact subset of X. Since x ̸∈ h−1(y) ⊆
X there exist disjoint open subsets W and V of βX such that h−1(y) ⊆ W and x ∈ V .
Since h is a perfect mapping there exists an open neighbourhood U of y in βY such that
h−1(U ∩Y ) ⊆ W ∩X ⊆ W . Now, since h∗ is continuous and h∗(x) = y ∈ U there exists an
open neighbourhood V ′ of x, contained in V , such that h∗(V ′) ⊆ U . Let x′ ∈ V ′ ∩X ̸= ∅.
Then h(x′) = h∗(x′) ∈ U and so x′ ∈ h−1(U ∩ Y ) ⊆ W . However, this contradicts the fact
that x′ ∈ V ′ ⊆ V and V ∩W = ∅. Hence (h∗)−1(Y ) ⊆ X. The result now follows from
Theorem 1.2.16.
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Theorem 1.2.19. Let (X, τ) be a completely regular topological space. If (X, τ) has a
countable separation index then (X, τ) is conditionally α-favourable in the Gp-game (and
hence in the Gcd-game) played on (X, τ).

Proof. Let (On : n ∈ N) be a countable family of open subsets of (βX, τβ) that separate X
from βX \X and let π1 : 2

X × 2X → 2X and π2 : 2
X × 2X → 2X be defined by,

π1(A,B) := A and π2(A,B) := B for all (A,B) ∈ 2X × 2X .

We shall inductively define a strategy s := (sn : n ∈ N) for the player α in the Gp-game
played on (X, τ).

Step 1. Suppose that B1 is a nonempty open subset of (X, τ), i.e., we may think of B1

as the first move of the player β. If B1 ∩ O1 = ∅ then choose x ∈ B1 and an open
neighbourhood U of x such that x ∈ U ⊆ U

τ ⊆ B1. Then define s1(B1) := (U, {x}). On
the other hand, if B1 ∩O1 = ∅ then choose x ∈ B1 ∩O1 and an open neighbourhood U of
x such that x ∈ U ⊆ U

τβ ⊆ O1 and U
τ ⊆ B1. Then define s1(B1) := (U, {x}). Note that

in both cases: π1(s1(B1))
τ
⊆ B1 and either π1(s1(B1))

τβ ⊆ O1 or π1(s1(B1))
τβ ∩O1 = ∅.

Now, let n ∈ N and suppose that sj have been defined for every partial s-play (B1, . . . , Bj)
of length j with 1 ≤ j ≤ n so that:

(i) π1(sj(B1, . . . , Bj))
τ
⊆ Bj;

(ii) either, π1(sj(B1, . . . , Bj))
τβ ⊆ Oj or π1(sj(B1, . . . , Bj))

τβ ∩Oj = ∅.

Step n + 1. Let (B1, . . . , Bn+1) be a partial s-play of length n + 1. If Bn+1 ∩ On+1 = ∅
then choose x ∈ Bn+1 and an open neighbourhood U of x such that x ∈ U ⊆ U

τ ⊆ Bn+1.
Then define sn+1(B1, . . . , Bn+1) := (U, {x}). On the other hand, if Bn+1 ∩ On+1 = ∅
then choose x ∈ Bn+1 ∩ On+1 and an open neighbourhood U of x such that x ∈ U ⊆
U

τβ ⊆ On+1 and U
τ ⊆ Bn+1. Then define sn+1(B1, . . . Bn+1) := (U, {x}). Note that in

both cases: π1(sn+1(B1, . . . , Bn+1))
τ
⊆ Bn+1 and either π1(sn+1(B1, . . . , Bn+1))

τβ ⊆ On+1

or π1(sn+1(B1, . . . , Bn+1))
τβ ∩On+1 = ∅.

This completes the definition of s := (sn : n ∈ N). So it remains to show that s is a
conditionally winning strategy for the player α in the Gp-game played on (X, τ). To this
end, let (Bn : n ∈ N) be an arbitrary s-play with

⋂
n∈N Bn ̸= ∅.

Let x∞ ∈ βX be a cluster-point of the sequence (π2(sn(B1, . . . , Bn)) : n ∈ N). Since
π2(sk(B1, . . . , Bk)) ∈ Bk ⊆ Bn for all n ≤ k we have that x∞ ∈

⋂
n∈N Bn

τβ
. Further, since

the points of C :=
⋂

n∈N Bn
τβ

are not distinguished by the sets (On : n ∈ N) either C ⊆ X
or C ⊆ βX \ X. However, as ∅ ̸=

⋂
n∈NBn ⊆ C ∩ X, C ⊆ X. In particular, x∞ ∈ X.

Therefore, x∞ is a cluster-point of the sequence (π2(sn(B1, . . . , Bn)) : n ∈ N) in (X, τ).
Thus,

x∞ ∈
⋂

n∈Nπ2(sn(B1, . . . , Bn))
τ
⊆

⋂
n∈NBn

τ
=

⋂
n∈NBn.

This shows that s is a conditionally winning strategy for the player α in the Gp-game played
on (X, τ).

Also, later (in the comments section) mention the generalisation V. V. Mykhaylyuk in
BAMS 2006. Mention results of Pol and Chaber (and later Moors and Lin). Also result of
A. Bouziad and A. Bareche.
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1.3 co-Namioka spaces defined by games

We shall introduce a new game that is somewhat different to the Choquet and GP-game.

As with the earlier games this game involves two players which we will call α and β.

Given a topological space (X, τ) and a dense subset D of (X, τ) the GD(∆)-game is played
on (X ×X, τ × τ).

As with the Choquet game and the GP-game we need to describe how to “play” the GD(∆)-
game. The player labeled β starts the game. For his/her first move the player β must select
an open subset B1 of X ×X that contains ∆ := {(x, y) ∈ X ×X : x = y}. Next, α selects
a point (x1, y1) ∈ D ×D such that (x1, y1) ∈ B1.

In the second round, β goes first again and selects an open subset B2 of X × X that
contains ∆. Player α then gets to respond by choosing a point (x2, y2) ∈ D×D such that
(x2, y2) ∈ B2.

In general, after α and β have played the first n-rounds of the GD(∆)-game, β will have
selected open subsets B1, B2, . . . , Bn of X×X, containing ∆ and α will have selected points

(x1, y1), (x2, y2), . . . , (xn, yn) in D ×D

such that (xj, yj) ∈ Bj for all 1 ≤ j ≤ n.

At the start of the (n+1)-round of the game, β goes first and selects an open subset Bn+1

of X×X that contains ∆. Then player α gets to respond to this move by selecting a point
(xn+1, yn+1) ∈ D ×D such that (xn+1, yn+1) ∈ Bn+1.

Continuing this procedure indefinitely (i.e., continuing on forever) the players α and β
produce an infinite sequence

(
(Bk, (xk, yk)) : k ∈ N

)
called a play of the GD(∆)-game.

A partial play
(
(Bk, (xk, yk)) : 1 ≤ k ≤ n

)
of the GD(∆)-game consists of the first n-moves

of a play of the GD(∆)-game.

We shall declare that β wins a play
(
(Bk, (xk, yk)) : k ∈ N

)
of the GD(∆)-game if for every

open neighbourhood U of ∆, {k ∈ N : (xk, yk) ∈ U} is infinite. Note that if (X, τ) is a
compact space, then the sequence ((xk, yk) : k ∈ N) has a cluster-point in ∆.

If β does not win a play of the GD(∆)-game then we declare that α wins that play of the
GD(∆)-game. As with the earlier games we need to define the notion of a strategy.

By a strategy σ for the player β we mean a ‘rule’ that specifies each move of the player β in
every possible situation. More precisely, a strategy σ := (σn : n ∈ N) for β is an inductively
defined sequence of functions. The domain of σ1 is the sequence of length zero, denoted
by ∅. That is, Dom(σ1) = {∅} and σ1(∅) is an open neighbourhood of ∆. If σ1, σ2, . . . , σk

have been defined then the domain of σk+1 is:

{((x1, y1), . . . , (xk, yk)) ∈ (D ×D)k : ((x1, y1), . . . (xk−1, yk−1)) ∈ Dom(σk) and

(xk, yk) ∈ σk((x1, y1), . . . , (xk−1, yk−1))}.

For each ((x1, y1), . . . , (xk, yk)) ∈ Dom(σk+1), σk+1((x1, y1), . . . , (xk, yk)) is an open neigh-
bourhood of ∆.
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A partial σ-play is a finite sequence ((x1, y1), . . . , (xn, yn)) such that

((x1, y1), . . . , (xn, yn)) ∈ Dom(σn+1).

A σ-play is an infinite sequence ((xn, yn) : n ∈ N) such that ((x1, y1), . . . , (xn, yn)) is a
partial σ-play for each n ∈ N, .
A strategy σ := (σn : n ∈ N) for the player β is called a winning strategy if each play of
the form:

(
((xn, yn), σn((x1, y1), . . . , (xn−1, yn−1))) : n ∈ N

)
is won by β.

Suppose that (X, τ) and (Y, τ ′) are topological spaces and f : X × Y → R. If 0 < ε and
(x0, y0) ∈ X × Y then we say that f is ε-jointly continuous at (x0, y0) ∈ X × Y if there
exist open neighbourhoods U of x0 and V of y0 such that diam[f(U × V )] ≤ ε.

To prove the main theorem in the section it is helpful to first consider the following pre-
liminary result regarding ε-continuity.

Lemma 1.3.1. Suppose that (X, τ) and (Y, τ ′) are topological spaces and f : X × Y → R
is a separately continuous function. Suppose also that D is a dense subset of (Y, τ ′) and
0 < ε. If (x0, y0) ∈ X × Y and f is not ε-continuous at (x0, y0) then, for every pair of
open neighbourhoods U of x0 and V of y0 there exists points (d, d′) ∈ (D ×D) ∩ (V × V )
and x ∈ U such that ε/3 < |f(x, d)− f(x, d′)|.

Proof. Let us prove the contrapositive statement. Suppose that U0 and V0 are open neigh-
bourhoods of x0 and y0 respectively, such that, for every (d, d′) ∈ (D×D)∩ (V0 × V0) and
every x ∈ U0, |f(x, d)− f(x, d′)| ≤ ε/3. Firstly, note that since f is separately continuous

|f(x, y)− f(x, y′)| ≤ ε/3 for all x ∈ U0 and all (y, y′) ∈ V0 × V0.

Next, note that by possibly making U0 smaller, if necessary, we may assume that

|f(x, y0)− f(x′, y0)| < ε/3 for all x, x′ ∈ U0.

We claim that diam[f(U0 × V0)] ≤ ε. To this end, let (x, y), (x′, y′) ∈ U0 × V0. Then,

|f(x, y)− f(x′, y′)| ≤ |f(x, y)− f(x, y0)|+ |f(x, y0)− f(x′, y0)|+ |f(x′, y0)− f(x′, y′)|
≤ ε/3 + ε/3 + ε/3 = ε.

Therefore, |f(x, y)−f(x′, y′)| ≤ ε; which shows that f is ε-jointly continuous at (x0, y0).

Theorem 1.3.2 ([5, Theorem 2]). Suppose that (Y, τ ′) is a compact topological space such
that for some dense subset D of (Y, τ ′), the player β has a winning strategy in the GD(∆)-
game played on Y × Y , then (Y, τ ′) is a co-Namioka space.

Proof. Let (X, τ) be a Baire space and f : X×Y → R be a separately continuous function.
Fix 0 < ε and consider the set

Oε := {x ∈ X : f is ε-jointly continuous at each point of {x} × Y }.

It follows from the definition of ε-joint continuity and a simple compactness argument that
the set Oε is an open subset of (X, τ). We claim that Oε is dense in (X, τ). So, for the
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purpose of obtaining a contradiction, let us suppose that there exists a nonempty open
subset W of X such that Oε ∩W = ∅. Let σ := (σn : n ∈ N) be a winning strategy for
the player β in the GD(∆)-game played on Y × Y .

We shall inductively define a (necessarily non-winning) strategy t := (tn : n ∈ N) for the
player β in the Choquet-game played on (X, τ).

Step 1. Let x ∈ W . Then x ̸∈ Oε. Therefore, there exists a point y ∈ Y such that
f is not ε-jointly continuous at (x, y). Let V be an open neighbourhood of y such that
(y, y) ∈ V × V ⊆ σ1(∅). By Lemma 1.3.1 there exist a point (y∅, y

′
∅) ∈ (D ×D) ∩ (V × V )

and a point x1 ∈ W such that ε/3 < |f(x1, y∅)− f(x1, y
′
∅)|. Let

t1(∅) := {x ∈ W : ε/3 < |f(x, y∅)− f(x, y′∅)|}.

Note that t1(∅) is open and nonempty, as x1 ∈ t1(∅). Furthermore, (y∅, y
′
∅) ∈ (D × D) ∩

σ1(∅).
Step 2. Suppose that A1 is a nonempty open subset of t1(∅). We may think of A1 as the
first move of the player α in the Ch(X)-game.

Let x ∈ A1. Then x ̸∈ Oε. Therefore, there exists a point y ∈ Y such that f is not ε-jointly
continuous at (x, y). Since (y∅, y

′
∅) ∈ (D ×D) ∩ σ1(∅), σ2((y∅, y

′
∅)) is defined.

Let V be an open neighbourhood of y such that (y, y) ∈ V × V ⊆ σ2((y∅, y
′
∅)). By Lemma

1.3.1 there exist a point (y(A1), y
′
(A1)

) ∈ (D ×D) ∩ (V × V ) and a point x2 ∈ A1 such that

ε/3 < |f(x2, y(A1))− f(x2, y
′
(A1)

)|. Define

t2(A1) := {x ∈ A1 : ε/3 < |f(x, y(A1))− f(x, y′(A1)
)|}.

Note that t2(A1) is open and nonempty. Furthermore, (y(A1), y
′
(A1)

) ∈ (D×D)∩σ2((y∅, y
′
∅)).

Now, let n ∈ N \ {1} and suppose that the points (y(A1,...,Aj−1), y
′
(A1,...,Aj−1)

) ∈ D ×D and

tj have been defined for each partial t-play (A1, . . . , Aj−1) of length (j− 1) with 2 ≤ j ≤ n
so that:

(i)
(
(y∅, y

′
∅), . . . , (y(A1,...,Aj−2), y

′
(A1,...,Aj−2)

)
)
is a partial σ-play;

(ii) (y(A1,...,Aj−1), y
′
(A1,...,Aj−1)

) ∈ (D ×D) ∩ σj((y∅, y
′
∅), . . . , (y(A1,...,Aj−2), y

′
(A1,...,Aj−2)

)) and

(iii) tj(A1, . . . , Aj−1) := {x ∈ Aj−1 : ε/3 < |f(x, y(A1,...,Aj−1))− f(x, y′(A1,...,Aj−1)
)|}.

Step n + 1. Let (A1, . . . , An) be a partial t-play of length n. Let x ∈ An. Then x ̸∈ Oε.
Therefore, there exists a point y ∈ Y such that f is not ε-jointly continuous at (x, y).

By (i) and (ii) above
(
(y∅, y

′
∅), . . . , (y(A1,...,An−1), y

′
(A1,...,An−1)

)
)
is a partial σ-play. Therefore,

σn+1

(
(y∅, y

′
∅), . . . , (y(A1,...,An−1), y

′
(A1,...,An−1)

)
)

is defined.

Let V be an open neighbourhood of y such that

(y, y) ∈ V × V ⊆ σn+1

(
(y∅, y

′
∅), . . . , (y(A1,...,An−1), y

′
(A1,...,An−1)

)
)
.
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By Lemma 1.3.1 there exist a point (y(A1,...,An), y
′
(A1,...,An)

) ∈ (D×D)∩ (V ×V ) and a point

xn+1 ∈ W such that ε/3 < |f(xn+1, y(A1,...,An))− f(xn+1, y
′
(A1,...,An)

)|. Let

tn+1(A1, . . . , An) := {x ∈ An : ε/3 < |f(x, y(A1,...,An))− f(x, y′(A1,...,An))|}.

Note that tn+1(A1, . . . , An) is open and nonempty as xn+1 ∈ tn+1(A1, . . . , An). Further-
more, (y(A1,...,An), y

′
(A1,...,An)

) ∈ (D ×D) ∩ σn+1((y∅, y
′
∅), . . . , (y(A1,...,An−1), y

′
(A1,...,An−1)

)).

This completes the definition of the strategy t := (tn : n ∈ N). Now, since (X, τ) is a Baire
space t is not a winning strategy for the player β, see Theorem 1.1.5. Hence there is a
t-play (An : n ∈ N) where the player α wins, i.e.,

⋂
n∈N An ̸= ∅. Let x∞ ∈

⋂
n∈N An. Note

also (
(y∅, y

′
∅), (y(A1), y

′
(A1)

), . . . , (y(A1,...,An), y
′
(A1,...,An)), . . .

)
is a σ-play of the GD(∆)-game. Hence, the sequence ((y(A1,...,An), y

′
(A1,...,An)

) : n ∈ N) has a
cluster-point (y∞, y∞) ∈ ∆. Let V := {y ∈ Y : |f(x∞, y)− f(x∞, y∞)| < ε/6}. Then:

(i) V is an open subset of Y , since f is a separately continuous function;

(ii) (y∞, y∞) ∈ V × V and

(iii) |f(x∞, y)− f(x∞, y′)| < ε/3 for all (y, y′) ∈ V × V , by the triangle inequality.

However, for n large enough, (y(A1,...,An), y
′
(A1,...,An)

) ∈ V × V ; which is impossible since

x∞ ∈ tn+1(A1, . . . , An) and so ε/3 < |f(x∞, y(A1,...,An))− f(x∞, y′(A1,...,An)
)|. Therefore, our

assumption that Oε is not dense, is false, i.e., Oε is dense in (X, τ).

It now only remains to see that f is jointly continuous at each point of (
⋂

n∈N O1/n)×Y .

We now show that there are some non-trivial spaces where the player β has a winning
strategy in the GD(∆)-game.

Theorem 1.3.3 ([5, Theorem 3]). Let (Y, τ ′) be a compact topological space, D be a dense
subset of (Y, τ ′) and U be an open cover of (Y × Y ) \∆ such that:

(i) for every U ∈ U , U ∩∆ = ∅;

(ii) for every (x, y) ∈ D ×D, {U ∈ U : (x, y) ∈ U} is at most countable

then the player β has a winning strategy in the GD(∆)-game played on Y ×Y . In particular,
(Y, τ ′) is a co-Namioka space.

Proof. For (x, y) ∈ D × D, let {Un(x, y) : n ∈ N} be an enumeration of all U ∈ U
with (x, y) ∈ U . The winning strategy σ := (σn : n ∈ N) is inductively defined by,
σ1(∅) := Y × Y . If n ∈ N and ((x1, y1), . . . , (xn, yn)) is a partial σ-play of length n then

σn+1((x1, y1), . . . , (xn, yn)) := (Y × Y ) \
⋃
{Ui(xj, yj) : 1 ≤ i ≤ n and 1 ≤ i ≤ n}.

This completes the definition of σ := (σn : n ∈ N).
We now show that σ is a winning strategy for the player β. To this end, let ((xn, yn) :
n ∈ N) be a σ-play of the GD(∆)-game played on Y × Y . Let (x, y) be a cluster-point of
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((xn, yn) : n ∈ N). We claim that (x, y) ∈ ∆. Indeed, if (x, y) ̸∈ ∆ then there exists a
U ∈ U such that (x, y) ∈ U . Since (x, y) is a cluster-point of the sequence ((xn, yn) : n ∈ N)
there exists a k ∈ N such that (xk, yk) ∈ U . Therefore, there exists an m ∈ N such that
U = Um(xk, yk). Let N := max{m, k}. Then (xn, yn) ̸∈ Um(xk, yk) = U for all N < n. So
(x, y) cannot be a cluster-point of ((xn, yn) : n ∈ N) after all. Therefore, (x, y) ∈ ∆. This
shows that σ is indeed a winning strategy for the player β.

We shall call a compact Hausdorff space (Y, τ ′) a Valdivia compact if there exists a home-
omorphism h : Y → Z from Y onto a topological space (Z, τ) and there exists an index
set I such that Z ⊆ [0, 1]I and Σ(I)∩Z is dense in Z where, Σ(I) := {x ∈ [0, 1]I : {i ∈ I :
x(i) ̸= 0} is at most countable}.

Corollary 1.3.4 ([5, 10]). Every Valdivia compact space is a co-Namioka space.

Proof. Let (Y, τ ′) be a Valdivia compact space. We may assume, after possibly considering
a homeomorphic copy of (Y, τ ′), rather than the original space (Y, τ ′), that there exists an
index set I such that Y ⊆ [0, 1]I and Σ(I) ∩ Y is dense in Y where, Σ(I) := {x ∈ [0, 1]I :
{i ∈ I : x(i) ̸= 0} is at most countable}.

Let D := Σ(I) ∩ Y . For each (i, n) ∈ I × N, let

U(i,n) := {(x, y) ∈ Y × Y : 1/n < |y(i)− x(i)|}

then let U := {U(i,n) : (i, n) ∈ I × N}. If (x, y) ∈ D ×D then {U ∈ U : (x, y) ∈ U} is at
most countable. Furthermore, U ∩∆ = ∅ for each U ∈ U . Hence, the cover U satisfies
the hypotheses of Theorem 1.3.3. Therefore, (Y, τ ′) is a co-Namioka space.

1.4 Fragmentable spaces and games

In this section we will review the relationship between fragmentability and separate and
joint continuity. We shall start with the following slight generalisation of Theorem 1.6.23,
which is phrased in terms bitopological spaces. Recall that an ordered triple (X, τ, τ ′) is
called a bitopological space if both (X, τ) and (X, τ ′) are topological spaces.

Theorem 1.4.1 ([30,31]). Suppose that (X, τ) is a topological space, (Y, τ ′, τ ′′) is a bitopo-
logical space and f : X → Y is a τ ′-quasicontinuous function. If (Y, τ ′) is fragmented by
a metric d whose topology on Y is at least as strong as τ ′′ then, f is τ ′′-continuous at the
points of a residual subset of (X, τ).

Proof. The proof of this is left to the reader. However, the proof only requires a slight
modification of the proof of Theorem 1.6.23.

The next result reveals our interest in fragmentability in bitopological spaces.

Corollary 1.4.2. Let (Y, τ ′) be a compact Hausdorff topological space. If Cp(Y ) is frag-
mented by a metric d whose topology on C(Y ) is at least as strong as the norm topology
on C(Y ), then (Y, τ ′) is a co-Namioka space.
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Proof. This follows directly from Theorem 1.4.1 with τ ′ = τp(Y ) and τ ′′, the topology on
C(Y ) generated by the supremum norm on C(Y ).

To progress further in our studies of fragmentable spaces we will need to consider a new
topological game.

As with all the earlier the games, this game involves two players, but unlike the previous
games, the players are named Σ and Ω. The game is played on is a fixed bitopological
space (X, τ, τ ′).

The name of the game is the fragmenting game and is denoted by, G(τ, τ ′) .
We now describe how to “play” the G(τ, τ ′)-game. The player labeled Σ starts the game,
(every time). For his/her first move the player Σ must select nonempty subset A1 of X.
Next, Ω gets a turn. For Ω’s first move he/she must select a nonempty subset B1 of A1,
which is relatively τ -open in B1. This ends the first round of the game.

In the second round, Σ goes first again and selects a nonempty subset A2 ⊆ B1. Player Ω
then gets to respond by choosing a nonempty subset B2 of A2, which is relatively τ -open
in A2. This ends the second round of the game.

In general, after Σ and Ω have played the first n-rounds of the G(τ, τ ′)-game, Σ will have
selected nonempty subsets A1, A2, . . . , An of X and Ω will have selected nonempty subsets
A1, A2, . . . , An of X such that

Bn ⊆ An ⊆ Bn−1 ⊆ An−1 ⊆ · · · ⊆ B2 ⊆ A2 ⊆ B1 ⊆ A1

and Bj is relatively τ -open in Aj for all 1 ≤ j ≤ n. At the start of the (n+1)-round of the
game, Σ goes first (again!) and selects nonempty subset An+1 of Bn. As with the previous
n-rounds, the player Ω gets to respond to this move by selecting a nonempty subset Bn+1

of An+1, which is relatively τ -open in An+1.

“Plays” and “partial plays” etc. are defined in an analogous way to our earlier games.

As with any game, we need to specify a rule to determine who wins. We shall declare that
Ω wins a play

(
(Ak, Bk) : k ∈ N

)
of the G(τ, τ ′)-game if:

(i)
⋂

k∈NAk =
⋂

k∈NBk = ∅, or

(ii)
⋂

k∈NAk =
⋂

k∈NBk = {x} for some x ∈ X and for every U ∈ τ ′ with x ∈ U there
exists a k ∈ N such that Ak ⊆ U .

If Ω does not win a play of the G(τ, τ ′)-game then we declare that Σ wins that play of the
G(τ, τ ′)-game. So every play is won by either Ω or Σ and no play is won by both players.

Strategies and t-plays/partial t-plays etc. are defined in an analogous way to our earlier
games.

In order to provide a game characterisation of fragmentability we will need to introduce
and intermediate notion. Let (X, τ) be topological space. Then we call P ⊆ 2X \ {∅} a
partial exhaustive partition of X if:

(i)
⋃

P∈P P ∈ τ ;
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(ii) the members of P are disjoint;

(iii) for every nonempty subset A of
⋃

P∈P P there exists a P ∈ P such that A ∩ P is
nonempty and A ∩ P is relatively τ -open in A.

If
⋃

P∈P P = X, then we simply call P an exhaustive partition of X.

We shall need the following technical lemma.

Lemma 1.4.3. If P is a partial exhaustive partition of a topological space (X, τ) and
X \

⋃
P∈P P ̸= ∅ and W is a nonempty subset of X \

⋃
P∈P P that is relatively τ -open in

X \
⋃

P∈P P , then P ∪ {W} is also a partial exhaustive partition of X.

Proof. Since W is a relatively τ -open subset of X \
⋃

P∈P P , there exists a τ -open subset
U of X such that W = (X \

⋃
P∈P P ) ∩ U . Therefore,⋃

P∈P∪{W}P = (
⋃

P∈PP ) ∪W = (
⋃

P∈PP ) ∪ U.

Hence, as the union of two open sets,
⋃

P∈P∪{W} P is τ -open in X. Furthermore, it is

easy to see that the members of P ∪ {W} are pairwise disjoint. Next, suppose that A is
a nonempty subset of

⋃
P∈P∪{W} P . Let V :=

⋃
P∈P P . If V ∩ A ̸= ∅ then there exists a

member P0 ∈ P such that (V ∩A)∩ P0 is nonempty and (V ∩A)∩ P0 is relatively τ -open
in (A ∩ V ). Since A ∩ V is relatively τ -open in A, (V ∩ A) ∩ P0 is relatively τ -open in A.
Moreover, since P0 ⊆ V ,

A ∩ P0 = (A ∩ V ) ∩ P0 ̸= ∅

and so A ∩ P0 is a nonempty and relatively τ -open in A. If V ∩ A = ∅ then A ⊆ W and
so A∩W = A; which is of course relatively τ -open in A. Hence, in both cases there exists
a member P ∈ P ∪ {W} such that A ∩ P ̸= ∅ and A ∩ P is relatively τ -open in A. This
completes the proof of the lemma.

Theorem 1.4.4 ([32]). Let (X, τ, τ ′) be a bitopological space. Then (X, τ) is fragmented
by a metric d whose topology on X is at least as strong as τ ′ if, and only if, the player Ω
has a winning strategy in the G(τ, τ ′)-game played on (X, τ, τ ′).

Proof. Suppose that (X, τ) is fragmented by a metric d whose topology on X is at least
as strong as τ ′. Then the strategy s := (sn ∈ N) for the player Ω is clear.

Step 1. If A1 is a nonempty open subset of X then s1(A1) is defined to be any nonempty
subset of A1 that is relatively τ -open in A1 and d − diam[s1(A1)] < 1. Such a set is
guaranteed by the fact that (X, τ) is fragmented by the metric d.

Now, let n ∈ N and suppose that sj has been defined for each partial s-play (A1, . . . , Aj)
of length j with 1 ≤ j ≤ n so that: sj(A1, . . . , Aj) is any nonempty subset of Aj,
sj(A1, . . . , Aj) is relatively τ -open in Aj and d− diam[sj(A1, . . . , Aj)] < 1/j.

Step n+1. Let (A1, . . . , An+1) be a partial s-play of length n+1. Then An+1 is a nonempty
subset of X. Let sn+1(A1, . . . , An+1) be defined to be any nonempty subset of An+1 that
is relatively τ -open in An+1 and d − diam[sn+1(A1, . . . , An+1)] < 1/(n + 1). Such a set is
guaranteed by the fact that (X, τ) is fragmented by the metric d.
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This completes the definition of s := (sn : n ∈ N). To see that s is a winning strategy
for the player Ω, consider the following: Let (An : n ∈ N) be an arbitrary s-play. If⋂

n∈N An = ∅, then Ω wins this play. If
⋂

n∈N An ̸= ∅ then
⋂

n∈NAn = {x} for some
x ∈ X, since diam[

⋂
k∈N Ak] ≤ diam[An+1] < 1/n for all n ∈ N and so diam[

⋂
k∈NAk] = 0.

Furthermore, if U ∈ τ ′ and x ∈ U then there exists an n ∈ N such that

Bd(x, 1/n) := {y ∈ X : d(y, x) < 1/n} ⊆ U,

since the d-topology at x is at least as strong as the τ ′-topology at x. Therefore,

x ∈ An+1 ⊆ Bd(x, 1/n) ⊆ U.

Thus, the player Ω, wins the play (An : n ∈ N) in this case too.

We now consider the converse.

Suppose the player Ω has a winning strategy s := (sn : n ∈ N) in the G(τ, τ ′)-game played
on (X, τ, τ ′). We need to firstly, construct a metric d on X, then show that the d-topology
on X is at least as strong as the τ ′-topology on X and then finally, show that the metric
d actually fragments the topological space (X, τ).

Part I: For each n ∈ N, let Pn denote the set of all partial s-plays of length n, and for
purely notational reasons, let us set Λ0 = {∅}. We shall inductively define a sequence
(Λn : n ∈ N) of subsets such that the following properties are fulfilled. For each n ∈ N:

(an) Λn ⊆ Pn and sn(p) ∩ sn(p
′) = ∅ for every distinct p, p′ ∈ Λn;

(bn) {sn(p) : p ∈ Λn} is an exhaustive partition of X;

(cn) for each p ∈ Λn, p|j ∈ Λj for all 0 ≤ j < n.

Step 1. Let Λ1 be a maximal subset of P1 such that (a1) and (c1) are satisfied and {s1(p) :
p ∈ Λ1} is partial exhaustive partition of X. By Zorn’s Lemma such a maximal subset
exists.

We claim that {s1(p) : p ∈ Λ1} is an exhaustive partition of X. To see this, suppose that
A := X\{s1(p) : p ∈ Λ1} ≠ ∅. Note that (A) is an s-play of length 1. Let Λ∗ := Λ1∪{(A)}.
Then Λ∗ satisfies (a1) and (c1). Furthermore, by Lemma 1.4.3, {s1(p) : p ∈ Λ∗} is a partial
exhaustive partition of X, since s1(A) is a relatively τ -open subset of X \ {s1(p) : p ∈ Λ1}.
However, this contradicts the maximality of Λ1. Hence, {s1(p) : p ∈ Λ1} must indeed be
an exhaustive partition of X.

Let n ∈ N, and suppose the subsets Λk satisfying the Properties (ak), (bk) and (ck) have
been defined for each 1 ≤ k ≤ n.

Step n+1. Let Λn+1 be a maximal subset of Pn+1 such that (an+1) and (cn+1) are satisfied
and {sn+1(p) : p ∈ Λn+1} is partial exhaustive partition of X. By Zorn’s Lemma such a
maximal subset exists.

We claim that {sn+1(p) : p ∈ Λn+1} is an exhaustive partition of X. If not, then

A := X \
⋃
{sn+1(p) : p ∈ Λn+1} ≠ ∅.
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Since {sn(p) : p ∈ Λn} is an exhaustive partition of X there exists a p ∈ Λn such that A′ :=
sn(p)∩A is nonempty and relatively τ -open in A. Note also that (p,A′) is a partial s-play
of length n+1. Let Λ∗ := Λn+1∪{(p,A′)}. Then Λ∗ satisfies (an+1), obviously, and (cn+1).
Furthermore, since sn+1(p,A

′) is a relatively τ -open subset of A′ and A′ is relatively τ -open
subset of A, sn+1(p,A

′) is a relatively τ -open subset of A = X \
⋃
{sn+1(p) : p ∈ Λn+1}.

Therefore, by Lemma 1.4.3, {sn+1(p) : p ∈ Λ∗} is a partial exhaustive partition of X.
However, this contradicts the maximality of Λn+1. Hence, {sn+1(p) : p ∈ Λn+1} must be
an exhaustive partition of X. This completes the induction.

We now claim that for each x ∈ X there exists a unique s-play p := (An : n ∈ N) such
that x ∈

⋂
n∈N An and p|n ∈ Λn for all n ∈ N.

We first show existence. To this end, let us consider x ∈ X and n ∈ N. Then, by the
Properties (an) and Property (bn), there exists a unique pn ∈ Λn such that x ∈ sn(pn).

We show that if 1 ≤ n < m then pm|n = pn. To see this, first note that pm|n ∈ Λn, by
Property (cm), and secondly, that x ∈ sn(pm|n) ∩ sn(pn). Therefore, by Property (an), it
must be the case that pm|n = pn. Thus, pm is a continuation of the partial s-play. Let
p := (An

n : n ∈ N), where for each n ∈ N, pn := (An
1 , . . . , A

n
n). Clearly, x ∈

⋂
n∈N A

n
n as

x ∈ sn(pn) = sn(A
n
1 , . . . , A

n
n) ⊆ An

n for all n ∈ N.

We now demonstrate that p is an s-play and that p|n = pn ∈ Λn for all n ∈ N. To this end,
let n ∈ N. Then by above, for each 1 ≤ j < n, pj = pn|j. Therefore, for each 1 ≤ j < n,
Aj

j = An
j . Thus,

p|n = (A1
1, . . . A

n
n) = (An

1 , . . . , A
n
n) = pn ∈ Λn.

Furthermore, since pn+1 = (An+1
1 , . . . , An+1

n+1) ∈ Λn+1 ⊆ Pn+1,

An+1
n+1 ⊆ sn(A

n+1
1 , . . . , An+1

n ). (∗)

Now again, by above, for each 1 ≤ j ≤ n, pn+1|j = pj. Therefore, for each 1 ≤ j ≤ n,
An+1

j = Aj
j. Substituting this into Equation (∗) we get that

An+1
n+1 ⊆ sn(A

1
1, . . . , A

n
n).

This show that p is an s-play.

We now show uniqueness. Suppose that p := (An : n ∈ N) and p′ := (A′
n : n ∈ N) are

s-plays such that:

(i) x ∈
⋂

n∈NAn and x ∈
⋂

n∈N A
′
n and

(ii) p|n ∈ Λn and p′|n ∈ Λn for every n ∈ N.

Fix n ∈ N. Since x ∈ sn(p|n) ∩ sn(p
′|n), it follows from the second part of Property (an),

that that p|n = p′|n. In particular, An := A′
n. This shows the uniqueness.

For each x ∈ X, let p(x) denote the unique s-play (An : n ∈ N) such that x ∈
⋂

n∈N An

and p|n ∈ Λn for all n ∈ N.
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We now define a metric d on X as follows. Suppose that x, y ∈ X, p(x) := (An : n ∈ N)
and p(y) := (A′

n : n ∈ N). Then

d(x, y) :=

{
0 if p(x) = p(y)
1/n if p(x) ̸= p(y)

where, n := min{i ∈ N : Ai ̸= A′
i}.

Clearly, 0 ≤ d(x, y) for all x, y ∈ X, and d(x, x) = 0 for all x ∈ X follows from the
uniqueness of p(x) and p(y). On the other hand, if d(x, y) = 0 then Ak = A′

k for all k ∈ N.
Furthermore, since both (An : n ∈ N) and (A′

n : n ∈ N) are s-plays and
⋂

n∈N An ̸= ∅ and⋂
n∈NA

′
n ̸= ∅, it must be the case that

{x} =
⋂

k∈NAk =
⋂

k∈NA
′
k = {y}.

Therefore, x = y. It follows directly from the definition of d that it is symmetric, i.e.,
d(x, y) = d(y, x) for all x, y ∈ X. So it remains to show the triangle inequality. Let
x, y, z ∈ X. We will show that d(x, z) ≤ d(x, y) + d(y, z). Let p(x) := (An : n ∈ N),
p(y) := (A′

n : n ∈ N) and p(z) := (A′′
n : n ∈ N). Set nxz := min{i ∈ N : Ai ̸= A′′

i },
nxy := min{i ∈ N : Ai ̸= A′

i} and nyz := min{i ∈ N : A′
i ̸= A′′

i }. If i < min{nxy, nyz} then
Ai = A′

i and A′
i = A′′

i . That is, Ai = A′′
i . Therefore,

{i ∈ N : Ai ̸= A′′
i } ⊆ {i ∈ N : min{nxy, nyz} ≤ i}.

Hence, min{nxy, nyz} ≤ nxz. Thus, either

d(x, z) = 1/nxz ≤ 1/nxy = d(x, y) or d(x, z) = 1/nxz ≤ 1/nyz = d(y, z) (or both).

It now follows that d(x, z) ≤ d(x, y) + d(y, z).

Part II: The next thing we have to show is that the d-topology on X is at least as strong
as the τ ′-topology on X. To this end, let x ∈ X and let U ∈ τ ′ be such that x ∈ U . Since
p(x) := (An : n ∈ N) is an s-play and

⋂
n∈N An = {x} ⊆ U there exists an n ∈ N such

that An ⊆ U . We claim that Bd(x, 1/n) ⊆ U . To see this, consider y ∈ Bd(x, 1/n). Then
p(y) := (A′

n : n ∈ N) and d(x, y) < 1/n. If x = y then y ∈ U . So let us suppose that x ̸= y.
Then n < 1/d(x, y), i.e., n < min{k ∈ N : Ak ̸= A′

k}. Thus, An = A′
n and so

y ∈
⋂

k∈NA
′
k ⊆ A′

n = An ⊆ U.

This shows that Bd(x, 1/n) ⊆ U .

Part III: Thus, it remains to show that d fragments (X, τ). So with this in mind, let
us consider an arbitrary nonempty subset C of X and an arbitrary positive real number
ε. Choose n ∈ N such that 1/n < ε. Then, since {sn(p) : p ∈ Λn} is an exhaustive
partition of (X, τ), [recall Property (bn)], there exists a qn ∈ Λn such that C ∩ sn(qn) is
nonempty and relatively τ -open in C. Let x, y ∈ C ∩ sn(qn). We assert that d(x, y) < 1/n.
To justify this assertion we need to examine the definition of d. To this end, let p(x) :=
(Ak : k ∈ N) and p(y) := (A′

k : k ∈ N) be the unique s-plays such that x ∈
⋂

k∈NAk and
(A1, . . . , Ak) ∈ Λk for all k ∈ N and y ∈

⋂
k∈NA

′
k and (A′

1, . . . , A
′
k) ∈ Λk for all k ∈ N. Since

x ∈ sn(qn) ∩ sn(A1, . . . , An) and y ∈ sn(qn) ∩ sn(A
′
1, . . . , A

′
n), it follows from the second

part of Property (an), that (A1, . . . , An) = qn = (A′
1, . . . , A

′
n). Hence, by the definition of

d, d(x, y) < 1/n. Since x, y ∈ C∩sn(qn) were arbitrary, diam[C∩sn(qn)] ≤ 1/n < ε; which
completes the proof.
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The significance of Theorem 1.4.4 stems from the fact that it associates two disparate
properties, namely, it relates the global property of fragmentability (of the whole space)
to the local property of a winning strategy for the player Ω in the G(τ, τ ′)-game. Indeed,
Theorem 1.4.4 is usually employed as a tool for showing that certain topological spaces are
fragmentable, by simply displaying a winning strategy for the player Ω in the G(τ, τ ′)-game
played on (X, τ, τ ′).

Exercise 1.4.5. Suppose that (X, τ) is a regular Hausdorff topological space. Show that if
(X, τ) has a countable network, then (X, τ) is fragmented by a metric whose topology on
X is at least as strong as τ . Recall that N ⊆ 2X is a network for the topology τ if for each
x ∈ X and U ∈ τ with x ∈ U , there exists an N ∈ N such that x ∈ N ⊆ U .

Hint: Construct a winning strategy for the player Ω in the G(τ, τ)-game played on (X, τ)
and then apply Theorem 1.4.4.

In the ensuing lemma we shall exploit the following notion. Suppose that A is a nonempty
subset of RY , for some nonempty set Y and U , is a nonempty subset of Y . Then VarA(U) :=
sup{|f(u) − f(u′)| : u, u′ ∈ U and f ∈ A}. If, in addition, the set Y is endowed with a
topology τ ′ then we write ωA(x) := inf{VarA(U) : x ∈ U ∈ τ ′}, for each x ∈ Y .

Lemma 1.4.6. Let (Y, τ ′) be a nonempty compact topological space and let ∅ ̸= A ⊆ C(Y ).
If 0 < ε and W is an open neighbourhood of ∆Y := {(x, y) ∈ Y 2 : x = y} then there exists
a nonempty relatively τp(Y )-open subset U of A and a point (x0, y0) ∈ W such that

(i) min{1, s− ε} < |g(x0)− g(y0)| for all g ∈ U and

(ii) ∥ · ∥∞ − diam[U ] ≤ 2s+ ε where, s := sup{ωA(x) : x ∈ Y }.

Proof. Choose x ∈ Y such that min{1, s − ε} < ωA(x). Since (x, x) ∈ W , and W is open
in the product topology there exists an open neighbourhood V of x such that (x, x) ∈
V × V ⊆ W . Now,

min{1, s− ε} < ωA(x) ≤ VarA(V ) = sup{|g(y)− g(y′)| : y, y ∈ V and g ∈ A}.

Choose f ∈ A and x0, y0 ∈ V such that min{1, s− ε} < |f(x0)− f(y0)|. Let

U∗ := {g ∈ A : min{1, s− ε} < |g(x0)− g(y0)|}.

Note that U∗ is nonempty, as f ∈ U∗ and U∗ is relatively τp(Y )-open in A. Let s∗ :=
sup{ωU∗(x) : x ∈ Y } ≤ s. For each x ∈ X, we may choose an open neighbourhood Vx of x
such that VarU∗(Vx) < (ωU∗(x) + ε/3) ≤ (s∗ + ε/3) ≤ (s+ ε/3). Let {Vxj

: 1 ≤ j ≤ n} be
a finite subcover of the open cover {Vx : x ∈ Y } of Y . Let

U := {g ∈ U∗ : |g(xj)− f(xj)| < ε/6 for all 1 ≤ j ≤ n}.

Then ∅ ̸= U , as f ∈ U and U is relatively τp(Y )-open in U∗ and hence, relatively τp(Y )-
open in A.
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We claim that ∥ · ∥∞− diam[U ] ≤ 2s+ ε. To verify this claim, let us consider and g, h ∈ U
and any x ∈ Y . Then, since {Vxj

: 1 ≤ j ≤ n} is a cover of Y , there exists a 1 ≤ j0 ≤ n
such that x ∈ Vxj0

. Furthermore,

|g(xj0)− h(xj0)| ≤ |g(xj0)− f(xj0)|+ |f(xj0)− h(xj0)| < ε/6 + ε/6 = ε/3

since g, h ∈ U . Now,

|g(x)− h(x)| ≤ |g(x)− g(xj0)|+ |g(xj0)− h(xj0)|+ |h(xj0)− h(x)|
< (s+ ε/3) + ε/3 + (s+ ε/3) = 2s+ ε.

Since x ∈ Y was arbitrary, ∥g − h∥∞ < 2s + ε and since g, h ∈ U were arbitrary too,
∥ · ∥∞ − diam[U ] ≤ 2s+ ε. This completes the proof.

The following important theorem relies heavily upon Theorem 1.4.4.

Theorem 1.4.7 ([32]). Let (Y, τ ′) be a nonempty compact Hausdorff topological space and
let X be a nonempty subset of C(Y ). Then the following are equivalent:

(i) X is fragmented by a metric whose topology on X is at least as strong as the ∥ · ∥∞-
topology on X;

(ii) X is fragmented by a metric whose topology on X is at least as strong as the pointwise
toplogy on X;

(iii) The player Ω possesses a strategy ω := (ωn : n ∈ N) for the G(τp(Y ), τp(Y ))-game
played on (X, τp(Y )) such that, for every ω-play (An : n ∈ N) either, (a)

⋂
n∈N An =

∅ or (b)
⋂

n∈N An ̸= ∅ and every sequence (xn : n ∈ N) with xn ∈ An for all n ∈ N,
has a τp(K)-cluster-point in C(Y ).

Proof. Clearly (i) ⇒ (ii) and (ii) ⇒ (iii) follows from Theorem 1.4.4. So we need only
show that (iii) ⇒ (i); which is what we do now. We shall apply Theorem 1.4.4. More
precisely, we will construct a winning strategy s := (sn : n ∈ N) for the player Ω in the
G(τp(Y ), ∥ · ∥∞)-game played on X and then deduce from Theorem 1.4.4 that (X, τp(Y ))
is fragmented by a metric d whose topology on X is at least as strong as the supremum
topology on X.

Let ω := (ωn : n ∈ N) be a strategy for the player Ω such that, for every ω-play (An : n ∈ N)
either

⋂
n∈N An = ∅ or else,

⋂
n∈NAn ̸= ∅ and every sequence (xn : n ∈ N) with xn ∈ A

for all n ∈ N, has a τp(Y )-cluster-point in C(Y ).

Step 1. Let A1 be a nonempty subset of X and let A := ω1(A1). Note that A is a nonempty
relatively τp(Y )-open subset of A1.

Let t(A1) := sup{ωA(x) : x ∈ Y }, f(A1) ∈ A, ε := 1 and

W := {(x, y) ∈ Y 2 : |f(A1)(x)− f(A1)(y)| < 1}.

Then 0 < ε and W is an open neighbourhood of ∆Y . Hence, by Lemma 1.4.6, there exists
a nonempty relatively τp(Y )-open subset U of A and a point (x(A1), y(A1)) ∈ W such that
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(i) min{1, t(A1) − 1} < |g(x(A1))− g(y(A1))| for all g ∈ U and

(ii) ∥ · ∥∞ − diam[U ] ≤ 2t(A1) + 1.

Let s1(A1) := U . Note that this is well-defined since U is nonempty and a relatively
τp(Y )-open subset of A = w1(A1) and hence, a relatively open τp(Y )-open subset of A1.

Now, let n ∈ N and suppose that sj, (x(A1,...,Aj), y(A1,...,Aj)) ∈ Y 2, f(A1,...,Aj) ∈ C(Y ) and
t(A1,...,Aj) ∈ [0,∞] have been defined for every partial s-play (A1, . . . , Aj) of length j with
1 ≤ j ≤ n so that:

(aj) (A1, . . . , Aj) is a partial ω-play and sj(A1, . . . , Aj) ⊆ ωj(A1, . . . , Aj);

(bj) t(A1,...,Aj) := sup{ωA(x) : x ∈ Y }, where A := ωj(A1, . . . , Aj);

(cj) f(A1,...,Aj) ∈ Aj;

(dj) |f(A1,...,Ak)(x(A1,...,Aj))− f(A1,...,Ak)(y(A1,...,Aj))| < 1/j for all 1 ≤ k ≤ j;

(ej) min{1, t(A1,...,Aj) − 1/j} < |g(x(A1,...,Aj))− g(y(A1,...,Aj))| for all g ∈ sj(A1, . . . , Aj);

(fj) diam[sj(A1, . . . , Aj)] ≤ 2t(A1,...,Aj) + 1/j.

Step n+ 1. Suppose that (A1, . . . , An+1) is a partial s-play of length n+ 1. Then

∅ ̸= An+1 ⊆ sn(A1, . . . , An).

By (an), (A1, . . . , An) is a partial ω-play and sn(A1, . . . , An) ⊆ ωn(A1, . . . , An). Thus,
(A1, . . . , An+1) is a partial ω-play (and the first part of (an+1) is satisfied). Therefore,
∅ ̸= A := ωn+1(A1, . . . , An+1) is well-defined. Note also that A is relatively τp(Y )-open in
An+1. Let t(A1,...,An+1) := sup{ωA(x) : x ∈ Y }, f(A1,...,An+1) ∈ A, ε := 1/(n+ 1) and

W := {(x, y) ∈ Y 2 : |f(A1,...,Ak)(x)− f(A1,...,Ak)(y)| < 1/(n+ 1) for all 1 ≤ k ≤ (n+ 1)}.

Note that (bn+1) and (cn+1) are satisfied. Then 0 < ε and W is an open neighbourhood of
∆Y . Hence, by Lemma 1.4.6, there exists a nonempty relatively τp(Y )-open subset U of A
and a point (x(A1,...,An+1), y(A1,...,An+1)) ∈ W such that

(i) min{1, t(A1,...,An+1) − 1/(n+ 1)} < |g(x(A1,...,An+1))− g(y(A1,...,An+1))| for all g ∈ U and

(ii) ∥ · ∥∞ − diam[U ] ≤ 2t(A1,...,An+1) + 1/(n+ 1).

Note that since (x(A1,...,An+1), y(A1,...,An+1)) ∈ W , (dn+1) is satisfied.

Let sn+1(A1, . . . , An+1) := U . Note that this is well-defined since U is nonempty and a
relatively τp(Y )-open subset of A = wn+1(A1, . . . , An+1) and hence, a relatively open τp(Y )-
open subset of An+1. Finally, let us note that: the second part of (an+1) is satisfied; (en+1)
is satisfied by (i) above and (fn+1) is satisfied by (ii) above.

This completes the definition of s := (sn : n ∈ N). We now show that s is a winning
strategy for the player Ω in the G(τp(Y ), ∥ · ∥∞)-game played on X. To this end, let
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(An : n ∈ N) be an arbitrary s-play. If
⋂

n∈N An = ∅ then Ω wins this play. So, let us
consider the case when

⋂
n∈N An ̸= ∅. At this point we shall also simplify our notation.

For each n ∈ N, let xn := x(A1,...,An), yn := y(A1,...,An), tn := t(A1,...,An) and fn := f(A1,...,An).
By construction

min{1, tn − 1/n} < |fk(xn)− fk(yn)| if 1 ≤ n < k (∗)

since fk ∈ Ak ⊆ An+1 ⊆ sn(A1, . . . , An), see Property (en) and

|fn(xk)− fn(yk) < 1/k if 1 ≤ n ≤ k (∗∗)

see, Property (dk). Since fn ∈ An for all n ∈ N,
⋂

n∈N An ̸= ∅ and (An : n ∈ N) is an
ω-play, see Property (an), (fn : n ∈ N) had a τp(Y )-cluster-point f∞ ∈ C(Y ). Moreover,
by inequality (∗)

min{1, tn − 1/n} ≤ |f∞(xn)− f∞(yn)| for all n ∈ N. (∗∗∗)

On the other hand, since Y 2 is compact and (xn, yn) ∈ Y 2 for all n ∈ N, the sequence
((xn, yn) : n ∈ N) has a cluster-point (x∞, y∞) ∈ Y 2 and furthermore, by (∗∗), we have
that

0 ≤ |fn(x∞)− fn(y∞)| ≤ 0 for all n ∈ N.
That is, fn(x∞) = fn(y∞) for all n ∈ N. Therefore,

f∞(x∞) = f∞(y∞). (∗∗∗∗)

We now claim that infn∈N tn = limn→∞ tn = 0. Firstly, note that 0 ≤ tn+1 ≤ tn for all
n ∈ N. Therefore, by the Monotone Convergence Theorem, limn→∞ tn exists and equals
infn∈N tn. Next, suppose, in order to obtain a contradiction, that 0 < t := infn∈N tn. Then
min{1, t− 1/n} ≤ min{1, tn − 1/n} for all n ∈ N. If N ∈ N and 2/t < N then

0 < min{1, t/2} ≤ min{1, t− 1/N} ≤ min{1, t− 1/n} for all N ≤ n.

Hence, by (∗∗∗)

0 < min{1, t/2} ≤ |f∞(xn)− f∞(yn)| for all N < n.

Since, (x, y) 7→ |f∞(x)−f∞(y)|, is continuous on Y 2, 0 < min{1, t/2} ≤ |f∞(x∞)−f∞(y∞)|;
which contradicts Equation (∗∗∗∗). Therefore t must equal zero, i.e., limn→∞ tn = 0.

It now follows from Property (fn) that

0 ≤ ∥ · ∥∞ − diam[An+1] ≤ ∥ · ∥∞ − diam[sn(A1, . . . , An)] ≤ 2tn + 1/n for all n ∈ N.

Thus, limn→∞ ∥ · ∥∞ − diam[An] = 0. This shows that the s-play (An : n ∈ N) is won by
the player Ω in this case too. This completes the proof.

Corollary 1.4.8. Suppose that (Y1, τ
′
1) and (Y2, τ

′
2) are nonempty compact Hausdorff topo-

logical spaces. Suppose also that X1 is a nonempty subset of C(Y1) and X2 is a nonempty
subset of C(Y2). If (X1, τp(Y1)) is homeomorphic to (X2, τp(Y2)) then (X1, τp(Y1)) is frag-
mented by a metric whose topology on X1 is at least as strong as the ∥ · ∥∞ topology on X1

if, and only if, (X2, τp(Y2)) is fragmented by a metric whose topology on X2 is at least as
strong as the ∥ · ∥∞ topology on X2.
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Proof. This follows directly from Theorem 1.4.7, since Property (ii) of Theorem 1.4.7 is
preserved by τp(Y1)-to-τp(Y2) homeomorphisms.

Corollary 1.4.9. Suppose that (Y, τ ′) is a nonempty compact Hausdorff topological space.
Then (BC(Y ), τp(Y )) is fragmented by a metric whose topology on BC(Y ) is at least as strong
as the ∥ · ∥∞ topology on BC(Y ) if, and only if, (C(Y ), τp(Y )) is fragmented by a metric
whose topology on C(Y ) is at least as strong as the ∥ · ∥∞ topology on C(Y ).

Proof. Clearly, if (C(Y ), τp(Y )) is fragmented by a metric whose topology on C(Y ) is at
least as strong as the ∥ · ∥∞ topology on C(Y ) then (BC(Y ), τp(Y )) is fragmented by a
metric whose topology on BC(Y ) is at least as strong as the ∥ · ∥∞ topology on BC(Y ).
So we consider the converse statement. Suppose that (BC(Y ), τp(Y )) is fragmented by a
metric whose topology on BC(Y ) is at least as strong as the ∥ ·∥∞ topology on BC(Y ). Then
B := {f ∈ C(Y ) : ∥f∥∞ < 1} ⊆ BC(Y ) will also be fragmented by a metric whose topology
on B is at least as strong as the ∥ · ∥∞ topology on B. We now claim that (B, τp(Y ))
is homeomorphic to (C(Y ), τp(Y )). To see this, let us first consider a homeomorphism
g : (−1, 1) → (−∞,∞) [e.g. g : (−1, 1) → (−∞,∞), defined by, g(x) := tan(π

2
x) for all

x ∈ (−1, 1)]. Then define Tg : B → C(Y ) by,

Tg(f)(x) := (g ◦ f)(x) = g(f(x)) for all x ∈ Y .

Note that Tg is well-defined, i.e., Tg(f) ∈ C(Y ) for all f ∈ B, since f(x) ∈ Dom(g)
for all x ∈ Y and (g ◦ f) is continuous, as it is a composition of continuous functions.
Furthermore, it is easy to see that Tg is 1-to-1 and onto. In fact (Tg)

−1 = Tg−1 . In
addition to this, it is not difficult to show that both Tg : (B, τp(Y )) → (C(Y ), τp(Y )) and
Tg−1 : (C(Y ), τp(Y )) → (B, τp(Y )) are continuous. This completes the proof the claim.

The result now follows from Corollary 1.4.8.

As our next application of Theorem 1.4.7 we have the following result.

Theorem 1.4.10 ([32]). Let (Y, τ ′) be a nonempty compact Hausdorff space. If (BC(Y ), τp(Y ))
has a countable separation index (in some Hausdorff compactification) then (C(Y ), τp(Y ))
is fragmented by a metric whose topology on C(Y ) is at least as strong as the ∥·∥∞-topology
on C(K).

Proof. By Corollary 1.4.9, it is sufficient to show that (BC(Y ), τp(Y )) is fragmented by a
metric whose topology on BC(Y ) is at least as strong as the ∥ · ∥∞ topology on BC(Y ).
Furthermore, by Theorem 1.4.7, it is sufficient to show that the player Ω possesses a
strategy ω := (ωn : n ∈ N) for the G(τp(Y ), τp(Y ))-game played on (BC(Y ), τp(Y )) such
that, for every ω-play (An : n ∈ N) either, (i)

⋂
n∈NAn = ∅ or (ii)

⋂
n∈N An ̸= ∅ and every

sequence (xn : n ∈ N) with xn ∈ An for all n ∈ N, has a τp(K)-cluster-point in C(Y ).

We now inductively define a strategy ω := (ωn : n ∈ N) that possesses the properties
described above. Let (On : n ∈ N) be a countable family of open subset of (β(BC(Y )), τβ)
that separate BC(Y ) from β(BC(Y )) \BC(Y ).

Step 1. Suppose that A1 is a nonempty subset of BC(Y ). If A1∩O1 = ∅ then A1
τβ∩O1 = ∅.

In this case, let ω1(A1) := A1. If A1 ∩O1 ̸= ∅ then choose x ∈ A1 ∩O1. Then choose a τβ-
open neighbourhood U of x such that x ∈ U ⊆ U

τβ ⊆ O1. In this case, let ω1(A1) := A1∩U .

Note that in both cases ω1(A1)
τβ

is not separated by the set O1.
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Now, let n ∈ N and suppose that ωj has been defined for every partial ω-play of length j

with 1 ≤ j ≤ n so that either, ωj(A1, . . . , Aj)
τβ ∩Oj or ωj(A1, . . . , Aj)

τβ ⊆ Oj.

Step n + 1. Let (A1, . . . , An+1) be a partial ω-play of length n + 1. If An+1 ∩ On+1 = ∅
then An+1

τβ ∩On+1 = ∅. In this case, let ωn+1(A1, . . . , An+1) := An+1. If An+1∩On+1 ̸= ∅
then choose x ∈ An+1 ∩ On+1. Then choose a τβ-open neighbourhood U of x such that
x ∈ U ⊆ U

τβ ⊆ On+1. In this case, let ωn+1(A1, . . . , An+1) := An+1 ∩U . Note that in both

cases, ωn+1(A1, . . . , An+1)
τβ

is not separated by the set On+1.

This completes the definition of the strategy ω := (ωn : n ∈ N). Let (An : n ∈ N) be an
ω-play and suppose that

⋂
n∈N An ̸= ∅. We need to show that every sequence (xn : n ∈ N)

with xn ∈ An for all n ∈ N, has a τp(K)-cluster-point in C(Y ). So, let (xn : n ∈ N)
be a sequence with xn ∈ An for all n ∈ N. Since (β(BC(Y )), τβ) is compact the sequence
(xn : n ∈ N) has a cluster-point x∞ ∈ β(BC(Y )). We need to show that x∞ ∈ BC(Y ). Fix
n ∈ N and let n < k. Then

xk ∈ Ak ⊆ An ⊆ An
τβ
.

Therefore, x∞ ∈ An
τβ
. Since n ∈ N was arbitrary, x∞ ∈

⋂
n∈NAn

τβ
. Since the points

of C :=
⋂

n∈N An
τβ

are not distinguished by the sets (On : n ∈ N) either, C ⊆ BC(Y ) or
C ⊆ β(BC(Y )) \BC(Y ). However, as ∅ ̸=

⋂
n∈N An ⊆ C ∩BC(Y ), C ⊆ BC(Y ). In particular,

x∞ ∈ BC(Y ). Therefore, x∞ is a τp(Y )-cluster-point of the sequence (xn : n ∈ N).

A related notion to fragmentability, that was first considered in [25], (even though the
papers [22, 23] came out earlier, due to publication delays), is that of σ-fragmentability.

A topological space (X, τ) is said to be sigma-fragmented by a metric d defined on X if,
for every 0 < ε there exists a countable family {Xε

n : n ∈ N} of subsets of X such that
(i) X =

⋃
n∈N X

ε
n (i.e., {Xε

n : n ∈ N} is a cover of X) and (ii) for every n ∈ N, and
every nonempty subset A of Xε

n, there exists an open subset U such that A ∩ U ̸= ∅ and
d− diam(A ∩ U) < ε.

Sometimes we write σ-fragmented in place of “sigma-fragmented”. Sigma-fragmentability
was studied extensively in the 1990’s, particularly in the setting of Banach spaces and
C(Y )-spaces. See for example, [16,22–28,30,32,37]. During this period the connection be-
tween renorming theory and sigma-fragmentability was studied, as well as, the connection
between the co-Namioka property and sigma-fragmentiability, [21,36,38]. For a paper that
contains a little of the history of fragmentability/sigma-fragmentability, in its introduction,
see [34].

In the last part of this section, we will explore the connection between fragmentability and
σ-fragmentability.

Proposition 1.4.11 ([32]). Let (X, τ) be a topological space that is fragmented by a metric
d, whose topology on X, is at least as strong as the topology generated by some other (but
not necessarily distinct) metric ρ defined on X. Then (X, τ) is sigma-fragmented by ρ.

Proof. For every x ∈ X and r ∈ (0,∞) define, Bd(x, r) := {y ∈ X : d(y, x) < r}. Given
0 < ε, put Xε

n := {x ∈ X : ρ − diam[Bd(x, 1/n)] < ε}. Since the d-topology on X is at
least as strong as the ρ-topology on X, X =

⋃
n∈NX

ε
n. Fix n ∈ N and let A be a nonempty
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subset of Xε
n. Since (X, τ) is fragmented by d there exists a nonempty relatively τ -open

subset U of A with d− diam[U ] < 1/n. Choose x0 ∈ U ⊆ Xε
n. Then U ⊆ Bd(x0, 1/n). By

the definition of the set Xε
n

ρ− diam[U ] ≤ ρ− diam[Bd(x0, 1/n)] < ε.

That is, (X, τ) is sigma-fragmented by the metric ρ.

Of particular interest to us is the following corollary.

Corollary 1.4.12. Let (Y, τ ′) be a nonempty compact Hausdorff space. If (C(Y ), τp(Y )) is
fragmented by a metric d, whose topology on C(Y ) is at least as strong as the ∥·∥∞-topology
on C(K), then (C(Y ), τp(Y )) is sigma-fragmented by the metric generated by ∥ · ∥∞.

Proof. We define ρ : C(Y ) × C(Y ) → [0,∞) by, ρ(f, g) := ∥f − g∥∞ for all f, g ∈ C(Y ).
Then ρ is a metric on C(Y ). We now just apply Proposition 1.4.11.

Proposition 1.4.13 ([32]). Let (X, τ, τ ′) be a bitopological space with the property that:

(i) (X, τ ′) is T1 and

(ii) for every U ∈ τ ′ and every x ∈ U there exists a V ∈ τ ′ such that x ∈ V ⊆ V
τ ⊆ U .

If (X, τ) is sigma-fragmented by a metric d, whose topology on X, is at least as strong as
τ ′, then (X, τ) is fragmented by a metric whose topology on X, is at least as strong as τ ′.

Proof. We shall appeal to Theorem 1.4.4. Indeed, to prove the theorem, we will construct a
winning strategy s := (sn : n ∈ N) for the player Ω in the G(τ, τ ′)-game played on (X, τ, τ ′),
but first we shall make some preliminary observations and remarks. Let {(mk, nk) ∈ N×N :
k ∈ N} be an enumeration of N × N and for each n ∈ N, let {X(m,n) ∈ 2X : m ∈ N} be a
cover of X such that, for every m ∈ N and every nonempty subset A of X(m,n) there exists
a nonempty relatively τ -open subset U of A such that d− diam[U ] < 1/n.

Step 1. Let A1 be a nonempty subset of X. We shall consider two cases:

(i) if A1 ̸⊆ A1 ∩X(m1,n1)
τ
then we define s1(A1) := A1\A1 ∩X(m1,n1)

τ
. Note that s1(A1)

is a nonempty relatively τ -open subset of A1;

(ii) if A1 ⊆ A1 ∩X(m1,n1)
τ
then there exists a τ -open subset U of X such that U ∩ (A1 ∩

X(m1,n1)) ̸= ∅ and d − diam[U ∩ (A1 ∩ X(m1,n1))] < 1/n1. In this case we define
s1(A1) := U ∩ A1. Note that s1(A1) is a nonempty relatively τ -open subset of A1.

So either s1(A1) ∩X(m1,n1) = ∅, or else, s1(A1) ⊆ s1(A1) ∩X(m1,n1)

τ
.

Now, let k ∈ N and suppose that sj has been defined for every partial s-play (A, . . . , Aj)
of length j with 1 ≤ j ≤ k so that: either

(aj) sj(A1, . . . , Aj) ∩X(mj ,nj) = ∅, or else,

(bj) d−diam[sj(A1, . . . , Aj)∩X(mj ,nj)] <
1
nj

and sj(A1, . . . , Aj) ⊆ sj(A1, . . . , Aj) ∩X(mj ,nj).
τ
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Step k + 1. Let (A1, . . . , Ak+1) be a partial s-play of length k + 1. We shall consider two
cases.

(i) if Ak+1 ̸⊆ Ak+1 ∩X(mk+1,nk+1)
τ
then we define

sk+1(A1, . . . , Ak+1) := Ak+1 \ Ak+1 ∩X(mk+1,nk+1)
τ
.

Note that sk+1(A1, . . . , Ak+1) is a nonempty relatively τ -open subset of Ak+1;

(ii) if Ak+1 ⊆ Ak+1 ∩X(mk+1,nk+1)
τ
then there exists a τ -open subset U of X such that

U ∩ (Ak+1 ∩X(mk+1,nk+1)) ̸= ∅ and d− diam[U ∩ (Ak+1 ∩X(mk+1,nk+1))] < 1/nk+1. In
this case we define

sk+1(A1, . . . , Ak+1) := U ∩ Ak+1.

Note that sk+1(A1, . . . , Ak+1) is a nonempty relatively τ -open subset of Ak+1.

Finally, observe that either (ak+1) or (bk+1) is satisfied.

This completes the definition of s := (sn : n ∈ N). So it remains to show that s is
indeed a winning strategy for the player Ω in the G(τ, τ ′)-game played in (X, τ, τ ′). To this
end, let (An : n ∈ N) be an arbitrary s-play in the G(τ, τ ′)-game played in (X, τ, τ ′). If⋂

n∈N An = ∅ then Ω wins this play. So let us consider the case when
⋂

n∈N An ̸= ∅.

Let x ∈
⋂

n∈N An. To verify that the s-play (An : n ∈ N) is won by Ω it is sufficient to
show, because of the assumed properties of τ and τ ′, that for each τ ′-open neighbourhood
V of x there exists an n ∈ N such that An ⊆ V

τ
. [Take a minute to convince yourself

that this is really true]. So let V an an arbitrary τ ′-open neighbourhood of x. Since the
d-topology on X is at least as strong as the τ ′-topology on X there exists an n′ ∈ N such
that Bd(x, 1/n

′) ⊆ V . Now, since {X(m,n′) : m ∈ N} is a cover of X there exists a m′ ∈ N
such that x ∈ X(m′,n′).

Let k ∈ N be chosen so that (mk, nk) = (m′, n′). Then x ∈ sk(A1, . . . , Ak) ∩ X(mk,nk).
Therefore, Property (ak) does not hold and so Property (bk) must hold. That is,

d− diam[sk(A1, . . . , Ak) ∩X(mk,nk)] < 1/nk = 1/n′

and
sk(A1, . . . , Ak) ⊆ sk(A1, . . . , Ak) ∩X(mk,nk)

τ
.

Therefore,
Ak+1 ⊆ sk(A1, . . . , Ak) ⊆ Bd(x, 1/n′)

τ
⊆ V

τ

since sk(A1, . . . , Ak) ∩X(mk,nk) ⊆ Bd(x,
1
n′ ). This completes the proof.

Corollary 1.4.14. Let (Y, τ ′) be a nonempty compact Hausdorff topological space. If
(C(Y ), τp(Y )) is sigma-fragmented by the metric generated by ∥ · ∥∞, then (C(Y ), τp(Y ))
is fragmented by a metric, whose topology on C(Y ), is at least as strong as the supremum
norm topology on C(Y ).

Proof. Let τ := τp(Y ), let d be the metric generated by ∥ · ∥∞ and let τ ′ be the topology
generated d. Then we may simply apply Proposition 1.4.13.
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Corollary 1.4.15 ([22, Corollary 3.1]). Let (Y, τ ′) be a nonempty compact Hausdorff topo-
logical space. If (C(Y ), τp(Y )) is sigma-fragmented by the metric generated by ∥ · ∥∞, then
Y is a co-Namioka space.

Proof. This follows from Corollary 1.4.14 and Corollary 1.4.2.

Corollary 1.4.16. Let (Y, τ ′) be a nonempty compact Hausdorff topological space. Then
(C(Y ), τp(Y )) is σ-fragmented by the metric generated by ∥·∥∞ if, and only if, (C(Y ), τp(Y ))
is fragmented by a metric, whose topology on C(Y ), is at least as strong as the supremum
norm topology on C(Y ).

Proof. Simply combine Corollary 1.4.12 and Corollary 1.4.14.

1.5 Game characterisation of class(T ∗)-spaces

In this section we present a characterisation of those compact Hausdorff spaces (Y, τ ′) such
that N(X, Y ) holds for all weakly α-favourable spaces (X, τ).

Proposition 1.5.1. Let f : X → Y be a quasicontinuous, open mapping from a topological
space (X, τ) onto a topological space (Y, τ ′). If (X, τ) is weakly α-favourable, then so is
(Y, τ ′).

Proof. Let s := (sn : n ∈ N) be a winning strategy for the player α in the Ch(X)-game
played on (X, τ). We shall use s to inductively define a winning strategy σ := (σn : n ∈ N)
for the player α in the Ch(Y )-game played on (Y, τ ′).

Step 1. Let (B1) be a partial σ-play of length 1 in the Ch(Y )-game played on (Y, τ ′), i.e., B1

is a nonempty open subset of Y . Since f is τ ′-quasicontinuous and surjective there exists a
nonempty τ -open subset A(B1) of X such that f(A(B1)) ⊆ B1. Let σ1(B1) := f(s1(A(B1))).

This definition is well-defined because (i) f(s1(A(B1))) is a nonempty open subset of Y , as f
is an open mapping and s1(A(B1) is a nonempty open subset of (X, τ) and (ii) σ1(B1) ⊆ B1

as σ1(B1) = f(s1(A(B1))) ⊆ f(A(B1)) ⊆ B1.

Now, let n ∈ N and suppose that σj and A(B1,...,Bj) have been defined for each partial
σ-play (B1, . . . , Bj) of length j with 1 ≤ j ≤ n so that:

(i) (A(B1), . . . , A(B1,...,Bj)) is a partial s-play;

(ii) f(A(B1,...,Bj)) ⊆ Bj;

(iii) σj(B1, . . . , Bj) := f(sj(A(B1), . . . , A(B1,...,Bj))).

Step n+1. Let (B1, . . . , Bn+1) be a partial σ-play of length n+1. Then Bn+1 is a nonempty
open subset of σn(B1, . . . , Bn) = f(sn(A(B1), . . . , A(B1,...,Bn))). Therefore, since f is τ ′-
quasicontinuous, there exists a nonempty open subsetA(B1,...,Bn+1) of sn(A(B1), . . . , A(B1,...,Bn))
such that f(A(B1,...,Bn+1)) ⊆ Bn+1. Then define

σn+1(B1, . . . , Bn+1) := f(sn+1(A(B1), . . . , A(B1,...,Bn+1))).
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This definition is well-defined because (i) σn+1(B1, . . . , Bn+1) is a nonempty open subset
of Y , as f is an open mapping and sn+1(A(B1), . . . , A(B1,...,Bn+1)) is a nonempty open subset
of (X, τ) and (ii) σn+1(B1, . . . , Bn+1) ⊆ B′

n+1 as

σn+1(B1, . . . , Bn+1) = f(sn+1(A(B1), . . . , A(B1,...,Bn+1)) ⊆ f(A(B1,...,Bn+1)) ⊆ Bn+1.

This completes the definition of σ := (σn : n ∈ N). So it remains to show that σ is indeed
a winning strategy for the player α in the Ch(Y )-game played on (Y, τ ′). Let (Bn : n ∈ N)
be an arbitrary σ-play. Then, by construction, (A(B1,...,Bn) : n ∈ N) is an s-play. Hence,

∅ ̸=
⋂

n∈NA(B1,...,Bn) =
⋂

n∈Nsn(A(B1), . . . , A(B1,...,Bn)).

Furthermore,

∅ ̸= f(
⋂

n∈Nsn(A(B1), . . . , A(B1,...,Bn))) ⊆
⋂

n∈Nf(sn(A(B1), . . . , A(B1,...,Bn)))

=
⋂

n∈Nσn(B1, . . . , Bn) =
⋂

n∈NBn;

which shows that α wins this play. This completes the proof.

Proposition 1.5.2. Let f : X → Y be a quasicontinuous mapping from a topological space
(X, τ) into a topological space (Y, τ ′). If (X, τ) is weakly α-favourable, then so is the graph
of f , Gr(f), endowed with the relative product topology of (X, τ) and (Y, τ ′).

Proof. Let f : X → Y be a quasicontinuous mapping from a weakly α-favourable topo-
logical space (X, τ) into a topological space (Y, τ ′). Let g : X → Gr(f) be defined by,
g(x) := (x, f(x)) for all x ∈ X. Then clearly, (i) g is surjective and (ii) g is open, since for
any τ -open subset U of X, g(U) = (U×Y )∩Gr(f); which is obviously open in the relative
product topology on Gr(f). We now show that g is quasicontinuous on (X, τ). To this
end, let x0 ∈ X, W be an open neighbourhood of g(x0) and U be an open neighbourhood
of x0. By the definition of the product topology, there exist open subsets U ′ of X and W ′

of Y such that
(x0, f(x0)) = g(x0) ∈ U ′ ×W ′ ⊆ W.

Therefore, x0 ∈ U ′ and f(x0) ∈ W ′. Now, since x0 ∈ U ∩ U ′ and f(x0) ∈ W ′, it follows
from the quasicontinuous of f that there exists a nonempty open subset V of U ∩ U ′ such
that f(V ) ⊆ W ′. Thus,

g(V ) ⊆ (V ×W ′) ∩Gr(f) ⊆ V ×W ′ ⊆ U ′ ×W ′ = W.

This shows that g is quasicontinuous on (X, τ). The result now follows from Proposition
1.5.1.

Proposition 1.5.3 ([31]). Let (Y, τ ′) be a topological space and let d be some metric defined
on it. Then the following conditions are equivalent:

(i) every τ ′-continuous mapping f : X → Y from a weakly α-favourable space (X, τ)
into (Y, τ ′) is d-continuous at the points of a dense subset of (X, τ);
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(ii) every τ ′-quasicontinuous mapping f : X → Y from a weakly α-favourable space (X, τ)
into (Y, τ ′), is d-continuous at the points of a dense subset of (X, τ).

Proof. It is clear that condition (ii) implies condition (i). So it suffices to show that
(i) ⇒ (ii). In this direction suppose that (i) holds. Let f : X → Y be a τ ′-quasicontinuous
function acting from a weakly α-favourable space (X, τ) into (Y, τ ′). Fix 0 < ε and consider
the set

Oε :=
⋃
{U ∈ τ : d− diam[f(U)] ≤ ε}.

Since Oε is a union of τ -open subsets, it is itself, a τ -open subset of X. We claim that Oε

is also dense in (X, τ). In order to verify this claim let us consider an arbitrary nonempty
τ -open subset U0 of X.

Let Z := Gr(f) and let τ ′′ denote the relative product topology of (X, τ) and (Y, τ ′)
on Z. From Proposition 1.5.2, (Z, τ ′′) is a weakly α-favourable topological space. Let
π : (X, τ)× (Y, τ ′) → (Y, τ ′) be defined by, π(x, y) := y for all (x, y) ∈ X ×Y . Clearly, π is
τ ′-continuous on X×Y . Let g := π|Z be the restriction of π to Z. Then g is τ ′-continuous
on (Z, τ ′′).

Therefore, by condition (i), there exists a τ ′′-dense subsetD of Z such that g is d-continuous
at each point of D. In particular, there exists a point

z ∈ D ∩ [(U0 × Y ) ∩ Z] = D ∩ [(U0 × Y ) ∩Gr(f)],

since (U0×Y )∩Gr(f) is τ ′′-open in Z and nonempty. Moreover, since z ∈ Gr(f)∩(U0×Y )
there exists a point x0 ∈ U0 such that z = (x0, f(x0)).

Since g is d-continuous at z, there exist open subsets U ′ of X and W ′ of Y such that

(x0, f(x0)) = z ∈ (U ′ ×W ′) ∩ Z = (U ′ ×W ′) ∩Gr(f) i.e., x0 ∈ U ′ and f(x0) ∈ W ′

and
d− diam[g((U ′ ×W ′) ∩ Z)] < ε.

Now, as x0 ∈ U0 ∩ U ′ and f(x0) ∈ W ′, we have, by the τ ′ quasicontinuity of f , that there
exists a nonempty τ -open subset V of U0∩U ′ such that f(V ) ⊆ W ′. Therefore, if x, y ∈ V ,
then (x, f(x)), (y, f(y)) ∈ (U ′ ×W ′) ∩Gr(f) and so

d(f(x), f(y)) = d(g(x, f(x)), g(x, f(y))) < ε.

Hence, ∅ ̸= V ⊆ Oε∩U0. This shows that Oε is dense in (X, τ). It now only remains to ob-
serve that

⋂
n∈N O1/n is dense in (X, τ) (since weakly α-favourable spaces are Baire spaces,

see remarks just after Theorem 1.1.5) and f is d-continuous at each point of
⋂

n∈N O1/n.

Corollary 1.5.4. Let (Y, τ ′) be a nonempty compact Hausdorff topological space and let
X be a nonempty subset of C(Y ). Then the following conditions are equivalent:

(i) every τp(Y )-continuous mapping f : Z → X from a weakly α-favourable space (Z, τ)
into C(Y ) is ∥ · ∥∞-continuous at the points of a dense subset of (Z, τ);
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(ii) every τp(Y )-quasicontinuous mapping f : Z → X from a weakly α-favourable space
(Z, τ) into X, is ∥ · ∥∞-continuous at the points of a dense subset of (Z, τ).

Next, we explore the connection between norm continuity and the G(τp(Y ), ∥ · ∥∞)-game.

Lemma 1.5.5. Let (X, τ, τ ′) be a bitopological space and let t := (tn : n ∈ N) be a strategy
for the player Σ in the G(τ, τ ′)-game played on (X, τ, τ ′). Then (P, d) is a nonempty
complete metric space, where P denotes the set of all t-plays and d : P × P → [0,∞) is
defined by,

d(p, p′) :=

{
0 if p = p′

1/n if p ̸= p′.

where, p := (Bk : k ∈ N), p′ := (B′
k : k ∈ N) and n := min{i ∈ N : Bi ̸= B′

i}.
Furthermore, for every partial t-play (B1, . . . , Bn) there exists a t-play p := (B′

k : k ∈ N)
such that Bk = B′

k for all 1 ≤ k ≤ n, i.e., every partial t-play has at least one continuation
to a full t-play.

Proof. We will prove the last claim of the lemma and the proof that P is nonempty first.
Let n ∈ N and let (B1, . . . , Bn) be a partial t-play in the G(τ, τ ′)-game played on (X, τ, τ ′).
Let p := (B′

k : k ∈ N) be defined in two parts. Firstly, if 1 ≤ k ≤ n, then B′
k := Bk. Note,

of course, that (B′
1, . . . , B

′
n) is a partial t-play.

If n < k then we define B′
k inductively as follows. Let n ≤ k and suppose that (B1, . . . , B

′
k)

is a partial t-play then B′
k+1 := tk+1(B

′
1, . . . , B

′
k) is well-defined and (B′

1, . . . , B
′
k+1) is a

partial t-play. Indeed, this follows from the fact that tk+1(B
′
1, . . . , B

′
k) is a nonempty

relatively τ -open subset of tk+1(B
′
1, . . . , B

′
k). Hence, tk+1(B

′
1, . . . , B

′
k) is a valid move for

the player Ω in the G(τ, τ ′)-game. This defines the play p := (B′
k : k ∈ N). It follows from

the construction that p is a t-play.

Next we will show that (P, d) is a metric space.

(i) Clearly, 0 ≤ d(p, p′) for all p, p′ ∈ P . Moreover, it follows directly from the definition
of d that d(p, p′) = 0, if and only if, p = p′.

(ii) The symmetry of d also follows directly from the definition of d. As is usually the
case, the triangle inequality is the most difficult property to check.

(iii) Let p, p′, p′′ ∈ P . We will show that d(p, p′′) ≤ d(p, p′) + d(p′, p′′). Suppose that
p := (Bk : k ∈ N), p′ := (B′

k : k ∈ N) and p′′ := (B′′
k : k ∈ N).

Let np,p′′ := min{i ∈ N : Bi ̸= B′′
i }, np,p′ := min{i ∈ N : Pi ̸= P ′

i} and
np′,p′′ := min{i ∈ N : P ′

i ̸= P ′′
i }.

If i < min{np,p′ , np′,p′′z} then Bi = B′
i and B′

i = B′′
i . That is, Bi = B′′

i . Therefore,

{i ∈ N : Bi ̸= B′′
i } ⊆ {i ∈ N : min{np,p′ , np′,p′′} ≤ i}.

Hence, min{np,p′ , np′,p′′} ≤ np,p′′ . Thus, either

d(p, p′′) = 1/np,p′′ ≤ 1/np,p′ = d(p, p′) or d(p, p′′) = 1/np,p′′ ≤ 1/np′,p′′ = d(p′, p′′).

It now follows that d(p, p′′) ≤ d(p, p′) + d(p′, p′′).
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Finally, we need to show that (P, d) is complete. To do this end, let (pn : n ∈ N) be a
Cauchy sequence in (P, d). For each n ∈ N, let pn := (Bn

k : k ∈ N). Since (pn : n ∈ N)
be a Cauchy sequence there exists a strictly increasing sequence (nk : k ∈ N) of natural
numbers such that d− diam[{pi : nk ≤ i}] < 1/k for all k ∈ N. In particular,

d(pnk , pi) < 1/k for all k ∈ N and all nk ≤ i.

Therefore,

Bnk
j = Bi

j for all k ∈ N, all 1 ≤ j ≤ k and all nk ≤ i.

By setting j := k we get that

Bnk
k = Bi

k for all k ∈ N and all nk ≤ i. (∗)

We now define a new sequence p := (Bk : k ∈ N) by, Bk := Bnk
k for all k ∈ N. Notice that

for each fixed k ∈ N, it follows from the definition of p and Equation (∗) (with k replaced
by j and i replaced by nk) that

Bj = B
nj

j = Bnk
j for all 1 ≤ j ≤ k (∗∗)

since nj ≤ nk. Now, for each k ∈ N,

Bk = Bnk
k ⊆ tk(B

nk
1 , . . . , Bnk

k−1) = tk(B1, . . . , Bk−1).

Therefore, p is a t-play. Finally, note that d(pi, p) < 1/k for all nk ≤ i. To see this, fix
k ∈ N and let 1 ≤ j ≤ k. Then, by the definition of p and Equation (∗), (with k replaced
by j) we have that

Bj = B
nj

j = Bi
j for all nj ≤ i.

Since nj ≤ nk it follows that Bj = Bi
j for all nk ≤ i. This show that (pn : n ∈ N) converges

to p ∈ P .

In order to delve deeper into the connection between norm continuity of τp(Y )-continuous
mappings and the G(τp(Y ), ∥ · ∥∞)-game we will need to recall some definitions from set-
valued analysis.

We say shall say that a set-valued mapping F : X → 2Y acting from a topological space
(X, τ) into subsets of a topological space (Y, τ ′) is a τ ′-minimal mapping if: for each pair
of open subsets U of X and W of Y such that F (U) ∩W ̸= ∅, there exists a nonempty
open subset V of U such that F (V ) ⊆ W .

The following three exercises establish some of the most fundamental properties of minimal
mappings.

Exercise 1.5.6. Let F : X → 2T be a set-valued mapping acting from a topological space
(X, τ) into subsets of a topological space (Y, τ ′). Show that if D is a dense subset of (X, τ)
and F is a τ ′-minimal mapping, then F |D : D → 2Y defined by, F |D(x) := F (x) for all
x ∈ D, is also a τ ′-minimal mapping.
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Exercise 1.5.7. Let F : X → 2T be a τ ′-minimal mapping acting from a topological space
(X, τ) into subsets of a topological space (Y, τ ′). Show that if G : X → 2Y is a set-valued
mapping and G(x) ⊆ F (x) for all x ∈ X, i.e., Gr(G) ⊆ Gr(F ), then G is also a τ ′-minimal
mapping.

Exercise 1.5.8. Let f : X → Y be a function acting between topological spaces (X, τ) and
(Y, τ ′) and let F :→ 2Y be defined by, F (x) := {f(x} for all x ∈ X. The F is τ ′-minimal
if, and only if, f is τ ′-quasicontinuous on (X, τ).

Lemma 1.5.9. Let (X, τ, τ ′) be a bitopological space and let t := (tn : n ∈ N) be a
winning strategy for the player Σ in the G(τ, τ ′)-game played on (X, τ, τ ′). Let P denote
the space of all t-plays endowed with the metric d, defined in Lemma 1.5.5. Then the
mapping F : P → 2X defined by, F (p) :=

⋂
n∈N Bn, where p := (Bn : n ∈ N) is a τ -

minimal mapping with nonempty images. Furthermore, if p ∈ P , n ∈ N and A ⊆ X with
F (B(p, 1/n)) ⊆ A, then Bn+1 ⊆ A

τ
, where p := (Bn : n ∈ N).

Proof. Since t is a winning strategy for the player Σ in the G(τ, τ ′)-game played on (X, τ, τ ′),⋂
n∈N Bn ̸= ∅ for each t-play (Bn : n ∈ N) ∈ P . Therefore, F has nonempty images.

Let U be an open subset of P and W be a τ -open subset of X such that F (U) ∩W ̸= ∅.
Choose p := (Bn : n ∈ N) ∈ U such that F (p)∩W =

⋂
n∈N Bn ∩W ̸= ∅, i.e., Bn ∩W ̸= ∅

for each n ∈ N. Since U is open there exists a k ∈ N such that B(p, 1/k) ⊆ U . Then

(B1, . . . , Bk, Bk+1 ∩W )

is a partial t-play of length k + 1, since Bk+1 ∩ W is a nonempty relatively open subset
of tk+1(B1, . . . , Bk). Let p′ := (B′

n : n ∈ N) be a continuation of (B1, . . . , Bk, Bk+1 ∩W ).
Note that by Lemma 1.5.5 such a continuation exists. Then p′ ∈ B(p, 1/k) since Bn = B′

n

for all 1 ≤ n ≤ k. Furthermore, if V := B(p, 1/(k+1)) then, V is a nonempty open subset
of B(p, 1/k) and F (V ) ⊆ W . Indeed, if p′′ := (B′′

n : n ∈ N) ∈ V = B(p′, 1/(k + 1)) then
B′′

n = B′
n for all 1 ≤ n ≤ k + 1 and so

F (p′′) =
⋂

n∈NB
′′
n ⊆ B′′

k+1 = B′
k+1 = (Bk+1 ∩W ) ⊆ W.

To justify the last assertion of this lemma consider p := (Bk : k ∈ N) ∈ P , n ∈ N and
A ⊆ X such that F (B(p, 1/n)) ⊆ A and suppose, in order to obtain a contradiction, that
Bn+1 ̸⊆ A

τ
. Then (B1, . . . , Bn, Bn+1\A

τ
) is a partial t-play of length (n+1), since Bn+1\A

τ

is a nonempty relatively τ -open subset of tn+1(B1, . . . , Bn). Let p
′ := (B′

n : n ∈ N) be any
continuation of (B1, . . . , Bn, Bn+1 \ A

τ
). Note that by Lemma 1.5.5 such a continuation

exists. Moreover, p′ ∈ B(p, 1/n) since Bk = B′
k for all 1 ≤ k ≤ n. However,

F (p′) =
⋂

k∈NB
′
k ⊆ B′

n+1 = (Bn+1 \ A
τ
) ⊆ (X \ Aτ

) ⊆ (X \ A);

which contradicts the assumption that ∅ ̸= F (p′) ⊆ F (B(p, 1/n)) ⊆ A.

Suppose that (X, τ) and (Y, τ ′) are topological spaces and Φ : X → 2Y . If x0 ∈ X then
we say that Φ is τ ′-upper semicontinuous at x0 if, for every W ∈ τ ′ that contains Φ(x0)
there exists a neighbourhood U of x0 such that Φ(U) ⊆ W . Here we are using the notation

47



Φ(U) :=
⋃
{Φ(u) : u ∈ U}. If Φ is τ ′-upper semicontinuous at every point of X then we

say that Φ is τ ′-upper semicontinuous on X. When there is no ambiguity concerning the
topology τ ′, we shall simply say that Φ is upper semicontinuous on X.

From this definition one can immediately deduce the following.

Exercise 1.5.10. Suppose that (X, τ) and (Y, τ ′) are topological spaces and Φ : X → 2Y .
Show that Φ : X → 2Y is upper semicontinuous on X if, and only if, for each open subset
W of Y , {x ∈ X : Φ(x) ⊆ W} is an open subset of X.

An important bridge between the study of set-valued mappings (and minimal mappings
in particular) and quasicontinuous mappings, is the notion of a selection. A function
s : X → Y acting from a set X into a set Y is called a selection of a set-valued mapping
Φ : X → 2Y if, s(x) ∈ Φ(x) for all x ∈ X. In the case when (X, τ) and (Y, τ ′) are
topological spaces and Φ is a τ ′-minimal mapping, it is easy, but important, to see that
every selection s : X → Y of Φ, is τ ′-quasicontinuous on (X, τ). Of particular significance
to us is the following proposition.

Proposition 1.5.11. Let (Y, τ, τ ′) be a bitopological space with the property that:

(a) (Y, τ ′) is T1 and

(b) for every U ∈ τ ′ and every x ∈ U there exists a V ∈ τ ′ such that x ∈ V ⊆ V
τ ⊆ U .

Consider a τ -minimal mapping Φ : X → 2Y acting from a topological space (X, τ ′′) into
subset of Y and a selection s : D → Y of Φ defined on a dense subset D of (X, τ ′′). Then,

(i) for any open subset W of (X, τ ′′), Φ(W ) ⊆ s(W ∩D)
τ
;

(ii) if s : D → Y is τ ′-continuous at x0 ∈ D, then Φ(x0) = {s(x0)} and Φ is τ ′-upper
semicontinuous at x0.

Proof. (i) Suppose, in order to obtain a contradiction, that W is an open subset of (X, τ ′′)

and Φ(W ) ̸⊆ s(W ∩D)
τ
. Then, since Φ is a τ -minimal mapping there exists a nonempty

open subset V of W such that Φ(V ) ∩ s(W ∩D)
τ
. Therefore,

∅ ̸= s(V ∩D) ⊆ Φ(V ) ⊆ (Y \ s(W ∩D)
τ
) ⊆ Y \ s(V ∩D);

which is impossible. Therefore, Φ(W ) ⊆ s(U ∩D)
τ
.

(ii) Let x0 ∈ D and suppose that s : D → Y is τ ′-continuous at x0. It will be sufficient to
show, because of the assumed properties of τ and τ ′, that for each τ ′-open neighbourhood
V of s(x0) there exists an open neighbourhood W of x0 such that Φ(W ) ⊆ V

τ
. In fact,

because of part (i) it will be sufficient to that for each τ ′-open neighbourhood V of s(x0)
there exists an open neighbourhood W of x0 such that σ(W ∩ D) ⊆ V

τ
. However, this

follows directly from the fact that s is τ ′-continuous at x0.

We can now state and prove the main theorem of this section.

Theorem 1.5.12 ([31]). Let (Y, τ, τ ′) be a bitopological space with the property that:
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(a) (Y, τ ′) is T1 and

(b) for every U ∈ τ ′ and every x ∈ U there exists a V ∈ τ ′ such that x ∈ V ⊆ V
τ ⊆ U .

Then the following are equivalent:

(i) the G(τ, τ ′)-game played on (Y, τ, τ ′) is Σ-unfavourable;

(ii) every τ -quasicontinuous mapping f : X → Y from a complete metric space (X, ρ)
into Y has at least one point of τ ′-continuity;

(iii) every τ -quasicontinuous mapping f : X → Y from a weakly α-favourable space
(X, τ ′′) into Y is τ ′-continuous at each point of a dense subset of (X, τ ′′).

Proof. (i) ⇒ (iii). Let f : X → Y be a τ -quasicontinuous mapping from a weakly α-
favourable space (X, τ ′′) into Y and let W be a nonempty τ ′′-open subset of X. We wish
to show that

{x ∈ X : f is τ ′-continuous} ∩W ̸= ∅.

To accomplish this, we will inductively define strategy t := (tn : n ∈ N) for the player Σ
in the G(τ, τ ′)-game played on (Y, τ, τ ′), and then exploit the assumption that the G(τ, τ ′)-
game is Σ-unfavourable. Since (X, τ ′′) is weakly α-favourable there exists a winning strat-
egy s := (sn : n ∈ N) for the player α in the Ch(X)-game played on (X, τ ′′).

Let t1(∅) := f(W ). Then t1(∅) is a nonempty subset of Y and hence a valid move for the
player Σ.

Step 1. Let (B1) be a partial t-play of length 1 in the G(τ, τ ′)-game played on (Y, τ, τ ′), i.e.,
B1 is a nonempty relatively τ -open subset of t1(∅) = f(W ). Since f is τ -quasicontinuous
there exists a nonempty open subset A(B1) of X such that f(A(B1)) ⊆ B1. Let t2(B1) :=
f(s1(A(B1))). Then t2(B1) is nonempty and t2(B1) = f(s1(A(B1))) ⊆ f(A(B1)) ⊆ B1.

Let n ∈ N and suppose that tj+1 and A(B1,...,Bj) have been defined for each partial t-play
(B1, . . . , Bj) of length j with 1 ≤ j ≤ n so that:

(i) (A(B1), . . . , A(B1,...,Bj)) is a partial s-play;

(ii) f(A(B1,...,Bj)) ⊆ Bj and

(iii) tj+1(B1, . . . , Bj) := f(sj(A(B1), . . . , A(B1,...,Bj))).

Step n + 1. Let (B1, . . . , Bn+1) be a partial t-play of length n + 1. Then Bn+1 is
a nonempty relatively τ -open subset of tn+1(B1, . . . , Bn) = f(sn(A(B1), . . . , A(B1,...,Bn))).
Therefore, since f is τ -quasicontinuous, there exists a nonempty open subset A(B1,...,Bn+1)

of sn(A(B1), . . . , A(B1,...,Bn)) such that f(A(B1,...,Bn+1)) ⊆ Bn+1. Then define,

t(n+1)+1(B1, . . . , Bn+1) := f(sn+1(A(B1), . . . , A(B1,...,Bn+1))).

This completes the definition of t := (tn : n ∈ N). Since the game G(τ, τ ′)-game is Σ-
unfavourable there exists a t-play (Bn : n ∈ N) where the player Ω wins. However, by
construction (A(B1,...,Bn) : n ∈ N) is an s-play. Hence,

∅ ̸=
⋂

n∈NA(B1,...,Bn) =
⋂

n∈Nsn(A(B1), . . . , A(B1,...,Bn))
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and so

∅ ̸= f(
⋂

n∈Nsn(A(B1), . . . , A(B1,...,Bn))) ⊆
⋂

n∈Nf(sn(A(B1), . . . , A(B1,...,Bn)))

=
⋂

n∈Ntn+1(B1, . . . , Bn) =
⋂

n∈NBn.

Therefore,
⋂

n∈N Bn := {y} for some y ∈ Y and for every U ∈ τ ′ with y ∈ U there exists
a k ∈ N such that Bk ⊆ U . Let x ∈

⋂
n∈N A(B1,...,Bn) ⊆ W . Then f(x) = y and for every

U ∈ τ ′ with f(x) ∈ U there exists a k ∈ N such that f(A(B1,...,Bk)) ⊆ Bk ⊆ U . This shows
that f is τ ′-continuous at x ∈ W ; which in turn shows that {x ∈ X : f is τ ′-continuous}
is dense in (X, τ ′′).

(iii) ⇒ (ii) is obvious as every complete metric space is weakly α-favourable.

(ii) ⇒ (i). Let t := (tn : n ∈ N) be an arbitrary strategy for the player Σ in the G(τ, τ ′)-
game played on (X, τ, τ ′). For the sole purpose of obtaining a contradiction, let us assume
that t is not a winning strategy for the player Σ. Let P denote the set of all t-plays.Then,
by Lemma 1.5.5, (P, d) is a nonempty complete metric space, where d : P × P → [0,∞) is
defined by,

d(p, p′) :=

{
0 if p = p′

1/n if p ̸= p′.

where, p := (Bk : k ∈ N), p′ := (B′
k : k ∈ N) and n := min{i ∈ N : Bi ̸= B′

i}.

Let F : P → 2Y be defined by, F (p) :=
⋂

n∈N Bn, where p := (Bn : n ∈ N). Then by
Lemma 1.5.9, we have that F is a τ -minimal mapping with nonempty images. Next, let
s : P → Y be any selection of F . From the discussion just prior to Proposition 1.5.11,
or simply, by direct observation, we have that s is a τ ′-quasicontinuous mapping. Hence,
by assumption, there exists a t-play p0 := (Bn : n ∈ N) ∈ P , where s is τ ′-continuous.
By Proposition 1.5.11 part (ii), it follows that {s(p0)} = F (p0) =

⋂
n∈N Bn and F is τ ′-

upper semicontinuous at p0. We now claim that the play p0 is won by Ω. To confirm this
assertion let U be any τ ′-open neighbourhood of s(p0). From the assumed properties of
the topologies τ and τ ′ there exists a V ∈ τ ′ such that s(p0) ∈ V ⊆ V

τ ⊆ U . Since, F is
τ ′-upper semicontinuous at p0 there exists an n ∈ N such that F (B(p0, 1/n)) ⊆ V . Then,
by Lemma 1.5.9, Bn+1 ⊆ V

τ ⊆ U . This shows that the play p0 is won by Ω; which in turn
completes the proof.

Theorem 1.5.13 ([31]). Let (Y, τ ′) be a nonempty compact Hausdorff topological space
and let X be a nonempty subset of C(Y ). Then the following conditions are equivalent:

(i) the player Σ possesses a winning strategy in the G(τp(Y ), τp(Y ))-game played on
(X, τp(Y ), τp(Y ));

(ii) the player Σ possesses a winning strategy in the G(τp(Y ), ∥ · ∥∞)-game played on
(X, τp(Y ), ∥ · ∥∞);

(iii) the player Σ possesses a strategy σ := (σn : n ∈ N) for the G(τp(Y ), τp(Y ))-game
played on (X, τp(Y ), τp(Y )) such that, for every σ-play (Bn : n ∈ N); (a)

⋂
n∈N Bn ̸=

∅ and (b) there exists a sequence (fn : n ∈ N) in C(Y ), with fn ∈ Bn for all n ∈ N,
that has no τp(Y )-cluster points.
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Proof. The implications (iii) ⇒ (i) and (i) ⇒ (ii) are evident. Therefore, we need only
prove that (ii) ⇒ (iii).

To this end, suppose that (ii) holds. Let t := (tn : n ∈ N) be a winning strategy for the
player Σ in the G(τp(Y ), ∥ · ∥∞)-game played on (X, τp(Y ), ∥ · ∥∞)). We shall inductively
define a strategy σ := (σn : n ∈ N) for the player Σ in the G(τp(Y ), τp(Y ))-game played on
(X, τp(Y ), τp(Y )).

Base Step. Let σ1(∅) := t1(∅); which is a nonempty subset of X.

Step 1. Let (B1) be an σ-play of length 1, i.e., B1 is a nonempty relatively τp(Y )-open
subset of σ1(∅). Let A := t2(B1). Then A is well-defined, since B1 is a nonempty relatively
τp(Y )-open subset of t1(∅) = σ1(∅). Furthermore, A is a nonempty subset.
Let s(B1) := sup{ωA(x) : x ∈ Y }, f(B1) ∈ A, ε := 1 and

W := {(x, y) ∈ Y 2 : |f(B1)(x)− f(B1)(y)| < 1}.

Then 0 < ε and W is an open neighbourhood of ∆Y . Hence, by Lemma 1.4.6, there exists
a nonempty relatively τp(Y )-open subset U of A and a point (x(B1), y(B1)) ∈ W such that

(i) min{1, s(B1) − 1} < |g(x(B1))− g(y(B1))| for all g ∈ U and

(ii) ∥ · ∥∞ − diam[U ] ≤ 2s(B1) + 1.

Let σ2(B1) := U . Note that σ2(B1) is a nonempty relatively τp(Y )-open subset of t2(B1).

Now, let n ∈ N and suppose that σj+1, (x(B1,...,Bj), y(B1,...,Bj)) ∈ Y 2, f(B1,...,Bj) ∈ C(Y ) and
s(B1,...,Bj) ∈ [0,∞] have been defined for every partial σ-play (B1, . . . , Bj) of length j with
1 ≤ j ≤ n so that:

(aj) (B1, . . . , Bj) is a partial t-play and σj+1(B1, . . . , Bj) is a nonempty relatively τp(Y )-
open subset of tj+1(B1, . . . , Bj);

(bj) s(B1,...,Bj) := sup{ωA(x) : x ∈ Y }, where A := tj+1(B1, . . . , Bj);

(cj) f(B1,...,Bj) ∈ Bj;

(dj) |f(B1,...,Bk)(x(B1,...,Bj))− f(B1,...,Bk)(y(B1,...,Bj))| < 1/j for all 1 ≤ k ≤ j;

(ej) min{1, s(B1,...,Bj) − 1/j} < |g(x(B1,...,Bj))− g(y(B1,...,Bj))| for all g ∈ σj+1(B1, . . . , Bj);

(fj) diam[σj+1(B1, . . . , Bj)] ≤ 2s(B1,...,Bj) + 1/j.

Step n+ 1. Suppose that (B1, . . . , Bn+1) is a partial σ-play of length n+ 1. Then Bn+1 is
a nonempty relatively τp(Y )-open subset of σn+1(B1, . . . , Bn), which in turn, is by (an), a
relatively τp(Y )-open subset of tn+1(B1, . . . , Bn). Therefore, Bn+1 is a nonempty relatively
τp(Y )-open subset of tn+1(B1, . . . , Bn). Thus, (B1, . . . , Bn+1) is a partial t-play, since by
(an), (B1, . . . , Bn) is a partial t-play. This shows that the first part of (an+1) is satisfied.

Let A := t(n+1)+1(B1, . . . , Bn+1). Note that A is nonempty subset of Bn+1.
Let s(B1,...,Bn+1) := sup{ωA(x) : x ∈ Y }, f(B1,...,AB+1) ∈ A, ε := 1/(n+ 1) and

W := {(x, y) ∈ Y 2 : |f(B1,...,Bk)(x)− f(B1,...,Bk)(y)| < 1/(n+ 1) for all 1 ≤ k ≤ (n+ 1)}.
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Note that (bn+1) and (cn+1) are satisfied. Then 0 < ε and W is an open neighbourhood of
∆Y . Hence, by Lemma 1.4.6, there exists a nonempty relatively τp(Y )-open subset U of A
and a point (x(B1,...,Bn+1), y(B1,...,Bn+1)) ∈ W such that

(i) min{1, s(B1,...,Bn+1) − 1/(n+ 1)} < |g(x(B1,...,Bn+1))− g(y(B1,...,Bn+1))| for all g ∈ U and

(ii) ∥ · ∥∞ − diam[U ] ≤ 2t(B1,...,Bn+1) + 1/(n+ 1).

Note that since (x(B1,...,Bn+1), y(B1,...,Bn+1)) ∈ W , (dn+1) is satisfied.

Let σ(n+1)+1(B1, . . . , Bn+1) := U . Note that U is a relatively τp(Y )-open subset of A =
t(n+1)+1(B1, . . . , Bn+1) and hence, the second part of (an+1) is satisfied. Note also that
(en+1) is satisfied by (i) above and (fn+1) is satisfied by (ii) above.

This completes the definition of σ := (σn : n ∈ N).
We now show that σ has the desired properties. Let (Bn : n ∈ N) be an arbitrary σ-play.
By construction, (Bn : n ∈ N) is also a t-play. Therefore,

⋂
n∈N Bn ̸= ∅, since t is a

winning strategy for the player Σ. Furthermore, f(B1,...,Bn) ∈ Bn for all n ∈ N, however, the
sequence (f(B1,...,Bn) : n ∈ N) does not possess any τp(Y )-cluster points. To prove this last
assertion, we will assume, for the purpose of obtaining a contradiction, that the sequence
(f(B1,...,Bn) : n ∈ N) does in fact possess a τp(Y )-cluster point, which we will call f∞.

At this point we shall also simplify our notation.

For each n ∈ N, let xn := x(B1,...,Bn), yn := y(B1,...,Bn), sn := s(B1,...,Bn) and fn := f(B1,...,Bn).
By construction

min{1, sn − 1/n} < |fk(xn)− fk(yn)| if 1 ≤ n < k (∗)

since fk ∈ Bk ⊆ Bn+1 ⊆ σn+1(B1, . . . , Bn), see Property (en) and

|fn(xk)− fn(yk) < 1/k if 1 ≤ n ≤ k (∗∗)

see, Property (dk). By inequality (∗)

min{1, sn − 1/n} ≤ |f∞(xn)− f∞(yn)| for all n ∈ N. (∗∗∗)

On the other hand, since Y 2 is compact and (xn, yn) ∈ Y 2 for all n ∈ N, the sequence
((xn, yn) : n ∈ N) has a cluster-point (x∞, y∞) ∈ Y 2 and furthermore, by (∗∗), we have
that

0 ≤ |fn(x∞)− fn(y∞)| ≤ 0 for all n ∈ N.

That is, fn(x∞) = fn(y∞) for all n ∈ N. Therefore,

f∞(x∞) = f∞(y∞). (∗∗∗∗)

We now claim that infn∈N sn = limn→∞ sn = 0. Firstly, note that 0 ≤ sn+1 ≤ sn for all
n ∈ N. Therefore, by the Monotone Convergence Theorem, limn→∞ sn exists and equals
infn∈N sn. Next, suppose, in order to obtain a contradiction, that 0 < s := infn∈N sn. Then
min{1, s− 1/n} ≤ min{1, sn − 1/n} for all n ∈ N. If N ∈ N and 2/s < N then

0 < min{1, s/2} ≤ min{1, s− 1/N} ≤ min{1, s− 1/n} for all N ≤ n.
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Hence, by (∗∗∗)

0 < min{1, s/2} ≤ |f∞(xn)− f∞(yn)| for all N < n.

Since, (x, y) 7→ |f∞(x)−f∞(y)|, is continuous on Y 2, 0 < min{1, t/2} ≤ |f∞(x∞)−f∞(y∞)|;
which contradicts Equation (∗∗∗∗). Therefore s must equal zero, i.e., limn→∞ sn = 0.

It now follows from Property (fn) that

0 ≤ ∥ · ∥∞ − diam[Bn+1] ≤ ∥ · ∥∞ − diam[σn+1(B1, . . . , Bn)] ≤ 2sn + 1/n for all n ∈ N.

Thus, limn→∞ ∥ · ∥∞ − diam[Bn] = 0. This shows that the t-play (Bn : n ∈ N) is won by
the player Ω; which contradicts the assumption that t is a winning strategy for the player
Σ. Hence, our supposition that (f(B1,...,Bn) : n ∈ N) has a τp(Y )-cluster point must have
been false.

We now state and prove our main theorem for this section of the monograph.

Theorem 1.5.14 ([31]). Let (Y, τ ′) be a nonempty compact Hausdorff topological space
and let X be a nonempty subset of C(Y ). Then the following conditions are equivalent:

(i) every τp(Y )-quasicontinuous mapping f : Z → X from a complete metric space (Z, ρ)
into X has at least one point of τp(Y )-continuity;

(ii) the player Σ does not possess a winning strategy in the G(τp(Y ), τp(Y ))-game played
on (X, τp(Y ), τp(Y ));

(iii) the player Σ does not possess a winning strategy in the G(τp(Y ), ∥ · ∥∞)-game played
on (X, τp(Y ), ∥ · ∥∞);

(iv) every τp(Y )-quasicontinuous mapping f : Z → X from a complete metric space (Z, ρ)
into X has at least one point of ∥ · ∥∞-continuity;

(v) every τp(Y )-quasicontinuous mapping f : Z → X from a weakly α-favourable space
(Z, τ) into X is ∥ · ∥∞-continuous at each point of a dense subset of (Z, τ);

(vi) every τp(Y )-continuous mapping f : Z → X from a weakly α-favourable space (Z, τ)
into X is ∥ · ∥∞-continuous at each point of a dense and Gδ subset of (Z, τ).

Proof. (i) ⇒ (ii). This follows directly from Theorem 1.5.12.

(ii) ⇔ (iii). This follows directly from Theorem 1.5.13.

(iii) ⇒ (iv) and (iv) ⇒ (v) follow directly from Theorem 1.5.12.

Now, (v) ⇔ (vi) follows from Corollary 1.5.4 and the fact that the set of points of norm
continuity always form a Gδ set.

(v) ⇒ (i) is obvious, after one recalls that all complete metric spaces are weakly α-
favourable.
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Motivated by Theorem 1.5.14 we introduce the following definition.

We shall say that a nonempty compact Hausdorff topological space (Y, τ ′) belongs to T ∗

if every τp(Y )-continuous mapping f : Z → C(Y ) from a weakly α-favourable space (Z, τ)
into C(Y ) is ∥ · ∥∞-continuous at each point of a dense and Gδ subset of (Z, τ).

Clearly, N ∗ ⊆ T ∗ and an example of R. Haydon, [20, Theorem 3.3], based upon a tree of
Todorčević, [51] shows that N ∗ is, in fact, a proper subclass of T ∗.

Note also that any compact space (Y, τ ′) ∈ T ∗ \ N ∗ is an example of a space where the
G(τp(Y ), ∥ · ∥∞)-game played on (C(Y ), τp(Y ), ∥ · ∥∞) is undetermined, i.e., neither player,
Σ nor Ω, possesses a winning strategy. Indeed, if the player Ω has a winning strategy in
the G(τp(Y ), ∥ · ∥∞)-game, then C(Y ) would be fragmented by a metric whose topology
on C(Y ) would be at least as strong as the norm topology on C(Y ) (see Theorem 1.4.4),
and so, (Y, τ ′) would be a co-Namioka space (see Corollary 1.4.2), which it is not. On
the other hand, by Theorem 1.5.14, the player Σ does not possess winning strategy in the
G(τp(Y ), ∥ · ∥∞)-game either, since (Y, τ ′) ∈ T ∗.

Thus, topological games, appear to be a natural tool for exploring the connection between
separate and joint continuity.

Corollary 1.5.15 ([31]). Suppose that (Y1, τ
′
1) and (Y2, τ

′
2) are nonempty compact Haus-

dorff topological spaces. Suppose also that X1 is a nonempty subset of C(Y1) and X2 is
a nonempty subset of C(Y2). If (X1, τp(Y1)) is homeomorphic to (X2, τp(Y2)) then the
following properties are equivalent:

(i) every τp(Y )-continuous mapping f : Z → X1 from a weakly α-favourable space (Z, τ)
into X1 is ∥ · ∥∞-continuous at each point of a dense and Gδ subset of (Z, τ);

(ii) every τp(Y )-continuous mapping f : Z → X2 from a weakly α-favourable space (Z, τ)
into X2 is ∥ · ∥∞-continuous at each point of a dense and Gδ subset of (Z, τ).

In particular, if Cp(Y1) is homeomorphic to Cp(Y2), then (Y1, τ
′
1) ∈ T ∗ if, and only if,

(Y2, τ
′
2) ∈ T ∗.

Proof. This holds because either of the conditions (i) or (ii) of Theorem 1.5.14 characterise
the class T ∗ solely in terms of the τp(Y )-topology.

The fourth-coming

Lemma 1.5.16 ([7, Corollary C]). Let (Y, τ) be a nonempty compact Hausdorff space and
let D be a countable dense subset of Y . Then every subset of C(Y ) which is compact with
respect to the τp(D)-topology and Lindelöf with respect to the τp(Y )-topology, is separable
in (C(K), ∥ · ∥∞).

For the ensuing theorem we will let T denote the set of all finite sequences of 0’s and
1’s, including the sequence of length 0, which will be denoted by ∅. It t ∈ T , (i.e.,
t := (t1, t2, . . . , tn) for some n ∈ N, or t = ∅) then we define the length of t , denoted |t|,
to be n if, t := (t1, t2, . . . , tn) for some n ∈ N or 0 if t = ∅. We will also write t1 for the
sequence (t1, t2, . . . , tn, 1) and t0 for the sequence (t1, t2, . . . , tn, 0). Of course, if |t| = 0
then ∅1 = (1) and ∅0 = (0).
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Theorem 1.5.17 ([31,33]). Let (Y, τ ′) be a nonempty compact Hausdorff space and let X
be a Lindelöf subspace of Cp(Y ). Then every τp(Y )-continuous mapping f : Z → X from
a weakly α-favourable space (Z, τ) into X is ∥ · ∥∞-continuous at each point of a dense and
Gδ subset of (Z, τ).

Proof. We shall apply Theorem 1.5.14. Specifically, we shall use the fact that condition
(iv) of Theorem 1.5.14 implies condition (vi) of Theorem 1.5.14. Let (Z, ρ) be a complete
metric space and let f : Z → X be a τp(Y )-quasicontinuous mapping. Fix 0 < ε and
consider the set

Oε :=
⋃
{U ∈ 2Z : U is open and ∥ · ∥∞ − diam[f(U)] ≤ ε}.

Since Oε is a union of open sets, it is itself, an open subset of Z. We claim Oε is also
dense in (Z, ρ). To verify this claim, we will assume, for the sole purpose of obtaining a
contradiction, that Oε is not dense in (Z, ρ). Then there exists a nonempty open subset
W of Z such that Oε ∩W = ∅. In particular, ε < ∥ · ∥∞ − diam[f(U)] for every nonempty
open subset U of W .

We shall inductively (on the length |t| of t ∈ T ) define the following: nonempty open
subsets Ut of Z, elements xt ∈ Y and dense open subsets {Ot

k : k ∈ N} of Z that fulfil the
following properties:

(a) the mapping, z 7→ f(z)(xt), is continuous at each point of
⋂

k∈N O
t
k;

(b) Ut0 ∪ Ut1 ⊆ Ut ∩
⋂
{Ot′

k : 1 ≤ k ≤ |t|+ 1 and |t′| ≤ |t|} and diam[Ut] < 1/2|t|;

(c) if h ∈ f(Ut0) and g ∈ f(Ut1) then ε ≤ (g − h)(xt).

First, let U∅ be any nonempty open subset of W with diam[Ut] < 1 = 1/20.

Base Step. By assumption ε < ∥ · ∥∞ − diam[f(U∅)], hence there exist x, y ∈ U∅ such
that ε < ∥f(x) − f(y)∥∞. After possibly interchanging the names of x and y we may
choose x∅ ∈ Y such that (f(x)− f(y))(x∅) = ε+ δ for some 0 < δ. Furthermore, since the
mapping, z 7→ f(z)(x∅), is quasicontinuous, there exist dense open subsets {O∅

k : k ∈ N}
of Z such that, z 7→ f(z)(x∅), is continuous at each point of

⋂
k∈N O

∅
k. Let

U(1) := {z ∈ U∅ : f(z)(x∅) > f(x)(x∅)−
δ

2
} and U(0) := {z ∈ U∅ : f(z)(x∅) < f(y)(x∅)+

δ

2
}.

Then, ε ≤ (g − h)(x∅) for all h ∈ f(U(0)) and g ∈ f(U(1)). Note that by possibly making
U(0) and U(1) smaller we may assume that:

(i) U(0) ∪ U(1) ⊆ U∅ ∩O∅
1 and

(ii) diam[U(0)] < 1/2 and diam[U(1)] < 1/2.

Clearly, U(0) and U(1) are nonempty open subsets of U∅, x∅ ∈ Y and {O∅
k : k ∈ N} are dense

open subset of Z, which together satisfy the properties (a), (b) and (c).

Now suppose that Ut, xt′ and {Ot′

k : k ∈ N} have been defined for all t ∈ T with |t| ≤ n
and all t′ ∈ T with |t′| < n.
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Inductive Step. Consider t ∈ T of length n. By assumption ε < ∥ · ∥∞−diam[f(Ut)], hence
there exist x, y ∈ Ut such that ε < ∥f(x)−f(y)∥∞. After possibly interchanging the names
of x and y we may choose xt ∈ Y such that (f(x) − f(y))(xt) = ε + δ for some 0 < δ.
Furthermore, since the mapping, z 7→ f(z)(xt), is quasicontinuous, there exist dense open
subsets {Ot

k : k ∈ N} of Z such that, z 7→ f(z)(xt), is continuous at each point of
⋂

k∈NO
t
k.

Let

Ut1 := {z ∈ Ut : f(z)(xt) > f(x)(xt)−
δ

2
} and Ut0 := {z ∈ Ut : f(z)(xt) < f(y)(xt) +

δ

2
}.

Then, ε ≤ (g− h)(xt) for all h ∈ f(Ut0) and g ∈ f(Ut1). Note that by possibly making Ut0

and Ut1 smaller we may assume that:

(i) Ut0 ∪ Ut1 ⊆ Ut ∩
⋂
{Ot′

k : 1 ≤ k ≤ |t|+ 1 and |t′| ≤ |t|} and

(ii) diam[Ut0] < 1/2|t0| and diam[Ut1] < 1/2|t1|.

Clearly, Ut0 and Ut1 are nonempty open subsets of Ut, xt ∈ Y and {Ot
k : k ∈ N} are dense

open subset of Z, which together satisfy the properties (a), (b) and (c).

This completes the induction. Let D := {xt : t ∈ T} and let K := D. By construction,
the set C :=

⋂
n∈N Cn, where Cn :=

⋃
|t|=n Ut, is a closed and totally bounded subset of Z

(and hence compact, since (Z, ρ) is complete). Furthermore, the construction also yields
that for each t ∈ T , C ⊆

⋂
k∈N O

t
k. Indeed, if t ∈ T and and k ∈ N, then K ⊆ Km+1 ⊆ Ot

k,
where m := max{k, |t|}. Thus, for each t ∈ T , the mapping, z 7→ f(z)(xt), is continuous
on C. Note also that for each pair of distinct points x and x′ in C there exists a t ∈ T
such that ε ≤ |f(x)(xt) − f(x′)(xt)|. Next, we consider the mapping R : C(Y ) → C(K)
defined by, R(f) := f |K . Then (R ◦ f)(C) is a non-separable subset of (C(K), ∥ · ∥∞)
that is compact with respect to τp(D). Moreover, since that τp(D)-topology on C(K)
is Hausdorff, (R ◦ f)(C) is closed in the τp(D)-topology and hence closed in the τp(K)-
topology on C(K). However, by Lemma 1.5.16, this is impossible since (R◦f)(C) ⊆ R(L);
which is Lindelöf. This shows that Oε is dense in (Z, ρ). It now only remains to observe
that f is ∥ · ∥∞-continuous at each point of

⋂
n∈N O1/n.

Corollary 1.5.18. If (Y, τ ′) is a nonempty compact Hausdorff space and Cp(Y ) is Lindelöf,
then (Y, τ ′) ∈ T ∗.

Proof. This follows directly from Theorem 1.5.17.

Corollary 1.5.19 ([33]). If (Z, τ) is weakly α-favourable and Lindelöf, then (Z, τ) ∈ N ,
i.e., (Z, τ) is a Namioka space.

Proof. Let f : Z → C(Y ) be a τp(Y )-continuous mapping. Let X := f(Z). Then X is a
Lindelöf subset of Cp(K). The result now follows form Theorem 1.5.17.

We now demonstrate how Theorem 1.5.14 may be used, to show that certain compact
spaces are not members of T ∗. Our results depend upon the following two lemmas.

Lemma 1.5.20 ( [4]). Let x∗ ∈ ℓ∞(N)∗ and let M be an infinite subset of N. Then
there exists an infinite subset M ′ ⊆ M such that |x∗(x)| < 1 whenever ∥x∥∞ ≤ 2 and
supp(x) ⊆ M ′. Here, supp(x) := {n ∈ N : xn ̸= 0}.

56



Proof. Suppose that the lemma is false. Take some d ∈ N with 2∥x∗∥ < d and find a
disjoint family {Mi : 1 ≤ i ≤ d} of infinite subsets of M . Since each Mi, i ∈ {1, . . . , d}
fails the property stated in the lemma, there are some elements xi ∈ ℓ∞(N), i ∈ {1, . . . , d}
such that (i) ∥xi∥∞ ≤ 2; (ii) supp(xi) ⊆ Mi and (iii) 1 ≤ x∗(xi). Then, for x :=

∑d
i=1 xi

we have that ∥x∥∞ ≤ 2 and

2∥x∗∥ < d ≤
∑d

i=1x
∗(xi) = x∗(x) ≤ ∥x∗∥∥x∥∞ ≤ 2∥x∗∥.

This contradiction completes the proof of the lemma.

For the next lemma we need to introduce some more notion. Firstly, we shall denote by
P∞(N) the set of all subsets of N whose complement, in N, is infinite. For each M ∈ P∞(N)
and each x := (xn : n ∈ N) ∈ ℓ∞(N) we denote by

S(x,M) := {y ∈ ℓ∞(N) : ∥y∥∞ ≤ 1 and ym = xm for all m ∈ M}.

Note that for each x ∈ ℓ∞(N) and M ∈ P∞(N), ∥ · ∥∞ − diam[S(x,M)] = 2.

Lemma 1.5.21 ([32]). Let x ∈ ℓ∞(N) and let M ∈ P∞(N). Then for each weak open subset
U of ℓ∞(N) with U ∩ S(x,M) ̸= ∅ there exists a x′ ∈ S(x,M) and a set M ′ ∈ P∞(N),
containing M , such that S(x′,M ′) ⊆ U ∩ S(x,M).

Proof. Let x ∈ ℓ∞(N), M ∈ P∞(N) and let U be a weak open subset of ℓ∞(N) such that
U ∩ S(x,M) ̸= ∅. Let x′ be any element of U ∩ S(x,M). By the definition of the weak
topology on ℓ∞(N) there exists x∗

i , 1 ≤ i ≤ k such that

x′ ∈
⋂

1≤i≤k{y ∈ ℓ∞(N) : |x∗
i (y − x′)| < 1} ⊆ U. (∗)

We now apply Lemma 1.5.20 consecutively to the functionals x∗
1, x

∗
2, . . . , x

∗
k to arrive at

an infinite subset L of (N \ M) such that |x∗
i (z)| < 1 whenever 1 ≤ i ≤ k, ∥z∥∞ ≤ 2

and supp(z) ⊆ L. Let M ′ := (N \ L). Then M ′ ∈ P∞(N) and M ⊆ M ′. We claim
that S(x′,M ′) ⊆ U ∩ S(x,M). Firstly, we will show that S(x′,M ′) ⊆ S(x,M). To this
end, let y ∈ S(x′,M ′). Then yj = x′

j for all j ∈ M ′. In particular, yj = x′
j for all

j ∈ M , as M ⊆ M ′. On the other hand, x′
j = xj for all j ∈ M , as x′ ∈ S(x,M).

Therefore, yj = x′
j = xj for all j ∈ M . Since ∥y∥∞ ≤ 1, it follows that y ∈ S(x,M).

Thus, S(x′,M ′) ⊆ S(x,M). We now show that S(x′,M ′) ⊆ U . Let y ∈ S(x′,M ′). Then
∥y∥∞ ≤ 1 and supp(y − x′) ⊆ (N \ M ′) = L. Let z := y − x′. Then, ∥z∥∞ ≤ 2 and
supp(z) ⊆ L. Therefore, |x∗

i (y − x′)| = |x∗
i (z)| < 1 for all 1 ≤ i ≤ k. Hence, by the

set-inclusion (∗), y ∈ U .

Example 1.5.22 ([32,37]). β(N) ̸∈ T ∗.

Proof. By Theorem 1.5.14 it is sufficient to show that the player Σ has a winning strategy
in the G(τp(β(N)), ∥ · ∥∞)-game played on (β(N), τp(β(N)), ∥ · ∥∞).

Let π : ℓ∞ → C(β(N)) be defined by, π(x) := x̃, where x̃ is the unique continuous extension
of x, from N to β(N). Note that π is linear and ∥π(x)∥∞ = ∥x∥∞ for all x ∈ ℓ∞(N).
We now inductively define a winning strategy t := (tn : n ∈ N) for the player Σ. Let
x∅ ∈ ℓ∞(N) be defined by, [x∅]j = 1 for all j ∈ N and let M∅ ∈ P∞(N) be defined by,
M∅ := ∅. Then let, t1(∅) := π(S(x∅,M∅)).
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Step 1. Let (B1) be a partial t-play of length 1. Then B1 is a nonempty relatively τp(β(N))-
open subset of

t1(∅) := π(S(x∅,M∅)).

Therefore, there exists a τp(β(N))-open, and hence weak-open, subset U of C(β(N)) such
that B1 = U ∩ π(S(x∅,M∅)). Then π−1(U) is a weak-open subset of ℓ∞(N) and π−1(U) ∩
S(x∅,M∅) ̸= ∅. Hence, by Lemma 1.5.21 there exists x(B1) ∈ π−1(U) ∩ S(x∅,M∅) and
M(B1) ∈ P∞(N) such that M∅ ⊆ M(B1) and

S(x(B1),M(B1)) ⊆ π−1(U) ∩ S(x∅,M∅).

Let t2(B1) := π(S(x(B1),M(B1))).

Let n ∈ N and suppose that tj+1, x(B1,...,Bj) ∈ ℓ∞(N), and M(B1,...,Bj) ∈ P∞(N) have been
defined for each partial t-play (B1, . . . , Bj) of length j with 1 ≤ j ≤ n so that:

(i) x(B1,...,Bj) ∈ S(x(B1,...,Bj−1),M(B1,...,Bj−1)), here (B1, . . . B0) denotes ∅;

(ii) M(B1,...,Bj−1) ⊆ M(B1,...,Bj) [and so S(x(B1,...,Bj),M(B1,...,Bj)) ⊆ S(x(B1,...,Bj−1),M(B1,...,Bj−1))];

(iii) tj+1(B1, . . . , Bj) := π(S(x(B1,...,Bj),M(B1,...,Bj))).

Step n+1. Let (B1, . . . , Bn+1) be a partial t-play of length n+1. Then Bn+1 is a nonempty
relatively τp(β(N))-open subset of

tn+1(B1, . . . , Bn) := π(S(x(B1,...,Bn),M(B1,...,Bn))).

Therefore, there exists a τp(β(N))-open, and hence weak-open, subset U of C(β(N)) such
that Bn+1 = U ∩ π(S(x(B1,...,Bn),M(B1,...,Bn))). Then π−1(U) is a weak-open subset of
ℓ∞(N) and π−1(U) ∩ S(x(B1,...,Bn),M(B1,...,Bn)) ̸= ∅. Hence, by Lemma 1.5.21 there ex-
ists x(B1,...,Bn+1) ∈ π−1(U) ∩ S(x(B1,...,Bn),M(B1,...,Bn)) and M(B1,...,Bn+1) ∈ P∞(N) such that
M(B1,...,Bn) ⊆ M(B1,...,Bn+1) and

S(x(B1,...,Bn+1),M(B1,...,Bn+1)) ⊆ π−1(U) ∩ S(x(B1,...,Bn),M(B1,...,Bn)).

Let t(n+1)+1(B1, . . . , Bn+1) := π(S(x(B1,...,Bn+1),M(B1,...,Bn+1)). Then t(n+1)+1(B1, . . . , Bn+1)
is a nonempty subset of Bn+1. This completes the definition of t := (tn : n ∈ N).
It remains to show that t is a winning strategy for the player Σ. To this end, let (Bn :
n ∈ N) be an arbitrary t-play. Let x : N → R be defined by, xn := [x(B1,...,Bm)]n if
n ∈

⋃
k∈N M(B1,...,Bk) and m is the smallest natural number such that n ∈ M(B1,...,Bm). If

n ̸∈
⋃

k∈N M(B1,...,Bk) then let xn := 0. We claim that x ∈
⋂

n∈N S(x(B1,...,Bn),M(B1,...,Bn)). To
substantiate this claim let us fix an n ∈ N. We will show that x ∈ S(x(B1,...,Bn),M(B1,...,Bn)).
To this end, fix j ∈ M(B1,...,Bn). Let m := min{k ∈ N : j ∈ M(B1,...,Bk)}. Then 1 ≤ m ≤ n
and j ∈ M(B1,...,Bm). Therefore, by the definition of x, xj = [x(B1,...,Bm)]j. On the other
hand, since m ≤ n

S(x(B1,...,Bn),M(B1,...,Bn)) ⊆ S(x(B1,...,Bm),M(B1,...,Bm)).

In particular, x(B1,...,Bn) ∈ S(x(B1,...,Bm),M(B1,...,Bm)) and so

xj = [x(B1,...,Bm)]j = [x(B1,...,Bn)]j as j ∈ M(B1,...,Bm).
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Since j ∈ M(B1,...,Bn) was arbitrary, x ∈ S(x(B1,...,Bn),M(B1,...,Bn)). Furthermore, since
n ∈ N was arbitrary too, x ∈

⋂
n∈N S(x(B1,...,Bn),M(B1,...,Bn)). Therefore, π(x) ∈

⋂
n∈N Bn

and so
⋂

n∈N Bn ̸= ∅. [Note: one could also, perhaps more easily argue, that each set
S(x(B1,...,Bn),M(B1,...,Bn)) is weak∗ compact and then deduce from the finite intersection
property that

⋂
n∈N S(x(B1,...,Bn),M(B1,...,Bn)) ̸= ∅.] Finally, let us recall that

∥ · ∥∞ − diam[π(S(x(B1,...,Bn),M(B1,...,Bn)))] = ∥ · ∥∞ − diam[S(x(B1,...,Bn),M(B1,...,Bn))] = 2

for all n ∈ N. Thus, ∥ · ∥∞ − diam[Bn] = 2 for all n ∈ N; which implies that Σ wins the
play (Bn : n ∈ N).

1.6 Characterisation of co-Namioka spaces

In this section, we will follow the model of the last section, to obtain a characterisation for
the class of co-Namioka spaces.

Exercise 1.6.1. Let (X, τ) and (Y, τ ′) be topological spaces. Show that if f : X → Y is a
quasicontinuous surjection and D is a dense subset of (X, τ), then f(D) is a dense subset
of (Y, τ).

Proposition 1.6.2. Let f : X → Y be a quasicontinuous, open mapping from a topological
space (X, τ) onto a topological space (Y, τ ′). If (X, τ) is a Baire space, then so is (Y, τ ′)

Proof. Let (On : n ∈ N) be a countable family of dense open subsets of (Y, τ ′). We will
show that

⋂
n∈NOn is dense in (Y, τ). For each n ∈ N, let U := int(f−1(On)). Then, clearly,

each set Un is open in (X, τ). We will now show that each set Un is also dense in (X, τ).
To this end, let n ∈ N and let W be a nonempty open subset of (X, τ). Since f is an open
mapping, f(W ) is a nonempty open subset of (Y, τ ′). Furthermore, since On is dense in
(Y, τ ′), f(W )∩On ̸= ∅. Choose x0 ∈ W such that f(x0) ∈ On. It now follows from the fact
that f is quasicontinuous at x0 that there exists a nonempty open subset V of W such that
f(V ) ⊆ On. Therefore, V ⊆ int(f−1(On)). Hence, ∅ ̸= V ⊆ W ∩ int(f−1(On)) = W ∩ Un.
Since (X, τ) is a Baire space

⋂
n∈N Un is dense in (X, τ). Therefore, by Exercise 1.6.1,

f(
⋂

n∈N Un) is dense in (Y, τ ′). It now only remains to observe that

f(
⋂

n∈NUn) ⊆
⋂

n∈Nf(Un) ⊆
⋂

n∈NOn.

This completes the proof.

Proposition 1.6.3. Let f : X → Y be a quasicontinuous mapping from a topological space
(X, τ) onto a topological space (Y, τ ′). If (X, τ) is a Baire space, then so is the graph of f ,
Gr(f), endowed with the relative product topology of (X, τ) and (Y, τ ′).

Proof. The proof of this result is identical to the proof of Proposition 1.5.2. Hence we
leave it as an exercise for the reader.

Proposition 1.6.4. Let (Y, τ ′) be a topological space and let d be some metric defined on
it. Then the following conditions are equivalent:
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(i) every τ ′-continuous mapping f : X → Y from a Baire space (X, τ) into (Y, τ ′) is
d-continuous at the points of a dense subset of (X, τ);

(ii) every τ ′-quasicontinuous mapping f : X → Y from a Baire space (X, τ) into (Y, τ ′),
is d-continuous at the points of a dense subset of (X, τ).

Proof. The proof of this result is identical to the proof of Proposition 1.5.3. Hence we
leave it as an exercise for the reader.

Corollary 1.6.5. Let (Y, τ ′) be a nonempty compact Hausdorff topological space and let
X be a nonempty subset of C(Y ). Then the following conditions are equivalent:

(i) every τp(Y )-continuous mapping f : Z → X from a Baire space (Z, τ) into C(Y ) is
∥ · ∥∞-continuous at the points of a dense subset of (Z, τ);

(ii) every τp(Y )-quasicontinuous mapping f : Z → X from a Baire space (Z, τ) into X,
is ∥ · ∥∞-continuous at the points of a dense subset of (Z, τ).

Theorem 1.6.6. Let (X, τ) be a topological space, let

P := {(An : n ∈ N) ∈ τN : ∅ ̸= An+1 ⊆ An for all n ∈ N}

and let d : P ×P → [0,∞) be the Baire metric on P . Then (P, d) is a nonempty complete
metric space. If (X, τ) is a Baire space, then S := {(An : n ∈ N) ∈ P :

⋂
n∈NAn ̸= ∅} is

everywhere second category in (P, d).

Proof. Firstly, we will show that (P, d) is a nonempty complete metric space. The fact
that P is nonempty is obvious and the proof that the Baire metric d is indeed a metric
follows from Lemma 1.5.5. So we need to show that (P, d) is complete. To do this end, let
(pn : n ∈ N) be a Cauchy sequence in (P, d). For each n ∈ N, let pn := (An

k : k ∈ N). Since
(pn : n ∈ N) be a Cauchy sequence there exists a strictly increasing sequence (nk : k ∈ N)
of natural numbers such that d− diam[{pi : nk ≤ i}] < 1/k for all k ∈ N. In particular,

d(pnk , pi) < 1/k for all k ∈ N and all nk ≤ i.

Therefore,

Ank
j = Ai

j for all k ∈ N, all 1 ≤ j ≤ k and all nk ≤ i.

By setting j := k we get that

Ank
k = Ai

k for all k ∈ N and all nk ≤ i. (∗)

We now define a new sequence p := (Ak : k ∈ N) by, Ak := Ank
k for all k ∈ N. Notice that

for each fixed k ∈ N, it follows from the definition of p and Equation (∗) (with k replaced
by j and i replaced by nk) that

Aj = A
nj

j = Ank
j for all 1 ≤ j ≤ k (∗∗)
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since nj ≤ nk. Now, for each 2 ≤ k ∈ N,

Ak = Ank
k ⊆ Ank

k−1 = Ak−1, by substituting j = k − 1 into Equation (∗∗)

Therefore, p ∈ P . Finally, note that d(pi, p) < 1/k for all nk ≤ i. To see this, fix k ∈ N
and let 1 ≤ j ≤ k. Then, by the definition of p and Equation (∗), (with k replaced by j)
we have that

Aj = A
nj

j = Ai
j for all nj ≤ i.

Since nj ≤ nk it follows that Aj = Ai
j for all nk ≤ i. This show that (pn : n ∈ N) converges

to p ∈ P .

We now show that S is everywhere second category in (P, d).

Suppose, for the purpose of obtaining a contradiction, that S is not everywhere second
category in (P, d). Then there exists a nonempty open subset A of (P, d) such that S∩A is
a first category subset of (P, d). Therefore, there exists a sequence (Fn : n ∈ N) of closed,
nowhere dense subsets of (P, d), such that S ∩ A ⊆

⋃
n∈N Fn.

For each n ∈ N, let On := A \Fn. Then each set On is open and dense in A. Furthermore,
(
⋂

n∈N On) ∩ S = ∅. We now inductively define a (necessarily non-winning) strategy
t := (tn : n ∈ N) for the player β in the Choquet-game played on (X, τ).

Base Step. Choose p∅ ∈ P and m∅ ∈ N so that Bd[p∅, 1/m∅] ⊆ O1 ∩ A. Note that
this is possible since O1 is dense and open in A. Then define, t1(∅) := I(p∅,m∅), where
I : P × N → τ is defined by, I((Ak : k ∈ N), n) := An, for all ((Ak : k ∈ N), n) ∈ P × N.
Step 1. Suppose that (A1) is a partial t-play of length 1. Then A1 ⊆ t1(∅) = I(p∅,m∅).
Let p∗ := (A∗

n : n ∈ N) be defined by, A∗
j := I(p∅, j) for all 1 ≤ j ≤ m∅ and A∗

j := A1

for all m∅ < j. Then p∗ ∈ P and moreover, Bd[p
∗, 1/(m∅ + 1)] ⊆ Bd(p∅, 1/m∅). Now,

Bd(p
∗, 1/(m∅ + 1)) ∩ O2 ̸= ∅. Therefore, there exists a p(A1) ∈ P and an m(A1) ∈ N such

that m∅ < m(A1) and

Bd[p(A1), 1/m(A1)] ⊆ Bd(p
∗, 1/(m∅ + 1)) ∩O2 ⊆ Bd(p∅, 1/m∅) ∩O2.

We then define, t2(A1) := I(p(A1),m(A1)) ⊆ A1.

Now, let n ∈ N and suppose that p(A1,...,Aj) ∈ P , m(A1,...,Aj) ∈ N and tj have been defined
for every 1 ≤ j ≤ n so that:

(i) m(A1,...,Aj−1) < m(A1,...,Aj), where (A1, . . . A0) := ∅;

(ii) Bd[p(A1,...,Aj), 1/m(A1,...,Aj)] ⊆ Oj+1 ∩Bd(p(A1,...,Aj−1), 1/m(A1,...,Aj−1)) ⊆ O1;

(iii) tj+1(A1, . . . , Aj) := I(p(A1,...,Aj),m(A1,...,Aj)) ⊆ Aj.

Step n+ 1. Suppose that (A1, . . . , An+1) is a partial t-play of length n+ 1 then

An+1 ⊆ I(p(A1,...,An),m(A1,...,An)) ⊆ An.

Let p∗ := (A∗
n : n ∈ N) be defined by, A∗

j := I(p(A1,...,An), j) for all 1 ≤ j ≤ m(A1,...,An) and
A∗

j := An+1 for all m(A1,...,An) < j. Then p∗ ∈ P and moreover,

Bd[p
∗, 1/(m(A1,...,An) + 1)] ⊆ Bd(p(A1,...,An), 1/m(A1,...,An)).
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Now, Bd(p
∗, 1/(m(A1,...,An) + 1)) ∩On+2 ̸= ∅. Therefore, there exists a p(A,...,An+1) ∈ P and

an m(A1,...,An+1) ∈ N such that m(A1,...,An) < m(A1,...,An+1) and

Bd[(p(A1,...,An+1), 1/m(A1,...,An+1)] ⊆ Bd(p
∗, 1/(m(A1,...,An) + 1)) ∩On+2

⊆ Bd(p(A1,...,An), 1/m(A1,...,An)) ∩On+2.

We then define, t(n+1)+1(A1, . . . , An+1) := I(p(A1,...,An+1),m(A1,...,An+1)) ⊆ A(n+1)+1.

This completes the definition of t := (tn : n ∈ N). Since (X, τ) is a Baire space, we have,
by Theorem 1.1.5, that t is not a winning strategy for the player β. Therefore, there exists
a t-play (An : n ∈ N) where α wins, i.e., where

⋂
n∈N An ̸= ∅.

Now, since m(A1,...,An) < m(A1,...,An+1) for all n ∈ N, it follows that n ≤ m(A1,...,An) for all
n ∈ N. Let {p∗} :=

⋂
n∈N Bd[p(A1,...,An), 1/m(A1,...,An)]. This is well-defined, by the Cantor

intersection property, since (P, d) is a complete metric space. Moreover, it follows from
Property (ii) that p∗ ∈

⋂
n∈N On.

So, to obtain the desired contradiction, we nee only show that p∗ ∈ S. To this end, consider
the following.

∅ ̸=
⋂

n∈NAn =
⋂

n∈NAn+1

⊆
⋂

n∈Ntn+1(A1, . . . , An)

=
⋂

n∈NI(p(A1,...,An),m(A1,...,An))

=
⋂

n∈NI(p
∗,m(A1,...,An)) =

⋂
n∈NI(p

∗, n).

This completes the proof.

Lemma 1.6.7. Let (X, τ) be a Baire space, let

P := {(Ak : k ∈ N) ∈ τN : ∅ ̸= Ak+1 ⊆ Ak for all k ∈ N}

and let d : P ×P → [0,∞) be the Baire metric on P . If f : X → Y is a τ ′-quasicontinuous
function into a topological space (Y, τ ′), then F : P → 2Y defined by, F (p) :=

⋂
k∈N f(Ak),

where p := (Ak : k ∈ N), for all p ∈ P , is a τ ′-minimal mapping. Moreover, F has
nonempty images on the set S := {(Ak : k ∈ N) ∈ P :

⋂
k∈N Ak ̸= ∅} and for each p ∈ P ,

n ∈ N and A ⊆ Y with F (Bd(p, 1/n)) ⊆ A, f(An+1) ⊆ A
τ ′

, where p := (Ak : k ∈ N).

Proof. It is clear that F has nonempty images on the set S. Next we show that F is
τ ′-minimal. To accomplish this, let us consider an open subset U of (P, d) and a τ ′-open
subset W of Y such that F (U) ∩ W ̸= ∅. Choose p := (Ak : k ∈ N) ∈ U such that
F (p) ∩ W ̸= ∅. Then f(Ak) ∩ W ̸= ∅ for all k ∈ N. Furthermore, as U is open in
(P, d), there exists an n ∈ N such that Bd(p, 1/n) ⊆ U . Since f is quasicontinuous and
f(An) ∩W ̸= ∅ there exists a nonempty open subset V ′ of An such that f(V ′) ⊆ W .

Let p∗ := (A∗
k : k ∈ N) be defined by, A∗

k := Ak for all 1 ≤ k ≤ n and A∗
k := V ′ for

all n < k ∈ N. Then p∗ ∈ P . In fact, p∗ ∈ Bd(p, 1/n). Furthermore, if we set V :=
Bd(p

∗, 1/(n + 1)), then V is a nonempty open subset of Bd(p, 1/n) ⊆ U and F (V ) ⊆ W .
To see this last set-inclusion, consider p′ := (A′

k : k ∈ N) ∈ V . Then A′
n+1 = A∗

n+1 = V ′

and so
F (p′) =

⋂
k∈Nf(A

′
k) ⊆ f(A′

n+1) = f(A∗
n+1) = f(V ′) ⊆ W.
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This shows that F is a τ ′-minimal mapping.

To verify the last assertion of the lemma, we consider p := (Ak : k ∈ N) ∈ P , n ∈ N and
A ⊆ Y such that F (Bd(p, 1/n)) ⊆ A and suppose, in order to obtain a contradiction, that

f(An+1) ̸⊆ A
τ ′

.

Since f is τ -quasicontinuous there exists a nonempty open subset V of An+1 such that

f(V )∩A
τ ′

= ∅. Let p′ := (A′
k : k ∈ N) be defined by, A′

k := Ak of 1 ≤ k ≤ n and A′
k := V

if n < k ∈ N. Then p′ ∈ Bd(p, 1/n), but

∅ ̸= f(V ) =
⋂

k∈Nf(Ak) = F (p′) ⊆ Y \ Aτ ′ ⊆ Y \ A;

which contradicts the assumption that ∅ ̸= F (p′) ⊆ F (Bd(p, 1/n)) ⊆ A.

Theorem 1.6.8. Let (Y, τ, τ ′) be a bitopological space with the property that:

(a) (Y, τ ′) is T1 and

(b) for every U ∈ τ ′ and every x ∈ U there exists a V ∈ τ ′ such that x ∈ V ⊆ V
τ ⊆ U .

Then the following are equivalent:

(i) every τ -quasicontinuous mapping f : X → Y from a Baire metric space (X, ρ) into
Y has at least one point of τ ′-continuity;

(ii) every τ -quasicontinuous mapping f : X → Y from a Baire space (X, τ ′′) into Y has
at least one point of τ ′-continuity;

(iii) every τ -quasicontinuous mapping f : X → Y from a Baire space (X, τ ′′) into Y is
τ ′-continuous at each point of a residual subset of (X, τ ′′)

(iv) every τ -quasicontinuous mapping f : X → Y from a Baire metric space (X, ρ) into
Y is τ ′-continuous at each point of a residual subset of (X, τ ′′).

Proof. (i) ⇒ (ii). Suppose that (i) holds. Let f : X → Y be a τ -quasicontinuous mapping
from a Baire space (X, τ ′′) into Y . Let

P := {(Ak : k ∈ N) ∈ τN : ∅ ̸= Ak+1 ⊆ Ak for all k ∈ N}

and let F : P → 2Y be defined by, F (p) :=
⋂

k∈N f(Ak), where p := (Ak : k ∈ N), for all
p ∈ P . By Theorem 1.6.6 and Lemma 1.6.7 we see that F is a τ -minimal mapping that
has nonempty images on the set S := {(Ak : k ∈ N) ∈ P :

⋂
k∈N Ak ̸= ∅}. Furthermore,

by Theorem 1.6.6, S is an everywhere second category subset of (P, d). By Exercise 1.5.6,
F |S : S → 2Y , defined by, F |S(p) := F (p) for all p ∈ S, is also a τ -minimal mapping. Let
dS : S × S → [0,∞) denote the restriction of d to S. Then (S, dS) is a Baire metric space.

Let s : S → Y be any selection of F |S. Then, by Exercises 1.5.6 and 1.5.6, it follows that s
is τ -quasicontinuous on S. Therefore, by assumption, there exists a p := (Ak : k ∈ N) ∈ S
such that s is τ ′-continuous at p. Now, by Proposition 1.5.11, F (p) = {s(p)} and F is
τ ′-upper semicontinuous at p.
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We now claim that f is τ ′-continuous at each point of
⋂

k∈N Ak; which is nonempty as
p ∈ S. To accomplish this, we consider an arbitrary element x ∈

⋂
k∈N Ak. Let U be

an arbitrary τ ′-open neighbourhood of f(x). Then, by assumption, there exists a τ ′-open
neighbourhood V of f(x) such that

s(p) = {f(x)} ⊆ V ⊆ V
τ ⊆ U.

Since F is τ ′-upper semicontinuous at p there exists an n ∈ N such that F (Bd(p, 1/n)) ⊆ V .
Then, by Lemma 1.6.7, f(An+1) ⊆ V

τ ⊆ U . Since x ∈ An+1, this shows that f is τ ′-
continuous at x.

(ii) ⇒ (iii). Assume that (ii) holds. Let f : X → Y be a τ -quasicontinuous mapping
from a Baire space (X, τ ′′) and suppose, for the purpose of obtaining a contradiction that
{x ∈ X : f is τ ′-continuous at x} is not residual in (X, τ ′′). Then

A := {x ∈ X : f is not τ ′-continuous at x}

is a second category subset of (X, τ ′′). Therefore, by Proposition 1.6.14 there exists a
nonempty open subset U of (X, τ ′′) such that A is everywhere second category in U . In
particular, see page 67, S := A ∩ U , with the relative topology, is a Baire space. Now,
by Proposition 1.6.16 part (i), f |U : U → Y is a τ -quasicontinuous mapping, and further,
by Proposition 1.6.16 part (ii), (f |U)|S : S → Y is also τ -quasicontinuous on S. Note of
course, that (f |U)|S = f |S. Therefore, it follows that f |S : S → Y , has a point x ∈ S,
where f |S is τ ′-continuous. We may now apply Proposition 1.5.11 part (ii), in conjunction
with Exercise 1.5.8, to deduce that f |U is τ ′-continuous at x. Finally, since U is an open
set, it follows that f is τ ′-continuous at x ∈ S ⊆ A; which contradicts the definition of
the set A. Thus, we have obtained our desired contradiction, which in turn means that
Property (iii) holds.

(iii) ⇒ (iv) and (iv) ⇒ (i) are obvious.

Proposition 1.6.9. Let (X, d) be a Baire metric space and let (Y, τ ′) be a nonempty
compact Hausdorff topological space. If f : X → C(Y ) is a τp(Y )-quasicontinuous mapping
and {x ∈ X : f is τp(Y )-continuous at x} is residual in (X, d), then the set {x ∈ X :
f is ∥ · ∥∞-continuous at x} is dense in (X, d).

Proof. Suppose that f : X → C(Y ) is a τp(Y )-quasicontinuous mapping from a Baire
metric space (X, d) into C(Y ), for some nonempty compact Hausdorff topological space
(Y, τ ′). Suppose further, that R := {x ∈ X : f is τp(Y )-continuous at x} is residual in
(X, d). Then (R, dR) is also a Baire metric space, where dR : R× R → [0,∞) denotes the
restriction of d to the set R.

Now, f |R : R → C(Y ), defined by, f |R(x) := f(x) for all x ∈ R, is a τp(Y )-continuous
mapping. Therefore, by Exercise 1.2.13 part (i) and Theorem 1.2.14, there exists a dense
subset D of R such that f |R is continuous, with respect to the supremum norm topology
on C(Y ), at each point of D.

Now, D is dense in (X, d) and f is continuous, with respect to the supremum norm topology
on C(Y ), at each point of D. To justify this latter fact, let us consider an arbitrary point
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x0 ∈ D and any positive real number ε. Since f |R is continuous, with respect to the
supremum norm topology on C(Y ), at x0, there exists an open subset U of (X, d) such
that

f |R(U ∩R) ⊆ B(f |R(x0), ε) = B(f(x0), ε) ⊆ B[f(x0), ε].

Now, since BC(Y ) is τp(Y )-closed, B[f(x0), ε] = f(x0) + εBC(Y ) is τp(Y )-closed. Therefore,
from the τp(Y )-quasicontinuity of f , it follows that f(U) ⊆ B[f(x0), ε]. Since x0 ∈ D and
0 < ε were both arbitrary, it follows that f is continuous, with respect to the supremum
norm topology on C(Y ), at each point of D.

We now present a characterisation of co-Namioka spaces.

Theorem 1.6.10. Let (Y, τ ′) be a nonempty compact Hausdorff topological space. Then
the following conditions are equivalent:

(i) every τp(Y )-quasicontinuous mapping f : Z → C(Y ) from a Baire metric space
(Z, ρ), has at least one point of τp(Y )-continuity;

(ii) every τp(Y )-quasicontinuous mapping f : Z → C(Y ) from a Baire metric space
(Z, ρ), is τp(Y )-continuous at each point of a residual subset of (Z, ρ);

(iii) every τp(Y )-quasicontinuous mapping f : Z → C(Y ) from a Baire metric space
(Z, ρ), has at least one point of ∥ · ∥∞-continuity;

(iv) every τp(Y )-quasicontinuous mapping f : Z → C(Y ) from a Baire space (Z, τ), is
∥ · ∥∞-continuous at each point of a dense subset of (Z, τ);

(v) every τp(Y )-continuous mapping f : Z → C(Y ) from a Baire space (Z, τ), is ∥ · ∥∞-
continuous at each point of a dense and Gδ subset of (Z, τ).

Proof. (i) ⇒ (ii). This follows directly from Theorem 1.6.8.

(ii) ⇒ (iii). This follows directly from Proposition 1.6.9.

(iii) ⇒ (iv) follows directly from Theorem 1.6.8.

Now, (iv) ⇔ (v) follows from Corollary 1.6.5 and the fact that the set of points of norm
continuity always form a Gδ set.

(iv) ⇒ (i) is obvious, after one recalls that all complete metric spaces are weakly α-
favourable.

We note that condition (v) in Theorem 1.6.10 is the definition of a co-Namioka space.
Hence each one of the conditions in Theorem 1.6.10 provides an alternative description of
the class of co-Namioka spaces.

We will now present some applications of Theorem 1.6.10.

Corollary 1.6.11. Suppose that (Y1, τ
′
1) and (Y2, τ

′
2) are nonempty compact Hausdorff

topological spaces. If Cp(Y1) is homeomorphic to Cp(Y2), then (Y1, τ
′
1) ∈ N ∗ if, and only if,

(Y2, τ
′
2) ∈ N ∗.
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Proof. This holds because either conditions (i) or (ii) of Theorem 1.6.10 characterise the
class N ∗ soley in terms of the τp(Y )-topology.

Corollary 1.6.12 ([19]). Let (Y, τ ′) be a nonempty compact Hausdorff topological space.
If {Yn : n ∈ N} is a cover of Y consisting of closed subsets and Yn ∈ N ∗ for each n ∈ N,
then (Y, τ ′) ∈ N ∗.

Proof. Let f : X → C(Y ) be a τp(Y )-quasicontinuous function from a Baire metric space
(X, d). For each n ∈ N, let fn : X → C(Yn) be defined by, fn(x) := f(x)|Yn for each
x ∈ X. Then each fn is τp(Yn)-quasicontinuous on (X, d). For each n ∈ N, let Rn denote
the dense and Gδ subset of (X, d) where fn is continuous with respect to the supremum
norm topology on C(Yn). Let R :=

⋂
n∈NRn. Then R is a dense and Gδ subset of (X, d)

and f is continuous with respect to the τp(Y )-topology, at each point of R. The result now
follows from Theorem 1.6.10.

The following theorem extends [38, A.2 Theorem].

Theorem 1.6.13. Let (Y, τ ′) be a nonempty compact Hausdorff space. Then (Y, τ ′) ∈
N ∗ if, for each completely regular Baire topological space (X, τ), with countable tightness,
N(X, Y ) holds.

Proof. We will appeal to Theorem 1.6.10. Let f : X → C(Y ) be a τp(Y )-quasicontinuous
mapping from a Baire metric space (X, d). Then, the graph of f , Gr(f), endowed with
the relative product topology of (X, d) and (C(Y ), τp(Y )) is a completely regular Baire
space, see Proposition 1.6.3. Furthermore, since (C(Y ), τp(Y )) has countable tightness,
see [3, Theorem II.1.1] and (X, d) is first countable, it follows from [17, Theorem 4.2]
that (X, d) × (C(Y ), τp(Y )) has countable tightness. Therefore, Gr(f), endowed with the
relative product topology of (X, d) and (C(Y ), τp(Y )), has countable tightness.

Next, as in Proposition 1.5.3, it follows that f is continuous with respect to the supremum
norm topology on C(Y ), at each point of a dense and Gδ subset of (X, d). It then follows
from Theorem 1.6.10, that (Y, τ ′) ∈ N ∗.
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Preliminary Results

Proposition 1.6.14. Let A be a subset of a topological space (X, τ), then A \ U(A) is
a first category set. In particular, if A is a second category set in (X, τ), then U(A) is
nonempty.

Proof. Let W := {Wγ : γ ∈ Γ} be a maximal, with respect to set inclusion, family of

pairwise disjoint nonempty open subsets of X \ U(A)
τ
with the property that Wγ ∩ A

is a first category subset of (X, τ) for each γ ∈ Γ. Note that by Zorn’s Lemma such a

maximal family exists. We claim that W :=
⋃

γ∈ΓWγ is dense in X \ U(A)
τ
. Indeed, if

this is not the case then there exists a nonempty open subset V of X \ U(A)
τ
such that

V ∩ W = ∅. Since V ̸⊆ U(A), A is not everywhere second category in V , that is, there
exists a nonempty open subset V ′ ⊆ V such that V ′ ∩ A is first category in (X, τ). Let
Γ′ := Γ ∪ {Γ}, WΓ := V ′ and let W ′ := {Wγ : γ ∈ Γ′}. Then W ′ strictly contains W and

consists of pairwise disjoint nonempty open subsets of X \ U(A)
τ
with the property that

Wγ ∩A is a first category subset of (X, τ) for each γ ∈ Γ′. This contradicts the maximality

of W . Therefore, we may conclude that W is indeed dense in X \U(A)
τ
. Next we observe

that

A \ U(A) =
(
[A \ U(A)] ∩W

)
∪
(
[A \ U(A)] \W

)
=

(
[A \ U(A)] ∩W

)
∪
(
A \ (U(A) ∪W )

)
by De Morgan’s laws

⊆
(
A ∩W

)
∪
(
X \ (U(A) ∪W )

)
.

Now, it is not hard to verify that U(A) ∪ W is a dense open subset of X. Therefore,
X \ (U(A) ∪W ) is a closed nowhere dense subset of X. Thus to show that A \ U(A) is of
the first Baire category it is sufficient to show that A∩W is of the first Baire category. For
each γ ∈ Γ there exists a countably family of closed subsets {F n

γ : n ∈ N} of Wγ
τ
such that

A∩Wγ ⊆
⋃

n∈N F
n
γ and int(F n

γ ) = ∅. We define, for each n ∈ N, F n :=
⋃
{F n

γ : γ ∈ Γ}. It
is readily checked that each F n is nowhere dense in X. However, A ∩W ⊆

⋃
n∈N F

n and
so we may conclude that A ∩W is first category on (X, τ).

Exercise 1.6.15. Suppose that (X, τ) and (Y, τ ′) are topological spaces and f : X → Y .
Show that f is quasicontinuous on (X, τ) if, and only if, for each pair of open subsets U
of X and W of Y such that f(U) ∩W ̸= ∅, there exists a nonempty open subset V of U
such that f(V ) ⊆ W .

Proposition 1.6.16. Let f : X → Y be a quasicontinuous function acting from a topolog-
ical space (X, τ) into a topological space (Y, τ ′). If ∅ ̸= A ⊆ X is: (i) open, or (ii) dense
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in (X, τ), then the restriction of f to A, denoted f |A : A → Y , is also a quasicontinuous
mapping, (with of course, A endowed with the relative τ -topology).

Proof. (i) Let A be a nonempty open subset of (X, τ). To show that f |A is quasicontinuous
we shall appeal to Exercise 1.6.15. To this end, let U be an open subset of A and let W
be an open subset of Y such that f |A(U) ∩ W ̸= ∅. Since A is open in (X, τ) so is U .
Moreover, since f |A(U) ∩ W ̸= ∅, f(U) ∩ W ̸= ∅. Therefore, by Exercise 1.6.15, there
exists a nonempty open subset V of U such that f |A(V ) = f(V ) ⊆ W .

(ii) Suppose that A is a dense subset of (X, τ). To show that f |A is quasicontinuous we
shall again appeal to Exercise 1.6.15. To this end, let U be an open subset of A and let
W be an open subset of Y such that f |A(U) ∩W ̸= ∅. Then, let U ′ be an open subset of
(X, τ) such that U = U ′ ∩ A. Since

∅ ̸= f |A(U) ∩W ⊆ f(U ′) ∩W

it follows from Exercise 1.6.15, that there exists a nonempty open subset V ′ of U ′ such
that f(V ′) ⊆ W . Let V := V ′ ∩A. Then V is a nonempty (since A is dense), open (in the
relative τ -topology on A) subset of U and f |A(V ) ⊆ f(V ′) ⊆ W .

We will call a topological space (X, τ) pointwise countably complete, if it is regular and
there exists a sequence (An : n ∈ N) of open covers of X with the property that every
monotonically decreasing sequence (Fn : n ∈ N) of nonempty subsets of X has

⋂
n∈N Fn ̸=

∅, provided that

(i) each n ∈ N, there exists an An ∈ An such that Fn ⊆ An and

(ii)
⋂

n∈N An ̸= ∅.

Clearly all metric spaces and all countably Čech-complete spaces are pointwise countably
complete. In the other direction, all pointwise countably complete spaces are q-spaces.

Exercise 1.6.17. Let (Y, τ ′) be a topological space. Show that both (f, g) 7→ f ∨ g and
(f, g) 7→ f ∧ g are continuous functions, acting from Cp(Y )× Cp(Y ) into Cp(Y ).

Hint: For each f, g ∈ C(Y ) and x ∈ Y ,

(i) (f ∨ g)(x) = max{f(x), g(x)} = 1
2
[f(x) + g(x)] + 1

2
|f(x)− g(x)| and

(ii) (f ∧ g)(x) = min{f(x), g(x)} = 1
2
[f(x) + g(x)]− 1

2
|f(x)− g(x)|.

Therefore, if f, f ′g, g′ ∈ C(Y ) and x ∈ Y then, by part (i)

|(f ∨ g)(x)− (f ′ ∨ g′)(x)| ≤ |(f − f ′)(x)|+ |(g − g′)(x)|

and by part (ii)

|(f ∧ g)(x)− (f ′ ∧ g′)(x)| ≤ |(f − f ′)(x)|+ |(g − g′)(x)|.
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For our considerations, the most important result concerning the lattice structure of C(Y )-
spaces, where (Y, τ ′) is a compact space, is the following “lattice formulation” of the famous
Stone-Weierstrass Theorem, [47]. Recall that a subset L of C(Y ) is called a sub-lattice if
it is closed under the operations of ∨ and ∧. That is, for every f, g ∈ C(Y ), if f, g ∈ L
then f ∨ g ∈ L and f ∧ g ∈ L.

Theorem 1.6.18 (Stone-Weierstrass Theorem, [47]). Let (Y, τ ′) be a compact topological
space, f ∈ C(Y ), 0 < ε and L a sub-lattice of C(Y ). If, for each pair of points x, y ∈ Y ,
there exists an l(x,y) ∈ L such that |f(x)− l(x,y)(x)| < ε and |f(y)− l(x,y)(y)| < ε, then there
exists a function l ∈ L such that ∥f − l∥∞ < ε.

Proof. Let f ∈ C(Y ) and 0 < ε be given. Fix x ∈ Y . For each y ∈ Y there exists an open
neighbourhood Ux

y of y and an element l(x,y) ∈ L such that

l(x,y)(x) < f(x) + ε and f(u)− ε < l(x,y)(u) for all u ∈ Ux
y .

Let {Ux
yj

: 1 ≤ j ≤ n} be a finite subcover of {Ux
y : y ∈ Y } and let lx : Y → R be defined

by,
lx(z) := max

1≤j≤n
l(x,yj)(z) for all z ∈ Y

i.e., lx =
∨

1≤j≤n l(x,yj) ∈ L. Then lx(x) < f(x) + ε while, f(z)− ε < lx(z) for all z ∈ Y .

We now consider the family of functions {lx : x ∈ Y }. For each x ∈ Y there exists an open
neighbourhood Vx of x such that lx(v) < f(v) + ε for all v ∈ Vx. Let {Vxj

: 1 ≤ j ≤ m} be
a finite subcover of {Vx : x ∈ Y } and define l : T → R by,

l(z) := min
1≤j≤m

lxj
(z) for all z ∈ Y

i.e., l =
∧

1≤j≤m lxj
∈ L. It is easily seen that |f(z) − l(z)| < ε for each z ∈ Y and so

∥f − l∥∞ < ε.

Exercise 1.6.19. Let (Y, τ ′) be a compact topological space and let L be a sub-lattice of

C(Y ). Show that L
τp(Y )

= L
∥·∥∞

. Hint: It is sufficient to show that L
τp(Y ) ⊆ L

∥·∥∞
.

Proposition 1.6.20. Let (X, τ) be a topological space. If {Ck : 1 ≤ k ≤ n} is a family of
closed subsets of (X, τ) and U is a nonempty open subset of X such that U ⊆

⋃n
k=1Ck then

there exists a k0 ∈ {1, 2, . . . , n} and a nonempty open subset W of U such that W ⊆ Ck0.

Proof. Let m := min{|F | : F ⊆ {1, 2, . . . , n} and U ⊆
⋃n

k∈F Ck}. Then 1 ≤ m ≤ n. If
m = 1, then U ⊆ Ck0 for some k0 ∈ {1, 2, . . . , n} and the result is proven with W := U . So
let us consider the case when 2 ≤ m. In this case we choose F ⊆ {1, 2, . . . , n} such that
|F | = m and U ⊆

⋃
k∈F Ck. Then we choose any k0 ∈ F and note that U ̸⊆

⋃
k∈F\{k0}Ck.

Let W := U \
⋃

k∈F\{k0}Ck. Then W is a nonempty open subset of U and W ⊆ Ck0 .

Corollary 1.6.21. Let (X, τ) and (Y, τ ′) be topological spaces and let f : X → Y be a
continuous function. If {Ck : 1 ≤ k ≤ n} is a family of closed subsets of Y and U is a
nonempty open subset of X such that f(U) ⊆

⋃n
k=1Ck then there exists a k0 ∈ {1, 2, . . . , n}

and a nonempty open subset W of U such that f(W ) ⊆ Ck0.
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Proof. For each k ∈ {1, 2, . . . , n}, let Uk := {u ∈ U : f(u) ∈ Ck}. Then {Uk : 1 ≤ k ≤ n}
is a closed cover of U . Hence, by Proposition 1.6.20, there is a k0 ∈ {1, 2, . . . , n} and
nonempty open subset W of U such that W ⊆ Uk0 . This completes the proof.

Exercise 1.6.22. Let Γ be an uncountable set. For each countable subset C of Γ and
f ∈ ΓΓ let

N(f, C) := {g ∈ ΓΓ : g|C = f |C}.

Show that:

(i) {N(f, C) : f ∈ ΓΓ and C is a countable subset of Γ} is a base for a topology on ΓΓ.
This topology is called the topology of coincidence on countable sets and denoted τcount;

(ii) N(f, C) is both open and closed in the topology of coincidence on countable sets;

(iii) (ΓΓ, τcount) is a Baire space, see Example 1.1.2.

We shall say that a topological space (X, τ) is fragmentable if there exists a metric ρ on X
such that for every nonempty subset A of X and every 0 < ε there exists a τ -open subset
W of X such that (i) ∅ ̸= A∩W and (ii) ρ− diam(A∩W ) < ε, [29]. Note that in general
the metric ρ will not generate the topology τ on X. For example, every scattered space is
fragmentable (by the discrete metric), but not every scattered space is discrete. Just think
of X := {0} ∪ {1/n : n ∈ N} with the topology inherited from R.

Theorem 1.6.23 ([32, Theorem 5.1]). Suppose that (X, τ) and (Y, τ ′) are topological spaces
and f : X → Y is a quasicontinuous function. If (Y, τ ′) is fragmented by a metric d whose
topology on Y is at least as strong as τ ′ then, f is τ ′-continuous at the points of a residual
subset of X.

Proof. Suppose that f : X → Y is a quasicontinuous function. Let d be a metric on Y ,
whose topology on Y , is at least as strong as τ ′ and which possesses the property that: for
every nonempty subset A of Y and every 0 < ε there exists an open subset W of Y such
that ∅ ̸= A ∩W and d− diam(A ∩W ) < ε. Fix 0 < ε and define

Oε :=
⋃
{U ∈ 2X : U is open and d− diam[f(U)] < ε}.

Clearly, Oε is open, as it is a union of open sets. We will now show that Oε is dense in
X. To this end, let V be a nonempty open subset of (X, τ). Now, f(V ) is a nonempty
subset of Y , therefore there exists an open subset W of Y such that ∅ ̸= f(V ) ∩W and
d−diam[f(V )∩W ] < ε. By the definition of quasicontinuity, there exists a nonempty open
subset U of V such that f(U) ⊆ W . Thus, f(U) ⊆ f(V ) ∩W and so d− diam[f(U)] < ε.

Therefore, ∅ ̸= U ⊆ V ∩ Oε. It now only remains to check that f is d-continuous, and
hence τ ′-continuous, at each point of

⋂
n∈N O1/n.
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Index of notation

• Suppose that X and Y are sets and Φ : X → 2Y is a set-valued mapping. Then

– Φ(U) :=
⋃
{Φ(u) : u ∈ U};

– Dom(Φ) := {x ∈ X : Φ(x) ̸= ∅}. Dom(Φ) is called the domain of Φ or the
effective domain of Φ;

– If X posseses a topology τ then we say that Φ is densely defined if Dom(Φ) is
dense in (X, τ);

– If A is a subset of X and Φ : X → 2Y then Φ|A : A → 2Y is defined by,
Φ|A(a) := Φ(a) for all a ∈ A;

– Gr(Φ) := {(x, y) ∈ X × Y : y ∈ Φ(x)}, called the graph of Φ.

• If (M,d) is a metric space then

– If 0 < r < ∞ and x ∈ M then B[x, r] := {y ∈ M : d(x, y) ≤ r} is call the closed
ball of radius r with centre x;

– If 0 < r < ∞ and x ∈ M then B(x, r) := {y ∈ M : d(x, y) ≤ r} is call the open
ball of radius r with centre x;

– If 0 < r < ∞ and x ∈ M then S(x, r) := {y ∈ M : d(x, y) = r} is call the
sphere of radius r with centre x;

– If 0 < r < ∞ and A is a subset of M then B(A; r) :=
⋃

a∈A B(a; r) and
B[A; r] :=

⋃
a∈AB[a; r];

– Sε(M) := {X ∈ 2M : for every distinct x, y ∈ X, ε ≤ d(x, y)}, the members of
Sε(M) are called ε-separated sets or else, ε-nets;

– For a subset C of M and an element x ∈ M we define, the distance from x to
C by, d(x,C) := inf{d(x, c) : c ∈ C};

– B1(X,M) denotes the set of all Baire one functions from a topological space
(X, τ) into M ;

– B1(X) denotes the set of all real-valued Baire one functions from a topological
space (X, τ).

• The natural numbers, N := {1, 2, 3, . . .}.

• The integers, Z := {. . . ,−2,−1, 0, 1, 2 . . .}.
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• The rational numbers, Q := {a/b : a, b ∈ Z, b ̸= 0}.

• The real numbers, R.

• For any set X, 2X is the set of all subsets of X (sometimes we use P(X) to denote
the set of all subsets of X as well) .

• For any subset A of a topological space (X, τ), we define

– int(A), called the interior of A, is the union of all open sets contained in A;

– A, called the closure of A, is the intersection of all closed sets containing A;

– Bd(A), called the boundary of A, is A \ int(A),

• For any points x and y in a vector space X, we define the following intervals:

– [x, y] := {x+ λ(y − x) : 0 ≤ λ ≤ 1};
– (x, y) := {x+ λ(y − x) : 0 < λ < 1};
– [x, y) := {x+ λ(y − x) : 0 ≤ λ < 1};
– (x, y] := {x+ λ(y − x) : 0 < λ ≤ 1}.

• For any normed linear space (X, ∥ · ∥), we define

– B[x, r] := {y ∈ X : ∥x− y∥ ≤ r}, for any x ∈ X and r > 0;

– B(x; r) := {y ∈ X : ∥x− y∥ < r} , for any x ∈ X and r > 0;

– BX := B[0, 1];

– SX := {x ∈ X : ∥x∥ = 1} .

• Given a compact Hausdorff space K, we write C(K) for the set of all real-valued
continuous functions on K. This is a vector space under the operations of pointwise
addition and pointwise scalar multiplication. C(K) becomes a Banach space when
equipped with the uniform norm ∥ · ∥∞, defined by

∥f∥∞ := sup
x∈K

|f(x)|, for all f ∈ C(K).

• For a normed linear space (X, ∥·∥), X∗, the set of bounded linear maps from X to R,
is called the dual space of X. X∗ is a Banach space when equipped with the operator
norm, given by

∥f∥ := sup
x∈BX

|f(x)|, for all f ∈ X∗.

• Let X be a set and Y a totally ordered set. For any function f : X → Y we define

argmax(f) : = {x ∈ X : f(y) ≤ f(x) for all y ∈ X},
argmin(f) : = {x ∈ X : f(x) ≤ f(y) for all y ∈ X}.
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• Let A be a subset of a vector space X. Then the convex hull of A, denoted by co(A),
is defined to be the intersection of all convex subsets of X that contain A.

• Let X be a set and let f : X → R ∪ {∞} a function. Then

Dom(f) := {x ∈ X : f(x) < ∞}.

We say that the function f is a proper function if Dom(f) ̸= ∅.

• Let (X, ∥ · ∥) be a normed linear space and f : X → [−∞,∞]. Then the Fenchel
conjugate of f is the function f ∗ : X∗ → [−∞,∞] defined by,

f ∗(x∗) := sup
x∈X

{x∗(x)− f(x)}.

The function f ∗ is convex and if f is a proper function then f ∗ never takes the value
−∞.

• If f is a convex function defined on a nonempty convex subset K of a normed linear
space (X, ∥ · ∥) and x ∈ K, then we define the subdifferential of f at x to be the set
∂f(x) of all x∗ ∈ X∗ satisfying

x∗(y − x) ≤ f(y)− f(x) for all y ∈ K.

• It is assumed that the reader has a basic working knowledge of metric spaces, normed
linear spaces and even basic general topology. In particular, it is assumed that the
reader is familiar with Tychonoff’s theorem, the Banach-Alaoglu theorem and the
Separation theorem.

Theorem (Tychonoff’s Theorem [12]). The Cartesian product
∏

s∈S Xs, where
Xs ̸= ∅ for all s ∈ S, is compact if, and only if, all spaces Xs are compact.

Theorem (Banach-Alaoglu Theorem [1]). Let (X, ∥ · ∥) be a normed linear space.
Then (BX∗ ,weak∗) is compact.

Theorem (Separation Theorem [11, page 418]). Suppose that (X, τ) is a locally con-
vex space over R and C is a nonempty closed convex subset of X. If x0 ̸∈ C then
there exists a continuous linear functional x∗ on X such that

sup{x∗(c) : c ∈ C} < x∗(x0).
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α wins, 2, 14, 24

barely Baire spaces, 7
Bernstein set, 7
β wins, 2, 14, 24
β-unfavourable, 6
bitopological space, 28

Ch(X), 1
Choquet game, 1
conditionally α-favourable (GP-game), 18
countable separation, 20

∆, 24

ε-jointly continuous, 25
exhaustive partition of X, 30

Feebly compact, 3
fragmentable, 70
fragmenting game, 29

G(∆)-game, 24
G(τ, τ ′)-game, 29
GP-game, 14
Gul’ko compact, 11

K-analytic, 18
K-countably determined, 9

lattice, 69
length of p, 5
length of t, 54

minimal mapping, 46

network, 34

Ω wins, 29

partial exhaustive partition of X, 29
partial play, 2, 14, 24

partial s-play, 3, 15
partial σ-play, 25
partial t-play, 2, 15
perfect information, 1
perfect mapping, 22
play, 2, 14, 24
pointwise countably complete, 68
positional game, 1
pseudo-compact, 3

s-play, 3, 15
selection, 48
separate Y from X \ Y , 20
separation index, 20
separation of Y in X, 20
separation of Y , 20
σ-fragmented, 39
Σ wins, 29
sigma-fragmented, 39
σ-play, 25
Stone-Weierstrass Theorem, 69
strategy, 2, 14, 15, 24
sub-lattice, 69
sX(Y ), 20

T ∗, 54
t-play, 2, 15
topology of coincidence on countable sets, 3,
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undetermined games, 7
unfavourable, 15
upper semicontinuous, 47
usco, 9

Valdivia compact, 28

weakly α-favourable, 3
winning strategy, 2, 3, 15, 25
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