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Abstract

A semitopological group (topological group) is a group endowed with a topology for which
multiplication is separately continuous (multiplication is jointly continuous and inversion is
continuous). In this paper we give some topological conditions on a semitopological group that imply
that it is a topological group. In particular, we show that every almostČech-complete semitopological
group is a topological group. Thus we improve some recent results of A. Bouziad. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The purpose of this note is to refine and improve upon some of the recent advances
made by Bouziad on the question of when a semitopological group is in fact a topological
group. Recall that asemitopological group(paratopological group) is a group endowed
with a topology for which multiplication is separately (jointly) continuous. Research on
this question possibly began in [13] when Montgomery showed that each completely
metrizable semitopological group is a paratopological group. Later in 1957 Ellis showed
that each locally compact semitopological group is in fact a topological group (see [5,6]).
This answered a question raised by Wallace in [18]. Then in 1960 Zelazko used
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Montgomery’s result from [13] to show that each completely metrizable semitopological
group is a topological group. Much later in [2] Bouziad improved both of these results
and answered a question raised by Pfister in [16] by showing that eachČech-complete
semitopological group is a topological group. (Recall that both locally compact and
completely metrizable topological spaces areČech-complete.) To do this, it was sufficient
for Bouziad to show that eacȟCech-complete semitopological group is a paratopological
group since earlier, Brand (see [4]) had proven that everyČech-complete paratopological
group is a topological group. Brand’s proof of this was later improved and simplified
in [16]. Let us also mention here, that apart from the a fore-mentioned authors there
have been many other important contributions to the problem of determining when a
semitopological group is a topological group, including, [12,7,14,8] to name but a few. Our
contribution to this problem is based upon the following game. Let(X, τ) be a topological
space and letD be a dense subset ofX. OnX we consider theGS(D)-gameplayed between
two playersα andβ . Playerβ goes first (always!) and chooses a non-empty open subset
B1 ⊆ X. Playerα must then respond by choosing a non-empty open subsetA1 ⊆ B1.
Following this, playerβ must select another non-empty open subsetB2 ⊆ A1 ⊆ B1 and
in turn playerα must again respond by selecting a non-empty open subsetA2 ⊆ B2 ⊆
A1⊆ B1. Continuing this procedure indefinitely the playersα andβ produce a sequence
((An,Bn): n ∈N) of pairs of open sets called aplayof theGS(D)-game. We shall declare
thatα wins a play((An,Bn): n ∈ N) of theGS(D)-game if;

⋂
n∈NAn is non-empty and

each sequence(an: n ∈N) with an ∈An∩D has a cluster-point inX. Otherwise the player
β is said to have won this play. By astrategyt for the playerβ we mean a ‘rule’ that
specifies each move of the playerβ in every possible situation. More precisely, a strategy
t := (tn: n ∈N) for β is a sequence ofτ -valued functions such thattn+1(A1, . . . ,An)⊆An
for eachn ∈ N. The domain of each functiontn is precisely the set of all finite sequences
(A1,A2, . . . ,An−1) of length n − 1 in τ with Aj ⊆ tj (A1, . . . ,Aj−1) for all 1 6 j 6
n − 1. (Note: the sequence of length 0 will be denoted by∅.) Such a finite sequence
(A1,A2, . . . ,An−1) or infinite sequence(An: n ∈ N) is called at-sequence. A strategy
t := (tn: n ∈ N) for the playerβ is called awinning strategyif each t-sequence is won
by β . We will call a topological space(X, τ) a strongly Baireor (stronglyβ-unfavorable)
space if it is regular and there exists a dense subsetD of X such that the playerβ does
not have a winning strategy in theGS(D)-game played onX. It follows from Theorem 1
in [17] that each strongly Baire space is in fact a Baire space and it is easy to see that each
strongly Baire space has at least oneqD-point. Indeed, ift := (tn: n ∈ N) is any strategy
for β then there is at-sequence(An: n ∈N) whereα wins. In this case we have that each
point of

⋂
n∈NAn is aqD-point. Recall that a pointx ∈X is called aqD-point (with respect

to some dense subsetD of X) if there exists a sequence of neighborhoods(Un: n ∈ N) of
x such that every sequence(xn: n ∈N) with xn ∈ Un ∩D has a cluster-point inX.

The remainder of this paper is divided into 3 parts. In the next section we will show that
every strongly Baire semitopological group is a paratopological group and then in Section 3
we will show that each strongly Baire semitopological group is in fact a topological group.
Finally, in Section 4 we will provide some examples of topological spaces that are strongly
Baire.
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2. Paratopological groups

We begin with some definitions. LetX, Y andZ be topological spaces, then we will
say that a functionf :X × Y → Z is strongly quasi-continuous at(x, y) ∈ X × Y if
for each neighborhoodW of f (x, y) and each product of open setsU × V ⊆ X × Y
containing(x, y) there exists a non-empty open subsetU ′ ⊆ U and a neighborhoodV ′
of y such thatf (U ′ × V ′) ⊆ W [3]. If f is strongly quasi-continuous at each point
(x, y) ∈ X × Y then we say thatf is strongly quasi-continuous onX × Y . Finally, a
functionf :X × Y → Z is said to beseparately continuousonX × Y if for eachx0 ∈X
andy0 ∈ Y the functionsy→ f (x0, y) andx→ f (x, y0) are both continuous onY and
X, respectively. Note: in the following results ‘e’ will denote the identity element of the
group(G, ·).

Lemma 1 (Theorem 1 [3]).LetX be a strongly Baire space,Y a topological space and
Z a regular space. Iff :X× Y →Z is a separately continuous function andD is a dense
subset ofY then for eachqD-point y0 ∈ Y the mappingf is strongly quasi-continuous at
each point ofX× {y0}.

Proof. LetDX be any dense subset ofX such thatβ does not have a winning strategy in
theGS(DX)-game played onX. (Note: such a dense subset is guaranteed by the fact that
X is a strongly Baire space.) We need to show thatf is strongly quasi-continuous at each
point (x0, y0) ∈X × {y0}. So in order to obtain a contradiction let us assume thatf is not
quasi-continuous at some point(x0, y0) ∈X×{y0}. Then, by the regularity ofZ there exist
open neighborhoodsW of f (x0, y0),U of x0 andV of y0 so thatf (U ′ ×V ′) 6⊆W for each
non-empty open subsetU ′ of U and neighborhoodV ′ ⊆ V of y0. Again, by the regularity
of Z there exists an open neighborhoodW ′ of f (x0, y0) so thatW ′ ⊆W . Note that by
possibly makingU smaller we may assume thatf (x, y0) ∈W ′ for all x ∈U . We will now
inductively define a strategyt := (tn: n ∈N) for the playerβ in theGS(DX)-game played
onX, but first we shall denote by(On: n ∈N) any sequence of open neighborhoods ofy0

with the property that each sequence(yn: n ∈ N) in D with yn ∈ On has a cluster-point
in Y .

Step1. LetV1 := {y ∈ V ∩O1: f (x0, y) ∈W ′} and choose(x1, y1) ∈ (U ∩DX)× (V1∩
D) so thatf (x1, y1) /∈W . Then define,t1(∅) := {x ∈U : f (x, y1) /∈W }.

Now suppose that(xj , yj ),Vj andtj have been defined for eacht-sequence(A1,A2, . . . ,

Aj−1) of length(j − 1), 16 j 6 n so that,
(i) y0 ∈ Vj := {y ∈ Vj−1 ∩Oj : f (xj−1, y) ∈W ′};

(ii) f (xj , yj ) /∈W and(xj , yj ) ∈ (Aj−1 ∩DX)× (Vj ∩D);
(iii) tj (A1, . . . ,Aj−1) := {x ∈Aj−1: f (x, yj ) /∈W }.
Stepn+1. For eacht-sequence(A1, . . . ,An) of lengthnwe select(xn+1, yn+1) ∈X×Y

and open setsVn+1 andtn+1(A1, . . . ,An) so that,
(i) y0 ∈ Vn+1 := {y ∈ Vn ∩On+1: f (xn, y) ∈W ′};
(ii) f (xn+1, yn+1) /∈W and(xn+1, yn+1) ∈ (An ∩DX)× (Vn+1 ∩D);
(iii) tn+1(A1, . . . ,An) := {x ∈An: f (x, yn+1) /∈W }.
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This completes the definition oft := (tn: n ∈ N). Now sincet is not a winning strategy
for the playerβ in theGS(DX)-game there exists at-sequence(An: n ∈N) whereα wins
and sincexn+1 ∈ An ∩DX andyn ∈ On ∩D for eachn ∈ N both sequences(xn: n ∈ N)
and(yn: n ∈N) have cluster-points. Letx∞ be any cluster-point of(xn: n ∈N) andy∞ be
any cluster-point of(yn: n ∈ N). Then for each fixedn ∈ N, f (xn, yk) ∈ f ({xn} × Vk) ⊆
f ({xn} × Vn+1)⊆W ′ for all n < k sinceyk ∈ Vk ⊆ Vn+1. Thereforef (xn, y∞) ∈W ′ for
eachn ∈ N and sof (x∞, y∞) ∈W ′ ⊆W . On the other hand if we again fixn ∈ N then
f (xk+1, yn) ∈ f (tk(A1, . . . ,Ak−1)× {yn})⊆ f (tn(A1, . . . ,An−1)× {yn})⊆X\W for all
n 6 k sincexk+1 ∈ Ak ⊆ tk(A1, . . . ,Ak−1) ⊆ tn(A1, . . . ,An−1). Therefore,f (x∞, yn) /∈
W for eachn ∈N and sof (x∞, y∞) /∈W . This however, contradicts our earlier conclusion
thatf (x∞, y∞) ∈W . Hencef is strongly quasi-continuous at(x0, y0). 2

The origins of the following lemma may be traced back to Theorem 3 in [3].

Lemma 2. Let (G, ·, τ ) be a regular semitopological group. If there exists a dense subset
D of G and a sequence of neighborhoods(Un: n ∈ N) of e so that every sequence
(zn: n ∈N) in D with zn ∈ Un ·Un has a cluster-point inG and multiplication is strongly
quasi-continuous at(e, e) then(G, ·, τ ) is a paratopological group.

Proof. Since(G, ·, τ ) is a semitopological group it is sufficient to show that the (separately
continuous and open) mappingπ :G × G→ G defined by,π(g,h) := g · h is jointly
continuous at(e, e). So in order to obtain a contradiction we will assume thatπ is not
jointly continuous at(e, e). Therefore by the regularity of(G, τ) there exists an open
neighborhoodW of e so that for every neighborhoodU of e, U · U 6⊆ W . Again, by
the regularity of(G, τ) there exists an open neighborhoodV of e so thatV ⊆ W . Let
V ∗ := {g ∈ G: (g, e) ∈ int π−1(V )}. Then by the strong quasi-continuity ofπ at (e, e),
e ∈ V ∗. We will now inductively define sequences(zn: n ∈ N) and(vn: n ∈ N) in D and
decreasing neighborhoods(Zn: n ∈N) and(Vn: n ∈N) of e.

Step 1. Choosev1 ∈ V ∗ ∩ D and a neighborhoodZ1 of e so thatZ1 ⊆ U1 and
(v1 ·Z1) ·Z1⊆ V . Then choosez1 ∈ (Z1 ·Z1\W)∩D and a neighborhoodV1 of e so that
V1⊆ U1 andV1 · z1⊆G\W . For purely notational reasons we will defineV0 :=U0 :=G.
Now suppose thatvj , zj ∈D andZj , Vj have been defined for each 16 j 6 n so that,

(i) vj ∈ (V ∗ ∩ Vj−1)∩D and(vj ·Zj) ·Zj ⊆ V ;
(ii) zj ∈ (Zj ·Zj\W)∩D andVj · zj ⊆G\W ;
(iii) Zj ⊆Zj−1∩Uj andVj ⊆ Vj−1∩Uj .
Stepn+1. Choosevn+1 ∈ (V ∗ ∩Vn)∩D and a neighborhoodZn+1 of e so thatZn+1⊆

Zn∩Un+1 and(vn+1 ·Zn+1) ·Zn+1⊆ V . Then choosezn+1 ∈ (Zn+1 ·Zn+1\W)∩D and a
neighborhoodVn+1 of e so thatVn+1⊆ Vn∩Un+1 andVn+1 ·zn+1⊆G\W . This completes
the induction. Now sincezj ∈ Zj ·Zj ⊆ Uj ·Uj andvj+1 = vj+1 · e ∈ Vj · Vj ⊆ Uj ·Uj
for eachj ∈ N, both sequences(zn: n ∈ N) and (vn: n ∈ N) have cluster-points inG.
Let z∞ be any cluster-point of(zn: n ∈ N) andv∞ be any cluster-point of(vn: n ∈ N).
Then for each fixedn ∈ N, vn · zk ∈ vn · Zk · Zk ⊆ vn · Zn · Zn ⊆ V for all n 6 k since
Zk ⊆ Zn. Therefore,vn · z∞ ∈ V for eachn ∈ N and sov∞ · z∞ ∈ V ⊆W . On the other
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hand, if we again fixn ∈ N thenvk+1 · zn ∈ Vk · zn ⊆ Vn · zn ⊆ G\W for all n 6 k since
vk+1 ∈ Vk ⊆ Vn. Therefore,v∞ · zn ∈ G\W for eachn ∈ N and sov∞ · z∞ ∈ G\W .
This however, contradicts our earlier conclusion thatv∞ · z∞ ∈ W . Hence(G, ·, τ ) is a
paratopological group.2
Theorem 1. Let (G, ·, τ ) be a semitopological group. If(G, τ) is a strongly Baire space
then(G, ·, τ ) is a paratopological group.

Proof. LetDG be any dense subset ofG such thatβ does not have a winning strategy in
theGS(DG)-game played onG. We begin by observing thate is aqD-point with respect
to some dense subsetD of G and so by Lemma 1 the mappingπ :G×G→ G defined
by π(g,h) := g · h is strongly quasi-continuous onG× {e}. Hence by Lemma 2 we need
only show that there exists a dense subsetD∗ of G and a sequence of open neighborhoods
(U∗n : n ∈N) of e so that every sequence(zn: n ∈N) inD∗ with zn ∈U∗n ·U∗n has a cluster-
point inG. To this end, we will inductively define a strategyt := (tn: n ∈ N) for β in the
GS(DG)-game played onG.

Step1. We defineU1 :=G, V1 :=G andt1(∅) :=G. Now, suppose thatUj , Vj andtj
have been defined for eacht-sequence(A1,A2, . . . ,Aj−1) of length(j − 1),16 j 6 n so
that,

(i) Uj ⊆Uj−1;
(ii) e ∈ Vj ⊆ Vj−1;
(iii) π(Uj × Vj )⊆Aj−1;

for each 1< j 6 n andtj (A1, . . . ,Aj−1) :=Uj for each 16 j 6 n.
Stepn+1. For eacht-sequence(A1, . . . ,An) of lengthn we choose open setsUn+1 and

Vn+1 so that,
(i) Un+1⊆Un;
(ii) e ∈ Vn+1⊆ Vn;
(iii) π(Un+1× Vn+1)⊆An.

Then we definetn+1(A1, . . . ,An) := Un+1. Note: this construction is possible sinceπ is
strongly quasi-continuous andAn ⊆ tn(A1, . . . ,An−1)=Un. This completes the definition
of t := (tn: n ∈ N). Now sincet is not a winning strategy forβ there exists at-sequence
(An: n ∈N) whereα wins and so⋂

n∈N
An =

⋂
n∈N

Un is non-empty.

Chooseu ∈⋂n∈NAn and setD∗ := u−1DG. Then for eachn ∈ N define,U∗n := (u−1 ·
Un) ∩ Vn. It is now a routine matter to show that every sequence(zn: n ∈ N) in D∗ with
zn ∈U∗n ·U∗n has a cluster-point inG. 2

3. Continuity of inversion

Let X andY be topological spaces. Then a functionf :X→ Y is said to bequasi-
continuous atx ∈X if for each neighborhoodW of f (x) and neighborhoodU of x there
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exists a non-empty open setV ⊆ U such thatf (V ) ⊆W [10]. If f is quasi-continuous
at each pointx ∈X then we say thatf is quasi-continuous onX. The following result is
based upon Theorem 4.2 in [1] which in turn is based upon a clever trick from [16].

Lemma 3. Let (G, ·, τ ) be a semitopological group. If(G, τ) is a strongly Baire space
then inversion is quasi-continuous onG.

Proof. Let us begin with the following preliminary observation. Suppose thatU andW
are any neighborhoods ofe such thatU · U ⊆ W andD is any subset ofG such that
D−1 ⊆ U . Then(D)−1 ⊆W . To show that inversion is quasi-continuous onG it suffices
to show that inversion is quasi-continuous ate ∈G. So in order to obtain a contradiction let
us assume that inversion is not quasi-continuous ate ∈G. Then there exist neighborhoods
U andW of e such that for each non-empty open subsetV of U , V−1 6⊆W . Note that
by possibly makingU smaller we may assume thatU · U ⊆ W . Hence for each dense
subsetD of U and non-empty open subsetV of U there exists a pointx ∈D∩V such that
x−1 /∈ U , for otherwise,V −1⊆ (V ∩D)−1⊆W . Next, we letD be any dense subset ofG
such thatβ does not have a winning strategy in theGS(D)-game played onG and then we
apply the above observations to inductively define a strategyt := (tn: n ∈ N) for β in the
GS(D)-game played onG.

Step1. We definex1 := e, U1 := U andt1(∅) := x1 ·U1. Now, suppose thatxj , Uj and
tj have been defined for eacht-sequence(A1, . . . ,Aj−1) of length(j − 1), 16 j 6 n so
that,

(i) xj ∈ (x1 · x2 · · ·xj−1)
−1 · (Aj−1 ∩D) andx−1

j /∈U ;
(ii) x1 · x2 · · ·xj ·Uj ⊆Aj−1;
(iii) Uj ·Uj ⊆ Uj−1;

for each 1< j 6 n andtj (A1, . . . ,Aj−1) := x1 · x2 · · ·xj ·Uj for each 16 j 6 n.
Stepn + 1. For eacht-sequence(A1, . . . ,An) of length n we choose an element

xn+1 ∈G and a neighborhoodUn+1 of e so that,
(i) xn+1 ∈ (x1 · x2 · · ·xn)−1 · (An ∩D) andx−1

n+1 /∈ U ;
(ii) x1 · x2 · · ·xn+1 ·Un+1⊆An;
(iii) Un+1 ·Un+1⊆Un.

Then we definetn+1(A1, . . . ,An) := x1 · x2 · · ·xn+1 · Un+1. Note: this construction is
possible since multiplication is jointly continuous (Theorem 1) andAn ⊆ x1 ·x2 · · ·xn ·Un.
This completes the definition oft := (tn: n ∈N). Now sincet is not a winning strategy for
β there exists at-sequence(An: n ∈ N) whereα wins. Hence we see that the sequence
((x1 · x2 · · ·xn): n ∈ N) has a cluster-pointx ∈ G. Next we choosek > n + 1 so that
x1 · x2 · · ·xk−1 ∈ x · Un+1 that is, so thatx−1

k ∈ (x1 · x2 · · ·xk)−1 · x · Un+1. Now the
element(x1 · x2 · · ·xk)−1 · x is a cluster-point of the sequence((x1 · x2 · · ·xk)−1 · (x1 ·
x2 · · ·xk+j ): j ∈ N) and so we have(x1 · x2 · · ·xk)−1 · (x1 · x2 · · ·xk+j )= xk+1 · · ·xk+j ∈
Uk+1 · Uk+2 · · ·Uk+j . Hence,(x1 · x2 · · ·xk)−1 · x ∈ Uk ⊆ Uk−1 ⊆ Un+1. Thus,x−1

k ∈
(x1 · x2 · · ·xk)−1 · x · Un+1 ⊆ Un+1 · Un+1 ⊆ Un ⊆ U ; which contradicts the wayxk was
chosen. This shows that inversion is quasi-continuous onG. 2
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Lemma 4. Let (G, ·, τ ) be a paratopological group. If inversion is quasi-continuous ate

then(G, ·, τ ) is a topological group.

Proof. Since (G, ·, τ ) is a paratopological group it suffices to show that inversion is
continuous onG. In fact, because(G, ·, τ ) is a semitopological group it will suffice to
show that inversion is continuous ate ∈ G. To this end, letW be any neighborhood
of e. SinceG is a paratopological group there exists a neighborhoodU of e so that
U · U ⊆ W . Now since inversion is quasi-continuous ate there is a non-empty open
subsetV of U such thatV −1 ⊆ U . Hence,V · V −1 is an open neighborhood ofe and
(V · V−1)−1= V · V −1⊆U ·U ⊆W . This completes the proof.2

The following theorem is now just a consequence of Theorem 1, Lemmas 3 and 4.

Theorem 2. Let (G, ·, τ ) be a semitopological group. If(G, τ) is a strongly Baire space
then(G, ·, τ ) is a topological group.

4. Strongly Baire topological spaces

Although the class of strongly Baire spaces provided a convenient framework for our
theorems in Sections 2 and 3 these spaces are, unfortunately, not readily identifiable. So in
this section we will introduce a related class of spaces whose membership properties are
more readily determined. Let(X, τ) be a topological space and letY be a dense subset
of X. OnX we will consider theG(Y )-gameplayed between two playersα andβ . The
rules for playing this game are the same as for theGS(Y )-game played onX with the only
difference being in the definition of a win. In theG(Y )-game we will say thatα wins a
play ((An,Bn): n ∈ N) if,

⋂
n∈NAn ∩ Y 6= ∅. Otherwise the playerβ is said to have won

this play. It follows in a similar manner to Theorems 1 and 2 in [17] thatY is everywhere
second categoryin X (that is,U ∩ Y is a second category set inX for each non-empty
open subsetU of X, or equivalently,Y is a dense subset ofX and a Baire space with the
relative topology) if and only if the playerβ does not have a winning strategy in theG(Y )-
game. We will say that a topological space(Y, τ ) is cover semi-completeis there exists a
pseudo-metricd onY such that;

(i) eachd-convergent sequence inY has a cluster-point inY ;
(ii) Y is fragmentedby d , that is, for eachε > 0 and non-empty subsetA of Y there

exists a non-empty relatively open subsetB of A such thatd-diamB < ε (see [15]
for the original definition in terms of exhaustive covers).

Theorem 3. If (X, τ) is a regular topological space that contains, as an everywhere sec-
ond category set, a cover semi-complete spaceY , then the playerβ does not have a winning
strategy in theGS(Y )-game played onG. In particular, (X, τ) is a strongly Baire space.

Proof. Let t := (tn: n ∈N) be a strategy for the playerβ in theGS(Y )-game played onX.
We need to construct at-sequence(An: n ∈ N) whereα wins. To do this we will define a
new strategyt ′ := (t ′n: n ∈N) for the playerβ in theG(Y )-game played onX.
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Step1. Definet ′1(∅) := t1(∅). Now suppose thatt ′j has been defined for eacht ′-sequence
(A1, . . . ,Aj−1) of length(j − 1), 1< j 6 n so that,

(i) (A1, . . . ,Aj−1) is a t-sequence;
(ii) t ′j (A1, . . . ,Aj−1)⊆ tj (A1, . . . ,Aj−1);
(iii) d-diam(t ′j (A1, . . . ,Aj−1)∩ Y ) < 1/j .
Stepn+1. For eacht ′-sequence(A1, . . . ,An) of lengthn we definet ′n+1(A1, . . . ,An) to

be any non-empty open subset oftn+1(A1, . . . ,An) such thatd-diam(t ′n+1(A1, . . . ,An)∩
Y ) < 1/n. Note: this is possible since(A1, . . . ,An) is a t-sequence andY is “fragmented”
by d . Hence with this definition,

(i) (A1, . . . ,An) is a t-sequence;
(ii) t ′n+1(A1, . . . ,An)⊆ tn+1(A1, . . . ,An);
(iii) d-diam(t ′n+1(A1, . . . ,An)∩ Y ) < 1/(n+ 1).

This completes the definition oft ′ := (t ′n: n ∈ N). Now sinceY is everywhere second
category inX, t ′ cannot be a winning strategy for the playerβ in theG(Y )-game played on
X. Hence there is at ′-sequence (and so at-sequence)(An: n ∈N) where

⋂
n∈NAn ∩ Y 6=

∅. It should now be clear that every sequence(yn: n ∈N) in Y with yn ∈An has a cluster-
point inY (and so inX). This shows thatt is not a winning strategy for the playerβ in the
GS(Y )-game played onX. In particular,X is a strongly Baire space.2

We will say that a subsetY of a topological space(X, τ) hascountable separation in
X if there is a countable family{On: n ∈ N} of open subsets ofX such that for every
pair {x, y} with y ∈ Y andx ∈ X\Y , {x, y} ∩On is a singleton for at least onen ∈ N. If
we denote by,XΣ the family of all subsets ofX with countable separation inX thenXΣ
is aσ -algebra that contains all the open subsets ofX. Moreover,XΣ is closed under the
Souslin operation. For a completely regular topological space(X, τ) we shall say thatX
hascountable separationif in some compactificationbX, X has countable separation in
bX. It is shown in [11] that ifX has countable separation in one compactification thenX

has countable separation in every compactification and so we see that everyČech-analytic
space has countable separation. Now Lemma 3.4 in [15] shows that each completely
regular space with countable separation is cover semi-complete. In fact with a little extra
work one can show that each(p − σ)-fragmentable space (see [2] for the definition) is
cover semi-complete. Thus, it follows that the next corollary improves upon the main result
of [3].

Corollary 1. Let (G, ·, τ ) be a regular semitopological group. If(G, τ) contains, as a
second category subset, a cover semi-complete spaceY , then (G, ·, τ ) is a topological
group. In particular, if (G, τ) is a cover semi-complete Baire space then(G, ·, τ ) is a
topological group.

Proof. By Theorem 6.35 in [9] there exists a non-empty open subsetU of G such that
U ∩ Y is everywhere second category inU . Hence it is possible to construct a maximal
disjoint family {Uα: α ∈A} of non-empty open subsets ofG such that;

(i)
⋃
α∈AUα is dense inG and
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(ii) eachUα contains, as an everywhere second category subset, a cover semi-complete
spaceDα .

It is now easy to check that the setD := ⋃α∈ADα is everywhere second category in
G and by appealing to the original definition of cover semi-completeness (given in [15])
it is routine to verify that the setD is itself cover semi-complete. Therefore, in light of
Theorem 3,(G, τ) is a strongly Baire space and so the result follows from Theorem 2.2
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