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Abstract

A semitopological group (topological group) is a group endowed with a topology for which
multiplication is separately continuous (multiplication is jointly continuous and inversion is
continuous). In this paper we give some topological conditions on a semitopological group that imply
that it is a topological group. In particular, we show that every allﬁmjh-complete semitopological
group is a topological group. Thus we improve some recent results of A. Bouzi2a001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The purpose of this note is to refine and improve upon some of the recent advances
made by Bouziad on the question of when a semitopological group is in fact a topological
group. Recall that @emitopological grougparatopological groupis a group endowed
with a topology for which multiplication is separately (jointly) continuous. Research on
this question possibly began in [13] when Montgomery showed that each completely
metrizable semitopological group is a paratopological group. Later in 1957 Ellis showed
that each locally compact semitopological group is in fact a topological group (see [5,6]).
This answered a question raised by Wallace in [18]. Then in 1960 Zelazko used

Y Research supported by a Marsden fund grant, VUW 703, administered by the Royal Society of New Zealand.
* Corresponding author.

E-mail addressmoors@math.waikato.ac.nz (W.B. Moors).

1 The first two authors are partially supported by Grant MM-701/97 of the National Fund for Scientific Research
of the Bulgarian Ministry of Education, Science and Technology.

0166-8641/01/% — see front mattér 2001 Elsevier Science B.V. All rights reserved.
PIl: S0166-8641(99)00152-2



158 P.S. Kenderov et al. / Topology and its Applications 109 (2001) 157-165

Montgomery'’s result from [13] to show that each completely metrizable semitopological
group is a topological group. Much later in [2] Bouziad improved both of these results
and answered a question raised by Pfister in [16] by showing thatéaclh—complete
semitopological group is a topological group. (Recall that both locally compact and
completely metrizable topological spaces ém:h-complete.) To do this, it was sufficient
for Bouziad to show that eatﬂiech-complete semitopological group is a paratopological
group since earlier, Brand (see [4]) had proven that eémlyn-complete paratopological
group is a topological group. Brand's proof of this was later improved and simplified
in [16]. Let us also mention here, that apart from the a fore-mentioned authors there
have been many other important contributions to the problem of determining when a
semitopological group is a topological group, including, [12,7,14,8] to name but a few. Our
contribution to this problem is based upon the following game (Ketr) be a topological
space and leb be a dense subset & On X we consider th€s(D)-gameplayed between

two playerse and 8. Playerp goes first (always!) and chooses a non-empty open subset
B1 C X. Playera must then respond by choosing a non-empty open subse&t B;.
Following this, player8 must select another non-empty open suliget A1 C B; and

in turn playera must again respond by selecting a non-empty open subset By C

A1 C B1. Continuing this procedure indefinitely the playerand g produce a sequence
((Ay, By): n € N) of pairs of open sets callededay of the Gg(D)-game. We shall declare
thata winsa play ((A,, B,): n € N) of the Gs(D)-game if;(),, .y An IS non-empty and
each sequende,: n € N) with a,, € A,, N D has a cluster-pointixX. Otherwise the player

B is said to have won this play. By strategyr for the player8 we mean arule’ that
specifies each move of the playgiin every possible situation. More precisely, a strategy

t := (t,: n € N) for 8 is a sequence af-valued functions such that,;1(A1, ..., A,) C A,

for eachn € N. The domain of each functiar is precisely the set of all finite sequences
(A1, Ap, ..., Ap—1) Of lengthn — 1 in v with A; C1j(Ag,..., A1) forall 1< j <

n — 1. (Note: the sequence of length O will be denotedéby Such a finite sequence
(A1, Ag, ..., Ay—1) or infinite sequencéA,: n € N) is called ar-sequenceA strategy

t := (t,: n € N) for the playerg is called awinning strategyif eachz-sequence is won
by 8. We will call a topological spacéX, t) astrongly Baireor (strongly 8-unfavorablé
space if it is regular and there exists a dense subsef X such that the playes does

not have a winning strategy in th&s(D)-game played otX. It follows from Theorem 1

in [17] that each strongly Baire space is in fact a Baire space and it is easy to see that each
strongly Baire space has at least gnepoint. Indeed, iff := (¢,: n € N) is any strategy

for g then there is a-sequencéA,,: n € N) wherea wins. In this case we have that each
point of(), .y Ax is agp-point. Recall that a point € X is called agp-point (with respect

to some dense subsbBtof X) if there exists a sequence of neighborho@ds. » € N) of

x such that every sequence,: n € N) with x,, € U, N D has a cluster-point iX.

The remainder of this paper is divided into 3 parts. In the next section we will show that
every strongly Baire semitopological group is a paratopological group and then in Section 3
we will show that each strongly Baire semitopological group is in fact a topological group.
Finally, in Section 4 we will provide some examples of topological spaces that are strongly
Baire.
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2. Paratopological groups

We begin with some definitions. Lef, Y and Z be topological spaces, then we will
say that a functionf: X x Y — Z is strongly quasi-continuous &tx,y) € X x Y if
for each neighborhood of f(x,y) and each product of open setsx V C X x Y
containing(x, y) there exists a non-empty open sub&étC U and a neighborhood’
of y such thatf(U’" x V') € W [3]. If f is strongly quasi-continuous at each point
(x,y) € X x Y then we say thaff is strongly quasi-continuous oX x Y. Finally, a
function f: X x Y — Z is said to beseparately continuousn X x Y if for eachxg € X
andyp € Y the functionsy — f(xo, y) andx — f(x, yo) are both continuous ok and
X, respectively. Note: in the following resultg’ ‘will denote the identity element of the
group(G, -).

Lemma 1 (Theorem 1 [3])Let X be a strongly Baire space, a topological space and
Z aregular space. Iff : X x Y — Z is a separately continuous function afdis a dense

subset oft then for eachyp-point yg € Y the mappingf is strongly quasi-continuous at
each point ofX x {yo}.

Proof. Let Dx be any dense subset &f such that8 does not have a winning strategy in
theGs(Dyx)-game played orX. (Note: such a dense subset is guaranteed by the fact that
X is a strongly Baire space.) We need to show that strongly quasi-continuous at each
point (xo, yo) € X x {yo}. So in order to obtain a contradiction let us assume thistnot
quasi-continuous at some pointh, yo) € X x {yo}. Then, by the regularity af there exist
open neighborhoodd of £ (xo, yo), U of xg andV of yg so thatf (U’ x V') ¢ W for each
non-empty open subsét’ of U and neighborhood’ C V of yg. Again, by the regularity
of Z there exists an open neighborhobt of f (xo, yo) So thatW’ C W. Note that by
possibly making/ smaller we may assume thatx, yp) € W’ for all x € U. We will now
inductively define a strategy:= (,: n € N) for the playerg in theGs(Dx)-game played
on X, but first we shall denote b§0,,: n € N) any sequence of open neighborhoods®f
with the property that each sequeneg: n € N) in D with y, € O, has a cluster-point
inY.

Stepl. LetVy:={y € VN O1: f(xo,y) € W} and chooséx1, y1) € (UNDx) x (V1N
D) so thatf (x1, y1) ¢ W. Then definet1(9) := {x e U: f(x, y1) ¢ W}.

Now suppose thd;, y;), V; andz; have been defined for eaclsequenceAs, Az, .. .,
A;_p) oflength(j — 1), 1< j <n sothat,

(i) yoeVj:={yeV;—1N0;: f(xj-1,y) € W}

(i) fxj,y)) ¢ Wand(x;,y;) € (Aj—1N Dx) x (V; N D;

(iii) tj(A1,...,Aj_1)i={xeAj_1: f(x,y)) ¢ W}

Stepn + 1. For each-sequencéAy, .. ., A,) of lengthn we select{x; 11, yp+1) € X X Y
and open set¥),, 1 andz,11(A1, ..., A,) so that,

() yo€ Va1 :={y € Va N Ops1: f(xn,y) € W'},
(i) fn+1, yar1) ¢ W and@nt1, yu+1) € (An N Dx) X (V1 N D);
(i) tay1(A1, ..., Ap) i={x € Ap? f(x,yn+1) ¢ W}
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This completes the definition of:= (7,: n € N). Now sincer is not a winning strategy
for the players in the Gs(Dx)-game there existsrasequencéA,: n € N) wherex wins
and sincex,+1 € A, N Dy andy, € 0, N D for eachn € N both sequences;,: n € N)
and(y,: n € N) have cluster-points. Lat,, be any cluster-point ofx,,: n € N) andy, be
any cluster-point ofy,,: n € N). Then for each fixead € N, f(x,, yt) € f({xn} x Vi) C
F{xn} X Voy1) € W forall n < k sinceyy € Vi C V,41. Thereforef (x,, yoo) € W’ for
eachn € N and sof (xe0, Yoo) € W’ C W. On the other hand if we again fixe N then
F kst yn) € Ftx(AL, ..., Ag—1) X {ya}) € fta(A1, ..., Ay_1) X {ya}) € X\W for all

n < k sincexygy1 € A C (A1, ..., Ar—1) C t,(A1, ..., Ay—1). Therefore,f (xeo, ) ¢
W for eachn € N and sof (x«0, yoo) ¢ W. This however, contradicts our earlier conclusion
that f (xe0, Yoo) € W. Hencef is strongly quasi-continuous éto, yo). O

The origins of the following lemma may be traced back to Theorem 3 in [3].

Lemma 2. Let (G, -, t) be a regular semitopological group. If there exists a dense subset
D of G and a sequence of neighborhoods,: n € N) of ¢ so that every sequence
(zn: n € N) in D with z,, € U,, - U,, has a cluster-point irG and multiplication is strongly
quasi-continuous afe, ¢) then(G, -, 7) is a paratopological group.

Proof. Since(G, -, 7) is a semitopological group itis sufficient to show that the (separately
continuous and open) mapping: G x G — G defined by,7 (g, h) := g - h is jointly
continuous ate, ¢). So in order to obtain a contradiction we will assume that not
jointly continuous at(e, ¢). Therefore by the regularity ofG, t) there exists an open
neighborhoodW of ¢ so that for every neighborhood of e, U - U ¢ W. Again, by
the regularity of(G, r) there exists an open neighborhoBdof ¢ so thatV € W. Let
V*:={g e G: (g, ¢) eintz—1(V)}. Then by the strong quasi-continuity of at (e, e),
e € V*. We will now inductively define sequences,: n € N) and(v,: n € N) in D and
decreasing neighborhoods,,: n € N) and(V,: n e N) of e.

Stepl. Choosev; € V* N D and a neighborhood; of ¢ so thatZ; € U; and
(v1-Z1)-Z1 € V. Then choose; € (Z1- Z1\W) N D and a neighborhooW; of e so that
V1 C Up and Vs - z1 € G\ W. For purely notational reasons we will defilig:= Up := G.
Now suppose thai;, z; € D andZ;, V; have been defined for each<lj < » so that,

(i) vie(V*NnV,_ynDand(;-Z;)-Z; CV,

(i) zje(Z;-Z,;\W)ynD andV, -z; € G\W;

(iii) Z;CZj1NU; andV,- CV;.anUj.

Stepn + 1. Choosey,,+1 € (V*NV,)N D and a neighborhood, 1 of ¢ so thatZ,, ;1 C
ZyNUps1 and(Vyi1-Zns1) - Zni1 € V. Thenchoose, 1 € (Zu11-Zyr1\W)ND and a
neighborhood, 1 of e sothatV,, 11 € V,,NU,,1 andV,1-z,4+1 € G\W. This completes
the induction. Now since; e Z; - Z; CU; - U; andvj 1 =vjy1-e€V; - V; CU; - Uj
for eachj € N, both sequenceg&,: n € N) and (v,: n € N) have cluster-points irG.
Let zoo be any cluster-point ofz,: n € N) andv., be any cluster-point ofv,: n € N).
Then for each fixedh e N, v, -z € v, - Zik - Zi v, - Zy - Z, C V for all n < k since
Zr € Z,. Thereforey, - zoo € V for eachn € N and Sovs - 200 € V € W. On the other
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hand, if we again fixu € N thenvgy1 -z, € Vi - 20 € Vi - 22 € G\W for all n < k since
V1 € Vi C V,,. Therefore,ve - z, € G\W for eachn € N and sOvy - 200 € G\W.
This however, contradicts our earlier conclusion that- z.oc € W. Hence(G, -, 7) is a
paratopological group. O

Theorem 1. Let (G, -, ) be a semitopological group. liG, t) is a strongly Baire space
then(G, -, ) is a paratopological group.

Proof. Let Ds be any dense subset 6fsuch that does not have a winning strategy in
the Gs(Dg)-game played ori;. We begin by observing thatis agp-point with respect
to some dense subsgtof G and so by Lemma 1 the mapping G x G — G defined
by (g, h) := g - h is strongly quasi-continuous di x {e}. Hence by Lemma 2 we need
only show that there exists a dense suli3edf G and a sequence of open neighborhoods
(Uy: n eN) of e so that every sequencg,: n € N) in D* with z, € U)S - U} has a cluster-
pointin G. To this end, we will inductively define a strategy= (z,: n € N) for 8 in the
Gs(Dg)-game played 0.

Stepl. We defineUy := G, V1 := G andr1(9) := G. Now, suppose thal/;, V; and¢;
have been defined for eactsequencgAs, Ao, ..., Aj_1) oflength(j —1),1< j <n so
that,

() U; SUj1;

(i) eeV; SV

(i) 7w(Uj x Vj) S Aj1i
foreach 1< j <n andt;(Ay,...,Aj_1) :=U, foreach 1< j < n.

Sten + 1. For eachi-sequenceéAs, ..., A,) of lengthn we choose open set§, 1 and
V,+1 SO that,

() Unt1 S Up;
(ii) e € Vg1 S Vi

(lll) JT(U,H_]_ X Vn+1) - An.

Then we define,+1(A1, ..., A,) := U,+1. Note: this construction is possible sinees
strongly quasi-continuous amt, C #,(A1, ..., A,—1) = U,. This completes the definition
of r := (¢, n € N). Now sincer is not a winning strategy fof there exists a-sequence
(A,: n € N) wherea wins and so

ﬂ A, = ﬂ U, is non-empty.
neN neN

Choosex € ),y An and setD* := u~1Dg. Then for each: € N define,U; := (u=1-
U,) NV,. Itis now a routine matter to show that every sequefage n € N) in D* with
7y € UF - U has a cluster-pointiz. O

3. Continuity of inversion

Let X andY be topological spaces. Then a functign X — Y is said to bequasi-
continuous ate € X if for each neighborhood of f(x) and neighborhood of x there
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exists a non-empty open s€t< U such thatf (V) € W [10]. If f is quasi-continuous
at each poinkt € X then we say thaf is quasi-continuous oX. The following result is
based upon Theorem 4.2 in [1] which in turn is based upon a clever trick from [16].

Lemma 3. Let (G, -, ) be a semitopological group. IfG, 7) is a strongly Baire space
then inversion is quasi-continuous 6h

Proof. Let us begin with the following preliminary observation. Suppose thand W
are any neighborhoods efsuch thatU - U € W and D is any subset of5 such that
D~1cU. Then(D)~1 < W. To show that inversion is quasi-continuous@rit suffices
to show that inversion is quasi-continuoug & G. So in order to obtain a contradiction let
us assume that inversion is not quasi-continuoussat. Then there exist neighborhoods
U and W of e such that for each non-empty open subgetf U, V—1 ¢ W. Note that
by possibly makingy smaller we may assume th&t- U € W. Hence for each dense
subsetD of U and non-empty open subsétof U there exists a point € D NV such that
x~1¢ U, forotherwisey ~1 c (V N D)~ € W. Next, we letD be any dense subset 6f
such thats does not have a winning strategy in e(D)-game played o6 and then we
apply the above observations to inductively define a strategy(z,: n € N) for g in the
Gs(D)-game played 016

Stepl. We definexy := e, U1 := U andr (¥) := x1 - Uz. Now, suppose that;, U; and
t; have been defined for eactsequencgAs, ..., A;_1) of length(j — 1), 1< j <n so
that,

() xj €@ x2--x;-1)"t- (Aj-1N D) andx;t ¢ U;

(i) x1-x2---x;-Uj S Ajq;

(i) Ty -Uj S Uj-;
foreach 1< j <nandt;(Ay,...,Aj_1) :=x1-x2---x; - U; foreach 1< j < n.

Stepn + 1. For eachs-sequencegAy, ..., A,) of lengthn we choose an element
xn+1 € G and a neighborhootl, ;1 of e so that,

() Xnt1€ (r1-x2---x) 71 (4, N D) andx,}y ¢ U;

(i) x1-x2--xpq1-Unp1 C Ay

(iii) Uni1-Ups1 S Up.
Then we define,+1(A1, ..., A,) := x1 - x2---xp+1 - Up+1. Note: this construction is
possible since multiplication is jointly continuous (Theorem 1) apdc x1 - x2- - - x,, - Uy,
This completes the definition of= (z,: n € N). Now sincer is not a winning strategy for
B there exists a-sequencéA,: n € N) wherea wins. Hence we see that the sequence
((x1 - x2---x,): n € N) has a cluster-point € G. Next we choos& > n + 1 so that
X1+ X2---xk—1 € x - Uyqq that is, so thatx,:l € (x1-x2---x) L x - Uyy1. Now the
element(xy - x2---xx) "1 - x is a cluster-point of the sequenc¢exy - x2---x;) "1 - (x1 -
x2---xk4j): j € N) and so we havexy - xp---xx) 1. (X1 - X2+ Xkgj) = Xpql- - Xkqj €
Uky1 - Ugg2--- Uy j. Hence,(xg - x2-- ~xk)7l - X € Fk C Uk—1 C Up41. ThUS,x]:l IS
(x1-x2--x) Lox- Upt1 S Upy1 - Upy1 C U, C U, which contradicts the way, was
chosen. This shows that inversion is quasi-continuous on




P.S. Kenderov et al. / Topology and its Applications 109 (2001) 157-165 163

Lemma 4. Let (G, -, t) be a paratopological group. If inversion is quasi-continuous at
then(G, -, 7) is a topological group.

Proof. Since (G, -, t) is a paratopological group it suffices to show that inversion is
continuous onG. In fact, becauségG, -, t) is a semitopological group it will suffice to
show that inversion is continuous ate G. To this end, letW be any neighborhood
of e. Since G is a paratopological group there exists a neighborhtodf ¢ so that

U - U C W. Now since inversion is quasi-continuous athere is a non-empty open
subsetV of U such thatv~1 € U. Hence,V - V! is an open neighborhood efand
(v.vhHh=l=v.v-1cu.U c W. This completes the proof.o

The following theorem is now just a consequence of Theorem 1, Lemmas 3 and 4.

Theorem 2. Let (G, -, ) be a semitopological group. liG, t) is a strongly Baire space
then(G, -, ) is a topological group.

4. Strongly Baire topological spaces

Although the class of strongly Baire spaces provided a convenient framework for our
theorems in Sections 2 and 3 these spaces are, unfortunately, not readily identifiable. So in
this section we will introduce a related class of spaces whose membership properties are
more readily determined. L&fX, t) be a topological space and [Btbe a dense subset
of X. On X we will consider theG(Y)-gameplayed between two playetsand 8. The
rules for playing this game are the same as fordh€’)-game played otX with the only
difference being in the definition of a win. In tH&Y)-game we will say tha& wins a
play ((An. B,): n € N) if, (e An N'Y # @. Otherwise the playeg is said to have won
this play. It follows in a similar manner to Theorems 1 and 2 in [17] thag everywhere
second categorin X (thatis,U NY is a second category set i for each non-empty
open subsel/ of X, or equivalentlyY is a dense subset &f and a Baire space with the
relative topology) if and only if the played does not have a winning strategy in &’ )-
game. We will say that a topological spa@é t) is cover semi-completis there exists a
pseudo-metrid on Y such that;

(i) eachd-convergent sequence ihhas a cluster-point ii';

(i) Y is fragmentedby d, that is, for eacte > 0 and non-empty subset of Y there
exists a non-empty relatively open sub®etf A such that/-diam B < ¢ (see [15]
for the original definition in terms of exhaustive covers).

Theorem 3. If (X, ) is a regular topological space that contains, as an everywhere sec-
ond category set, a cover semi-complete sggdben the playep does not have a winning
strategy in thejs(Y)-game played oK. In particular, (X, 7) is a strongly Baire space.

Proof. Lett:= (r,: n € N) be a strategy for the play@rin theGs(Y)-game played oiX .
We need to construct/asequencéA,: n € N) wherea wins. To do this we will define a
new strategy’ := (¢,: n € N) for the playerg in theG(Y)-game played oiX.
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Stepl. Definer; () := t1(¥). Now suppose tha; has been defined for eachsequence

(A1,...,Aj_p) oflength(j — 1), 1< j <n sothat,
(i) (A1,..., A1) is ar-sequence;
(ii) t}(Al, A1) Ct(Ar, .. A,

(i) d-diam (t‘;.(Al, LA NY) <1/

Stepn + 1. For each’-sequencéAy, ... ., A,) of lengthn we define, (A1, ..., Ay) to
be any non-empty open subsetpf1(A1, ..., A,) such that/-diam (t,’l+l(A1, L ADN
Y) < 1/n. Note: this is possible sinagly, ..., A,) is at-sequence and is “fragmentet
by d. Hence with this definition,

(i) (A1,...,A,)is at-sequence;
(i) 2, 1(A1, ..., Ap) S taya(Ag, ..., Ap);

(iii) d-diam(z,_ 4 (A1,...,A)NY) <1/(n+1).

This completes the definition of := (1,: n € N). Now sinceY is everywhere second
category inX, ' cannot be a winning strategy for the playkin the G(Y)-game played on
X. Hence there is #-sequence (and saresequence)A,: n € N) where(), .y A, NY #
@. It should now be clear that every sequengg n € N) in Y with y, € A,, has a cluster-
pointinY (and so inX). This shows that is not a winning strategy for the playgrin the
Gs(Y)-game played otX. In particular,X is a strongly Baire space.C

We will say that a subsét of a topological spacéX, ) hascountable separation in
X if there is a countable familyO,;: n € N} of open subsets ok such that for every
pair {x, y} with y € Y andx € X\Y, {x, y} N O, is a singleton for at least onec N. If
we denote byX 5 the family of all subsets ok with countable separation ik thenX 5
is ao-algebra that contains all the open subsetX oMoreover,X x is closed under the
Souslin operation. For a completely regular topological sgace ) we shall say thak
hascountable separatioif in some compactificatiod X, X has countable separation in
bX. Itis shown in [11] that ifX has countable separation in one compactification tien
has countable separation in every compactification and so we see thaée&r—yanalytic
space has countable separation. Now Lemma 3.4 in [15] shows that each completely
regular space with countable separation is cover semi-complete. In fact with a little extra
work one can show that eaclp — o)-fragmentable space (see [2] for the definition) is
cover semi-complete. Thus, it follows that the next corollary improves upon the main result
of [3].

Corollary 1. Let (G, -, ) be a regular semitopological group. (iG, ) contains, as a
second category subset, a cover semi-complete spatken (G, -, ) is a topological
group. In particular, if (G, 7) is a cover semi-complete Baire space th€h -, 7) is a
topological group.

Proof. By Theorem 6.35 in [9] there exists a non-empty open subsef G such that
U NY is everywhere second categorylih Hence it is possible to construct a maximal
disjoint family {U,: « € A} of non-empty open subsets 6fsuch that;

(i) Ugea Uq is dense inG and
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(i) eachU, contains, as an everywhere second category subset, a cover semi-complete
spaceDy.
It is now easy to check that the s&X:= [ J,., Do is everywhere second category in
G and by appealing to the original definition of cover semi-completeness (given in [15])
it is routine to verify that the seb is itself cover semi-complete. Therefore, in light of
Theorem 3(G, 7) is a strongly Baire space and so the result follows from Theorent2.
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