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1. INTRODUCTION 

It is natural to ask when a given set-valued mapping T, which maps from a nonempty open 
subset U of a Banach space X into subsets of its dual, is the Clarke subdifferential mapping of 
some real-valued locally Lipschitz functions defined on U. In the case when X = R and U is an 
open interval the answer is known (see [l]). However, the general question still remains. Even 
the simpler question of how to construct nontrivial Lipschitz functions which are not built-up 
from either convex or distance functions has yet to be satisfactorily resolved. In this paper we 
present a technique for constructing such real-valued locally Lipschitz functions defined on 
separable Banach spaces. Using this construction we are able to recreate many known examples 
of pathological locally Lipschitz functions. For example, we can show that given any polytope 
P C R” there exists a real-valued globally Lipschitz function g, defined on R”, such that the 
Clarke subdifferential, x --) ag(x), of g is identically equal to P. This example extends the main 
result of [2], which in turn generalizes an example given in [3]. 

As another special case of our construction we will see that given any finite family 
IT,, T,, -**, T,) of maximal cyclically monotone operators defined on a separable Banach space 
X, there exists a real-valued locally Lipschitz function g appropriately defined on X such that 

Wx) = colT,(x), T,(x), * * *, T,(x)1 for each x E X. 

We begin with some preliminary definitions. A real-valued functionfdefined on a nonempty 
open subset A of a Banach space X is focally Lipschitz on A if for each x,, E A there exists an 
A4 > 0 and a 6 > 0 such that 

If(x) - f(Y)1 5 Mllx - Yll for all x, y E B(x,, 6). 

For functions in this class, it is often instructive to consider the following directional derivatives. 
(1) The upper Dini-derivative at x E A in the direction y is given by 

f+(x;y) = liF+Fp 
f(x + Ay) - f(x) 

A * 
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(2) The Clarke generalized directional derivative at x E A in the direction y is given by 

f ‘(x; y) = lim sup f(z + AY) - f(z) 

AZ:; A * 

Associated with the Clarke generalized directional derivative is the Clarke subdifferential 
(or subgradient) mapping, which is defined by 

af(x) = (g E X* : g(y) I f ‘(x; y) for each y E X). 

Distinct from the notion of a directional derivative is that of a derivative. We say a function f 
is differentiable at x in the direction y if 

f'(x. y) ~ lim f(x + liv) - f(x) 
9 

I 
exists. 

X-0 

We say that f is G&eaux differentiable at x if 

Vf (x)(y) E lim f(x + liv) - f(x) 

A-0 A 

exists for each y E X and Vf(x) is a continuous linear functional on X. 
We are also interested in a stronger notion of differentiability. A locally Lipschitz function 

f is said to be strictly (Giteaux) differentiable at x if for each y E X and each E > 0, there exists 
a S > 0 such that 

f(z + AY) -f(z) 

A 
- VfcaY) < E whenever 0 C 1 < S, llz - XII < 6. 

Apart from the various notions of differentiability (all of which are discussed in [4]), the other 
key concept we need is that of a minimal cusco. A set-valued mapping Cp from a topological 
space A into subsets of a topological space X is upper semi-continuous on A if for each open 
subset WC X, (t E A : Q(t) c Wl is an open subset of A. If in addition, Q has the property 
that for each t E A, Q(t) is nonempty and compact (convex), then Q, is an usco (CUSCO) on A. 
Amongst the class of usco (cusco) mappings, special attention is given to the so-called minimal 
uscos (minimal cuscos). An usco (cusco) mapping Q from a topological space A into subsets of 
a topological (linear topological) space X is called a minimal usco (minimal cusco) if its graph 
does not strictly contain the graph of any other usco (cusco) defined on A. We say that a locally 
Lipschitz function has a minimal Clarke subdifferential mapping if its Clarke subdifferential 
mapping is a minimal weak* cusco. Details may be found in [5]. 

2. CONSTRUCTION OF LOCALLY LIPSCHITZ FUNCTIONS 

We say that a subset N of a separable Banach space X is universally measurable if it belongs 
to the m-completion of the Bore1 subsets 63(X) for each finite measure m on 63(X). A subset N 
of X is called a Haar-null set (see [6]) if it is universally measurable and there exists a probability 
measure P on 63(X) (which extends canonically to the universally measurable sets on X) such 
that P(x + N) = 0 for all x E X. In finite dimensions, the Haar-null sets coincide with the 
universally measurable Lebesgue null sets. In general, however, if Nis a Haar-null set then X/N 
is dense in X. The Haar-null sets are also closed under translation and countable unions. 
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LEMMA 1. Letg,f,,f,, . . . , f,, be real-valued locally Lipschitz functions defined on a nonempty 
open subset U of a separable Banach space X. If Vg(x) E (Vf(x), Vf,(x), . . . , Vf,(x)) almost 
everywhere in U, then as(x) C co[~S,(x), af,(x), . . . . af,(x)) for all x E U. 

Proof. Consider the set-valued mapping T: U --) 2x’ defined by T(x) c U {a&(x) : 1 5j 5 n). 
Clearly T is a weak* usco mapping on U, hence by Lemma 7.12 in [7] the mapping T*: U --t 2x* 
defined by 

T*(x) = cWfi(x), @2x), . . . , VAX)) 

is a weak* cusco on U. Now from the hypothesis we have that Vg(x) E T*(x) almost everywhere 
in U. Therefore by [8] ag(x) C T*(x) for all x E U. n 

In the proof of Theorem 1 we use the following well-known result, whose proof we include 
for the sake of completeness. 

LEMMA 2. Let (G, : n E N) be a family of Lebesgue measurable subsets of R. If for each n E N, 
G, has positive measure. Then there exists a subset E = U (E,, : n E NJ of R such that: 

(i) Each set E,, is compact; 
(ii) For each n E N, p(G, fl E) > 0 and p(G,M) > 0. 

Proof. We first construct disjoint compact sets {Cj : j E N) with cr(Cj) > 0 and C’ C Gj for 
each j. We proceed by induction. 

Step I. By the regularity of Lebesgue measure we may choose a compact subset C: C Gi with 
p(C:) > 0. Define mi = p(C:). 

Suppose the first n steps have been completed. Then we will have constructed positive real 
numbers (ml, mz, . .,., m,] and disjoint compact subsets lC/, C,“, . . . , CiI of R for 1 I j 5 n 
such that mj = p(C,!) and Cjk C C,! C Gi for 1 5 j I k I n. 

Step n + 1. Choose a compact set C c G,, i with p(C) > 0, and cover C with a finite number 
of intervals (Ii, Z, , . . . , Z,) of diameter at most r, where 0 < r c (l/2”+‘) minim,, m,, . . ., m,). 
Now for some k, 1 I k I m, we have p(Zk n C) > 0. Select a compact subset Cl:: C Zk n C 
with p(C,“,+:) > 0. Define m,+i = p(Ci::) and C,F+’ s CJvk for 1 i j I n. This ends the 
induction. 

Let Cj = flTcj C,?’ for each j E N. Then Cj is compact and C’ C Gj. By the selection of the 
Zk’s we see that L((C’) > (1 - l/2’) .,u(Ci) 1 m/2 > 0 forj 2 1, and by the overall construction, 
we see that the sets [Cj : j E NJ are pairwise disjoint. 

Next, we construct the set E. For each j, choose a compact set Ej C Cj such that 
0 < p(Ej) < p(Cj) and define E = lJj”=, Ej. Then for each j we have 

and 

p(E fl Gj) z p(E fl Cj) = I > 0 

,U(Gj\E) 2 p(Cj\E) = /A - p(Ej) > 0. n 
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LEMMA 3. Let f be a real-valued locally Lipschitz function defined on a nonempty open subset 
A of a separable Banach space X. Let I be a real-valued locally Lipschitz function defined on 
R. Then for any real-valued Bore1 measurable function A* defined on R such that A* = A’ 
almost everywhere 

is a Haar-null set. 

A\(x E A : V(A of)(x) = A*(f(x)) * Vf(x)) 

Proof. Let E = (x E A : V(A of)(x) exists) and let F = (x E A : Vf(x) exists). By [6] we have 
that both A/E and AV: are Haar-null sets. For each y in the unit sphere S(X) of X, let 
D,, = lx E A : (12 of)‘(x; y) = A*(f(x)) *f ‘(x; y)). Clearly D,, is a Bore1 subset of A, since each 
of the mappings x -+ (A of)‘(x; y) and x + A*(f(x)) *f ‘(x; y) are Bore1 measurable. 

Let (y,, : n E NJ be a dense subset of S(X) and T E E fl F fl (n lo,, : n E N]). We claim 
that A\T is a Haar-null set. To prove this, it is sufficient to show that each subset A&,, is 
a Haar-null set. To accomplish this, we define a probability measure P, on the universally 
measurable subsets of X as follows: 

5 
M* exp(-x2/2) dx where A4* = (t E R : ty, E Ml. 

Take any x,, E X and let U = (t E R : ty, - x0 E A). If U = 0, then P(x, + A/D,,) = 0. If 
U # 0, then define g: U + R by g(t) = A(f(ty, - x0)). Clearly U is open and g is locally 
Lipschitz on U. Therefore by Theorem 6.93 in [9] 

/.4wt E u : g’(t) = J-*(f(tY, - &I)) * f ‘VY, - x0; Y,N) = 0. 

Now observe that s E (t E U : g’(t) = A*(f(ty, - x0)) . f ‘(ty, - x0; y,,)) if and only if 
SY, - x0 E DY,, that is, if and only if sy, E x0 + D,,, . Therefore 

(t E R : ty, E x0 + A/D,,) = Ui{t E U: g’(t) = A*(f(ty, - x0)) *f ‘(ty, - x0; y,)j 

and so P,(x, + A/D,,) = 0. Hence we may conclude that A/D,,, is a Haar-null set. It now only 
remains to observe that V(A 0 f)(x) = A*(f (x)) * Vf(x) if and only if x E T. In fact, for x E T, 
we know V(A 0 f)(x) and Vf (x) exist, and V(A 0 f )(x)(y,) = A*( f (x)) . Vf (x)(y,) for all n E N. 
Since (y, : n E N) is a dense subset of S(X) and each side is continuous in y, we have that 

vu Of )(X)(Y) = n*(f (.a * Vf (-e(Y) 

This ends the proof. H 

for all y E X. 

The next lemma is a special case of Lemma 6.92 in [9]. 

LEMMA 4. Suppose that f is an absolutely continuous real-valued function defined on an open 
interval (a, b) of R. If E is a Lebesgue measurable subset of (a, b) and p(f (E)) = 0, thenf’ = 0 
almost everywhere in E. 

We may now establish our main result. 



Lipschitz functions 51 

THEOREM 1. Let fi , fi , . . . , f, be real valued locally Lipschitz functions defined on a nonempty 
open subset U of a separable Banach space X. If each function fj possesses a minimal Clarke 
subdifferential mapping on U, then there exists a real-valued locally Lipschitz function g 
defined on U such that ag(x) = co(afI(x), 8fi(x), . . . , af,(x)) for each x E U. 

Proof. The proof is presented in two parts. 

Part Z. Let (y, : n E NJ be a dense subset of S(X) and let [x,, : n E NJ be a dense subset of U. 
In this part we show that given any finite family of real-valued locally Lipschitz functions 
(4, h z, . . . , hj] defined on U, there exists a real-valued locally Lipschitz function g defined on 
U such that 

(aj) M-9 c coW,(x), Wx), . . . , ahj(x)) for each x E U and Vg(x) E 
W,(x), Wx), . . . , Vhj(x)] almost everywhere in U, i.e. everywhere 
in U except possibly on a Haar-null set. 

(bj) For each 1 5 k 5 j and n,p E N, the subsets Mj(n,p, k) C R defined 
by Mj(n,p, k) = {t E R : g’(x, + typ; yp) = h;(x, + typ; y,)) have 
positive measures in every open interval in (t E R : x,, + tv, E U). 

We proceed by induction. 

Step I. Let hI be any real-valued locally Lipschitz function defined on U and g = hl . Then 
clearly g satisfies (ai) and (b,) with respect to the locally Lipschitz function h, . 

Suppose the first m steps of the induction have been completed. That is, suppose that given 
any m locally Lipschitz functions kl, k,, . . . , k,,, defined on U, there exists a locally Lipschitz 
function g defined on U such that (a,) and (b,) are satisfied with respect to the functions 
k, , kz , . . . , km. 

Step m + 1. Let hI, h2, . . . . h,+, be real-valued locally Lipschitz functions defined on U. 
For each 1 I i 5 m, define Ci: U + R by Ci = hi - h,,, and c,,,: U -+ R by c,+~ = 0. 

By the induction hypothesis, there exists a real-valued locally Lipschitz function g defined 
on U such that g satisfies (a,) and (b,) with respect to the locally Lipschitz functions 
Cl, c2, ***, cm. 

For each n, p E N, let (U,(n, p) : r E N) be a family of bounded open intervals in (t E R : 
x,, + typ E U], which form a topological base for the relative topology on (t E R :x, + tv, E U). 
Note that without loss of generality, we may assume that for each n, p, r E N, U,(n,p) C 
(t E R :x, + tr, E U). 

For each 1 5 k I m and each n,p, r E N, let 

GM, P, c k) = g(Ix, + oP E U : t E U,(n, p) n KAn, p, W. 

Let us also set 

G = (G,: n E NJ 
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Here P is the Lebesgue measure on R. Let E E U [E,, : n E N) be the subset of R given in 
Lemma 2 associated with the family of sets G. Define g,,,: U --) R by g,+r(x) = &(g(x)) where 

A,(t) = ‘~~(s)d.s 
s 

1 ifsEE 
and XE@) = 

0 i 0 otherwise. 

Clearly g,+r is real-valued and locally Lipschitz on U. We claim that g,,, satisfies (a,,,) and 
(&+J with respect to the locally Lipschitz functions cl, c, , . . . , c,,,, r defined on U. 

To see that g,+r satisfies (a,,,). Observe that since E is a Bore1 subset of R, we may apply 
Lemma 3 to get that Vgm+I(x) = xE(g(x)) * Vg(x) almost everywhere in U. Now by assumption 
V&J E (Vc,W Vc,(x), - * *, Vc,(x)) almost everywhere in U. Therefore, 

Wnl,l(X) E IVc,(x), Vc,(x), * * *, wn(x), wn+1(xN 

almost everywhere in U. Furthermore, by Lemma 1 we also have that 

k?l+,(x) c COKWX), wx), *-*s hn+,(x)~ for each x E U. 

Next we show that g,,, satisfies (b,,, ). To this end, fix 1 5 k I m and n,p E N. Also fix 
r E N, corresponding to the open interval U,(n,p). We consider two cases: 

(i) Suppose ,u(G(n,p, r, k)) > 0. Then by the construction of the set E given in Lemma 2, 
p(G(n,p, r, k) n E) > 0. Let 

A = (t E M&p, 4 n UAn,p) : g(x,, + ~YJ E El. 

Since the mapping t --, g(x,, + ty,J is absolutely continuous on U,(n,p), p(A) > 0. (Actually, 
the mapping t + g(x,, + tv,) is Lipschitz on U,(n,p).) Therefore by Lemma 3 

gh+lk + ty,;Y,) = X,&d& + tr,)) ‘g’(-% + f&i&) = c;tx, + ‘u,;Y,) 

for almost all t E A. Hence, p(M~+l(n,p, k) fl U,(n,p)) > 0. 
(ii) Suppose that p(G(n, p, r, k)) = 0. Then by Lemma 4, g’(x, + tyP; yJ = 0 for almost all 

t E M,(n,p, k) fl U&p) and so by Lemma 3, we have that 

&+,(x” + tYp;Yp) = XEMG + tYpN * mn + fYp;Yp) = 0 

for almost all t E M,(n,p, k) rl U&p). From this, it follows that 

ghl+dxn + tr,; Y,) = g’(xn + ‘Yp; up) = 4(x, + fYpi Yp) = 0 

for almost all t E M,(n,p, k) n U,(n,p); so ,u(M,+l(n,p, k) n U&p)) > 0. 
We now show that p(M,+l(n,p, m + 1) fl U,.(n,p)) > 0 for each n,p, r E N. Again, fix 

n,p, r E N and consider the set G(n,p, r, 1) (in fact, it suffices to consider any one of the sets 
G(n,p, r, k) with 1 5 k 5 m). We examine two more cases: 

(iii) Suppose that ,u(G(~, p, r, 1)) = 0. Then by Lemma 4, g’(x, + tyP; yP) = 0 for almost all 
t E h&&p, 1) fl U,(n,p) and so by Lemma 3 

&+,(xn + fYp;YJ = XE(&, + tvp)) - &n + fYpi Yp) 

= 0 = &+1(x, + tyP;yP) 

for almost all t E M,,,(n, p, 1) fl U&p). Hence p(M,+,(n,p, m + 1) n U,(n,p)) > 0. 
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(iv) Suppose that p(G(n,p, r, 1)/E) > 0. Let 

A = tt E MAn, P, 1) n Urh P) : g(x,, + tyJ E Gb, P, r, 1)W. 

Since the mapping t -+ g(x, + ty,) is absolutely continuous on U,(n,p), p(A) > 0. Now by 
Lemma 3 

dt+,(x, + ‘r,; Yp) = XE(&n + t@) - g’k + tu, ; Yp) 

= 0 = C?it,I(X, + fYp;Yp) 

for almost all t E A. Therefore p(M,,,+l(n,p, m + 1) fl U&p)) > 0. 
At this stage, we have shown that g,,, satisfies (a,,,) and (b,,,) with respect to the locally 

Lipschitz functions ci, c,, . . . , c,,, , cm+i. 
Define e: U + R by e(x) = g,+l(x) + h,+,(x). It is clear that b(x) = Vg,+,(x) + Vh,+l(x) 

almost everywhere in U. Hence by the above argument 

W-d E lVc,(x) + Vh,+l(x), . . ., WAX) + Vk+Ax), VC,+~(~) + Vk+lW 

almost everywhere in U. In addition to this, we note that for each 1 5 i I m, VCi(X) = 
Vhi (x) - Vh,+,(x) almost everywhere in U. Thus 

almost everywhere in U. Now by Lemma 1 we also have 

for each x E U. Further to this, for each n,p E N 

e’k + typ;~J = g’(x, + typ;~J + K+dx, + fYp;Yp) 

for almost all t E (t E R : x,, + tup E U). It now follows that the function e satisfies (h+i) and 
(b,,,) with respect to the locally Lipschitz functions hi, h2, . . . , h,+, defined on U; which 
completes the induction. 

Part ZZ. Let fi , fi , . . . , f,, be real-valued locally Lipschitz functions defined on U whose Clarke 
subdifferential mappings are minimal. By Part Z we know that there exists a real-valued locally 
Lipschitz function defined on U which satisfies (a,,) and (b,,) with respect to the locally Lipschitz 
functions f, , fi , . . . , f,. In this part we shall show that for this function g 

wx) = =@fi(x), afdx), ---, ~f,Wl for each x E U. 

Of course, it suffices from Part Z to show that 

~~l~fii(Xh w&h . ..,GA-a c Wx) for each x E U. 

Since each function&, 1 I j I n, possesses a minimal subdifferential mapping, there exists a 
dense GB subset, Gj of U such that fi is strictly differentiable at each point of Gj [5]. Let G = 
n (Gj: 1 I j I n). Clearly G is a dense and Gs subset of U. We show that (Vf,(x), Vf,(x), . . . . 
Vf,(x)J c as(x) for each x E G. 
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Suppose that this is not the case. Then there exists an element x0 E G, y E S(x), Q! E R and 
1 I j I n such that 

(Vf(Xo),Y> > a > p&(Y, 42 = gO(xo;y). 

Moreover, since ag(x,) is a bounded subset of X* we may choose y = JJ, E (u,, : n E N). 
By the definitions of g”(xo; y) and strict differentiability, we know that there exists an open 
neighborhood Vof x0 contained in U such that g+(z; JJ,) < Q for all z E Vandf +(z; up) > (Y for 
all z E K Choose x, E lxk : k E N) n V and U,(m,p) such that (x, + tu, : t E U,(m,p)) C V; 
Now consider a point x,,, + tyP, where t E M,,(m,p,j) tl U,(m,p). Then 

CJ! < fj’(x, + ‘Yp; Yp) = g’(x* + fYp; Yp) < C-Y which is a contradiction. 

Therefore (VA(x), Vf,(x), . . . , Vf,(x)] C ag(x) for each x E G. 
Next, we fix 1 I k I n and consider the function fk. By the weak* upper semi-continuity of 

the mappings x -+ as(x) and x + afk(x) on U, we see that 8g(x) rl a&(x) # @ for all x E U. 
Define T: U + 2x’ by T(x) = ag(x) n 8fk(x). Clearly 7’(x) is nonempty, weak* compact and 
convex for each x E U. Furthermore, it is not difficult to show, using a standard net argument, 
that T is weak* upper semi-continuous on U (see Proposition 1.3 [lo]). (Actually, since T is 
locally bounded and the weak* topology on X* is metrizable on bounded subsets, it is sufficient 
to use a sequential argument.) 

However, since x + $fk(x) is a minimal weak* cusco on U and T(x) C 8fk(x) for each x E U, 
we must have that T = afk. Hence, for each x E U, ask(x) C ag(x). Since k, 1 I k I n, was 
arbitrary and ag(x) is convex, we must have that co(afi(x), &(x), . . . , af,(x)] C as(x) for each 
XEU. n 

We note that the constructed function has a minimal subgradient if, and only if, each of the 
underlying functions shares the same minimal subgradient. We also note that each of the 
underlying functions being minimal is generically (on a dense G6) strictly differentiable. Thus 
the constructed function has polyhedral subgradient images generically though perhaps only on 
a set small in measure. 

Remark 1. With some more work, but not significantly more, it can be shown that the function g 
constructed in the previous theorem is not unique up to a constant, except possibly when 
af, = af- = . . . = af,. 

The important observations required to prove this are: 
(i) p(Mm+l(n,p, k) fl U,(n,p) n M,(n,p, k)) > 0 for all n,p, r E N and 1 I k I m. 

(ii) p(M,+,(n,p, m + 1) n U,(n,p) f7 M,(n, p, k)) > 0 for all n,p, r E N and 1 I k I m. 
(iii) If cOgafl(x), . . . . af,-,(x)1 = ag(x) for all x E U, then ag,-, = ag and g,-, - g is not a 

constant unless afi(x) = . . . = af,(x) for all x. 
(iv) If cO(afl(x),..., af,-l(x)] # ag(x) for some x E U, then consider the function h: U + R 

defined by h = g,,-, + f, - g, then ah = ag but h - g is not a constant. 

Remark 2. It is explicit in the above construction that the function g has very circumscribed 
derivatives. Indeed (a,) shows 

am = ~O~am),afi(~), . . . . as,(x)) for every x E U 

and Wx) E I%(x), %W, . . . . Vf,(x)] almost everywhere in U. 
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3.APPLICATIONSANDEXAMPLES 

To see that Theorem 1 provides a rich source of examples, we need to establish a large 
class of Lipschitz functions whose Clarke subdifferential mappings are minimal weak* cuscos. 
Here the results in [lo] aid us. In [lo] the authors show that on a separable Banach space every 
real-valued locally Lipschitz function which is strictly differentiable almost everywhere in its 
domain possesses a minimal subdifferential mapping and they also show that this family of 
functions is closed under addition, multiplication, and the two lattice operations. Moreover, 
they also show that any locally Lipschitz function which is either semi-smooth almost 
everywhere or pseudo-regular almost everywhere belongs to this class. However, we should 
note that there are many examples of locally Lipschitz functions whose Clarke subdifferential 
mappings are minimal, but which are not strictly differentiable almost everywhere. In another 
direction, the authors in [lo] show that if the norm on X is uniformly GIteaux differentiable 
then each distance function on X possesses a minimal subdifferential mapping. Let us also note 
that in finite dimensions all smooth norms are uniformly Gateaux differentiable. 

COROLLARY 1. Let A be a nonempty open subset of a separable Banach space X. If 
(f,,f* , . . . , f,) are real-valued strictly differentiable (or equivalently, continuously Gateaux 
differentiable) locally Lipschitz functions defined on A, then there exists a real-valued locally 
Lipschitz function g defined on A such that as(x) = co(Vfi(x), Vf;(x), . . . , Vf,(x)] for each 
x E A. In particular, when (fi, f2, . . . , f,) are continuous linear functions on X, then as(x) = 
co(fi,f2, . . . . f,) for eachxEA. 

Thus every polytope arises as the constant Clarke subgradient of some globally Lipschitz 
functions. Our next application is to cyclically monotone operators [7]. 

COROLLARY 2. Let A be a nonempty open convex subset of a separable Banach space X and 
(T,, T2, ***, T,) be a finite family of maximal cyclically monotone operators from A into 
nonempty subsets of X*. Then there exists a real-valued locally Lipschitz function g defined on 
A such that 

m4 = co(T(x), T,(x), *-*, T,(x)1 for eachxEA. 

Moreover, g is convex if, and only if, Tl = G = e-0 = Tn. 

Proof. By [I l] each T is the Clarke subgradient of a proper lower semi-continuous convex 
function on A. However, as Phelps observes in [7] such a convex function is finite valued 
on the domain on Zj and so we may conclude that it is continuous on A. Therefore by 
Theorem 1, there exists a real-valued locally Lipschitz function g defined on A such that 
dg(x) = co(q(x), T,(x), . . . , T,(x)) for each x E A. 

If g is convex, then by [lo], x + as(x), is a minimal weak* cusco on A and so ag = Tl = 
r, = . . . = Tn. On the other hand if Tl = q = --- = T,, then by [l l] and our previous 
argument, there exists a continuous convex function g, defined on A such that ag, = T,. 
However, by an easy result in [12], it follows that g, - g is a constant and so g must also be 
convex on A. n 
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Note that the previous corollary shows that the convex hull of a finite family of maximal 
cyclically monotone or antitone operators is a subgradient. Next we ask whether the 
conclusions of Theorem 1 hold without the minimality assumptions? To give some support to 
this question, we establish the following special case. 

THEOREM 2. Let [f, ,f2, . . . , f,) be real-valued locally Lipschitz functions defined on an open 
subset A of R. Then there exists a real-valued locally Lipschitz function g defined on A 
such that 

we = cevi(~), w2(x), * - * 9 W,(x)) for eachxEA. 

Proof. For each 1 I j I n, let 8&(x) = [Olj(X), fij(X)] for each x E A. NOW let CY(X) = 
min(olj(x) : 1 I j 5 n) and P(X) = mm(/Ij(x) : 1 I j I n). 

Clearly co[f3fi(x), a&(x), . . . , &(x)) = [(Y(X), p(x)] for each x E A. The result now follows 
from Theorem 3.2 in [l]. n 

A special case of Theorems 1 and 2 recaptures a significant special case of the main result 
in [l]. 

COROLLARY 3. Let (Y and /? be real-valued continuous functions defined on an open interval 
(a, 6). Then there exists a real-valued locally Lipschitz function g defined on (a, b) such that 
ag(x) = co(ol(x), /3(x)] for all x in (a, b). 

Proof. Let A and B be anti-derivatives of (Y and p respectively. Then both A and B are locally 
Lipschitz on (a, 6) and the result now follows from either Theorems 1 or 2. n 

Remark 3. We should note that Theorems 1 and 2 fail for countable families of equi-Lipschitz 
functions. 

For example, consider the following family of Lipschitz-1 functions (f, : n E N] defined on 
R such that af,(x) = [O, min(nlxl, l)] for each x E R. Then 

= [j.Ijl vnc,,] = 1;;: 1l f-t;e;w;se* 

Clearly, x + E(U~= 1 af,(x)) is not upper semi-continuous at x = 0 and so not a Clarke 
subdifferential mapping of any Lipschitz function on R. 

Finally we end with a concrete example, which indicates the type of pathological behavior 
that the functions constructed using Theorem 1 may possess. 

Example 1. Consider the Lipschitz function k: R2 + R defined by 

W,.y) = 
1 - ficos(4y) . sin(4x + n/4) 

1 + x2 + y2 

Let P be a polytope in R2 and let g be a locally Lipschitz function defined on R2 such that 
dg(x, y) = P. 
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Fig. 1. 

In Fig. 1 we show a tube plot of the mapping (x, y) + a(k + g)(x, y) = V&x, y) + P restricted 
to the line segment ((0,~) : 0 I y I 8). In the diagram the radius of P is l/2. 

Observation 1. On any separable Banach space, it is impossible to construct a locally Lipschitz 
function whose Michel-Penot subgradient is identically equal to a polytope. The reason is that 
on separable Banach spaces the Michel-Penot subgradients are single-valued almost everywhere 
(in the Haar-null sense). 

Acknowledgement-The authors would like to thank Jens Happe for help in preparing Fig. 1. 
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