QUASICONTINUOUS SELECTIONS OF UPPER
CONTINUOUS SET-VALUED MAPPINGS

JILING CAO' AND WARREN B. MOORS

ABSTRACT. In this paper, we extend a theorem of Matejdes on qua-
sicontinuous selections of upper Baire continuous set-valued mappings
from compact (or separable) metric range spaces to regular 77 range
spaces. In addition, we also prove a quasicontinuous selection theorem
for a special class of upper semicontinuous set-valued mappings.
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1. INTRODUCTION

Let T : X — 2Y be a set-valued mapping with non-empty values. By
a selection f of T, we mean a single-valued mapping f : X — Y such
that f(z) € T(z) for all z € X. A well-known theorem of Micheal on
selections in [7] claims that any lower semicontinuous set-valued mapping
T : X — 2Y with non-empty closed convex values acting from a paracompact
space X into a Banach space Y has a continuous selection. However, the
conclusion of this theorem fails when lower semicontinuity is replaced by
upper semicontinuity. For example, the set-valued mapping T : R — 28,

defined by
[ {1z}, e,

T(z) := { R, if £ =0,
is upper semicontinuous with non-empty closed convex values. However, this
mapping does not even possess a quasicontinuous selection. Recall that a
(single-valued) mapping f : X — Y is quasicontinuous if for every pair
of open sets U C X and W C Y with f(U)NW # (), there exists a
non-empty open set V' C U such that f(V) C W. In a series of papers
(3, 4, 5, 6], Matejdes studied the problem of when a set-valued mapping
admits a quasicontinuous selection. To achieve his goal, Matejdes introduced
the following definition, [3].

Definition 1.1 ([3]). A set-valued mapping T : X — 2Y is called upper
Baire continuous at a point z € X if for each pair of open sets U and W
with z € U and T'(x) C W, there is a subset B C U of the second category,
having the Baire property, such that T'(z) C W for all z € B.
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We shall say that a set-valued mapping T : X — 2V is upper Baire
continuous if it is upper Baire continuous at every point of X, and a Baire
continuous single-valued mapping is just a special case of an upper Baire
continuous set-valued mapping. Analogously, one can define lower Baire
continuity for a set-valued mapping. However, we shall not do so here, since
we are not going to use such a notion in this paper.

The following two facts on (upper) Baire continuity of mappings can be
readily proved:

o If f: X — 2Y is upper Baire continuous with non-empty values, then
X is Bazre.

e If a (single-valued) mapping f : X — Y is Baire continuous, X is Baire
and Y is regular, then f must be quasicontinuous, [3].

By applying the previous two facts Matejdes proved the following theo-
rem.

Theorem 1.2 ([3]). Let X be a Ti-space and Y be a compact metric space.
If T : X — 2Y is upper Baire continuous with non-empty compact values,
then T admits a quasicontinuous selection.

In [4], it was further shown that the compactness of Y in the previous
theorem can be relaxed to the separability of Y. The main purpose of this
paper is to extend Theorem 1.2 using a different approach. Specifically, in
Section 2, we show that the conclusion of Theorem 1.2 still holds when the
condition “Y a compact (or separable) metric space” is weakened to “Y
a regular Ti-space”. The last section is dedicated to the study of quasi-
continuous selections of a special class of upper semicontinuous set-valued
mappings. Throughout the paper, T : X — 2¥ always denotes a set-valued
mapping acting from a space X to a space Y and f : X — Y stands for a
single-valued mapping from X into Y. The graph Gr(T) of T : X — 2V is
defined by Gr(T) := {(z,y) € X xY :y € T(x)}. All of our notation is
standard and any undefined concepts may be found in the references.

2. AN EXTENSION OF THEOREM 1.2

The following characterisation for upper Baire continuity of a set-valued
mapping is easier to work with than the original definition in Definition 1.1.

Lemma 2.1. A set-valued mapping T : X — 2Y with non-empty values is
upper Baire continuous if, and only if, X is Baire and for each pair of open
subsets U and W with x € U and T'(z) C W, there exist a non-empty open
set V.C U and a residual set R CV such that T(z) CW for all z € R.

Proof. (=). Suppose that T : X — 2 is upper Baire continuous. First, by
remarks in Section 1, X must be Baire. Furthermore, by the definition, for
each pair of open sets U and W with € U and T'(x) C W, there exists
some subset B C U of the second category having the Baire property such
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that T'(z) C W for all z € B. Let B = GAC, where G is an open set and
C is a set of the first category. Next, put V = GNU and R = G~ C.
Then V C U is a non-empty open set and R is a residual set in V' such that
T(z) C W for each z € R.

(«). Conversely, suppose that X is Baire and for each pair of open sets
U and W with z € U and T'(z) C W, there exists a non-empty open subset
V C U and a residual subset R C V such that T(z) C W for all z € R.
Since V is of the second category, then R must be of the second category.
In addition, R = VA(V ~\ R). Thus, R has the Baire property as well. [

Our next theorem extends Theorem 1.2 from a compact (or separable)
metric range space to an arbitrary regular 7 range space.

Theorem 2.2. Let X be a topological space and Y a reqular T1-space. If
T : X — 2Y is an upper Baire continuous set-valued mapping with non-
empty compact values, then T admits a quasicontinuous selection.

Proof. First, by Lemma 2.1, X must be a Baire space. Let .# be the family
of all upper Baire continuous set-valued mappings from X to Y with non-
empty compact values such that for every H € .#, Gr(H) C Gr(T). Since
T e #, # + 3. We define a partial order < on .# by writing

H, = H, if, and only if, Gr(H;) C Gr(Has).

Next, we show that .# has a minimal element. To this end, let .#y be
any linearly ordered non-empty subfamily of .#. Then, define a set-valued
mapping H 4, : X — 2Y by letting

H () = {H(x): H € My}

for all x € X. Fix an arbitrary point zp € X. Since {H (o) : H € A4} is a
linearly ordered family of non-empty compact subsets of Y, H 4, (z¢) is also
a non-empty compact subset of Y. Now, suppose that U C X and W C Y
are a pair of non-empty open subsets with xop € U and H 4, (xq) C W.
Then, there must be some element H € .4, such that H(xg) C W. By
upper Baire continuity of H at z(, there is a non-empty open set V C U
and a residual subset R C V such that H(x) C W for all x € R. This implies
that H 4,(x) C W for all z € R. Thus, H 4, € .#. By Zorn’s lemma, .4
has a minimal member, which we will denote by ® ,.

Claim 1. For each pair of open subsets U C X and W C Y such that
¢ ,(U)NW # @, there exist a non-empty open subset V.C U and a residual
set R CV such that ® 4(x) CW for all x € R.

Proof. Suppose the contrary. Then, there is a pair of open subsets U C X
and W C Y with ® ,(U) N W # & such that for every non-empty open
subset V' C U and every residual subset R C V there exists an x € R
such that ®_,(z) € W. Since ® 4 is upper Baire continuous, this implies
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that @ 4 (z) € W for any z € U. Next, we define a set-valued mapping
I': X —2Y by

Dz) S ()N (Y \W), ifzxel,
T = @ 4 (2), otherwise.

Then I' has non-empty compact values. We will show that I' is upper Baire
continuous. Pick any point xg € X. If zg € U, then the result is clear,
since ®_, is upper Baire continuous and I' < ®_,. Assume zg € U. Let U’
and W’ be a pair of open sets with zp € U’ C U and I'(xg) € W'. Then
@ 4 (x9) € W UW’, thus there exist a non-empty open set V/ C U’ and a
residual set R' C V' such that ®_4(x) C W U W' for all x € R'. Clearly,
I'(x) € W’ for every point x € R’. This implies that I' is upper Baire
continuous at every point of U. Thus, we have shown that I' € .Z. But
this is impossible since I' < ®_, and ¢ # ®_,. Hence we have obtained our
desired contradiction. O

Claim 2. ¢ , is single-valued at every point x € X.

Proof. If not, there must exist a point 1 € X such that ®_,(z;) contains at
least two points. Now, pick any point y; € ®_,(z1), and then define another
set-valued mapping ¥ : X — 2¥ by

— {y1}, if © =,

()= { ® (), otherwise.
It is clear that ¥ has non-empty compact images. Let x € X and consider
open sets U C X and W C Y such that z € U and ¥(z) C W. By Claim 1,
there exist a non-empty open subset V' C U and a residual subset R C V
such that ® ,(z) C W for all z € R. It follows that ¥(z) C W for all
x € R. Thus ¥ is upper Baire continuous. But, ¥ < & , and ¥ # & 4;
which contradicts the minimality of ®_,. O

Finally, by Claim 2, ®_, is a Baire continuous selection of T'. Therefore,
since X is Baire and Y is regular, ® , is quasicontinuous. O

3. STRONGLY INJECTIVE SET-VALUED MAPPINGS

In this section, we shall examine when an upper semicontinuous set-valued
mapping acting between topological spaces admits a quasicontinuous selec-
tion. Our considerations are based upon the following notion.

Definition 3.1. A set-valued mapping T : X — 2V is strongly injective if
T(x1) NT(z2) = @ for any two distinct points x1,z2 € X.

Furthermore, we shall also require the definition of property (%) intro-
duced in [2]. Let X be a space, .# a proper filter (or filterbase) in X. We
shall consider the following G(.%#)-game played in X between players A and
B: Player A goes first (always!) and chooses a point x; € X. Player B re-
sponds by choosing a member F; € .%. Following this, player A must select
another (possibly the same) point x9 € F} and in turn player B must again
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respond to this by choosing a member F, € .%. Repeating this procedure
infinitely, the players A and B produce a sequence p := ((zn, F},) : n € N)
with @41 € F), for all n € N, called a play of the G(.%#)-game. We shall say
that B wins a play of the G(.%)-game if the sequence (z,, : n € N) has a
cluster point in X. Otherwise, the player A is said to have won this play.

We shall call a pair (%, 0) a o-filter (o-filterbase) if F is a proper filter
(filterbase) in X and o is a winning strategy for player B in the G(.%)-game.
Finally, we say that a space X has property (xx) if ({F : F € ¥} # @ for
each o-filterbase (.#,0) in X. The class of spaces having property (xx)
includes all metric spaces [1], all Dieudoné-complete spaces, all function
spaces Cp(X) for compact Hausdorff spaces X, and all Banach spaces in
their weak topologies [2]. Recall that a space X is a g¢-space if for every
point z € X, there is a sequence (U, : n € N) of neighbourhoods of z such
that if x,, € U, for all n € N, the sequence (z,, : n € N) has a cluster point
in X (which is not necessarily x itself). All first countable spaces and all
Cech complete spaces are g-spaces.

The following theorem may be deduced from [2, Theorem 3.3].

Theorem 3.2 ([2]). Let T : X — 2Y be a strongly injective upper semicon-
tinuous set-valued mapping with non-empty closed values. If X is a reqular
q-space and Y is a reqular space with property (xx), then for any point
xg € X,
K:= (1 TU~{x})

U (x0)
is a compact subset of T'(xg), where % (xq) is the family of all neighbourhoods
of zg in X and T (U \ {xo}) is the closure of T(U~{xo}) in Y. In addition,
the mapping Ti : X — 2Y, defined by

| K, if T = xg,
Tic(x) = { T(x), otherwise,

is upper semicontinuous on X.

In the previous theorem it follows that if zg € X is not an isolated point
then K is non-empty.

Theorem 3.3. Let T : X — 2Y be an upper semicontinuous set-valued
mapping acting from a reqular q-space X into a reqular Th-space Y with
property (xx). If T is strongly injective, then it admits a quasicontinuous
selection.

Proof. For any isolated point z € X, pick an arbitrary point y, € T'(x).
Next, define the set-valued mapping ® : X — 2¥ by,

B(z) = { Nvew @ TWU ~A{z}), if z is not isolated,

{va}, if z is isolated.
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By Theorem 3.2 and the subsequent remark, & has non-empty compact
values.

Now, fix an arbitrary point zg € X. To show that ® is upper semicon-
tinuous at zg, we consider two possible cases. If z( is an isolated point of
X, then the upper semicontinuity of ® at xg is trivial. In the case that
x( is non-isolated, it follows from the second part of Theorem 3.2. Thus,
® is an upper semicontinuous non-empty compact-valued set-valued map-
ping whose graph is contained in the graph of 7. By Theorem 2.2, ® has a
quasicontinuous selection f, which is also a selection of T'. O

If f: X — Y is a mapping with f(X) = Y, then f~! : Y — 2% is
strongly injective. Conversely, for any strongly injective set-valued mapping
T:Y — 2% with non-empty values and T'(Y) = X, there exists a mapping
f:X =Y such that T = f~1.

Corollary 3.4. Let f: X — Y be a closed mapping from a regqular T -space
X with property (x*) onto a regular q-space Y. If f~1(y) is closed for every
y € Y, then there exists a quasicontinuous mapping ¢ : Y — X such that

(foo)y) =y forallycY.

Proof. Note that f~!:Y — 2% is an upper semicontinuous strongly injec-
tive set-valued mapping with non-empty closed values. By applying The-
orem 3.3, f~! admits a quasicontinuous selection ¢ : Y — X. Evidently,

(fop)y) =yforallyeY. O

Remark 3.5. By [2, Theorem 1.2] and an argument similar to that in The-
orem 3.3, one can show the following: Let T': X — 2¥ be an upper semicon-
tinuous set-valued mapping from a first countable space X into a Hausdorff
angelic space Y. If T is strongly injective, then it admits a quasicontinuous
selection. As a consequence of this result, the condition “f~!(y) is closed
for every y € Y” in Corollary 3.4 can be dropped when X is Hausdorff an-
gelic and Y is first countable, i.e., for any closed mapping f : X — Y from
a Hausdorff angelic space X onto a first countable space Y, there exists a
quasicontinuous mapping ¢ : Y — X such that (fop)(y) =y forally €Y.
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