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Abstract. In this paper, we extend a theorem of Matejdes on qua-
sicontinuous selections of upper Baire continuous set-valued mappings
from compact (or separable) metric range spaces to regular T1 range
spaces. In addition, we also prove a quasicontinuous selection theorem
for a special class of upper semicontinuous set-valued mappings.
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1. Introduction

Let T : X → 2Y be a set-valued mapping with non-empty values. By
a selection f of T , we mean a single-valued mapping f : X → Y such
that f(x) ∈ T (x) for all x ∈ X. A well-known theorem of Micheal on
selections in [7] claims that any lower semicontinuous set-valued mapping
T : X → 2Y with non-empty closed convex values acting from a paracompact
space X into a Banach space Y has a continuous selection. However, the
conclusion of this theorem fails when lower semicontinuity is replaced by
upper semicontinuity. For example, the set-valued mapping T : R → 2R,
defined by

T (x) :=

{

{1/x}, if x 6= 0,
R, if x = 0,

is upper semicontinuous with non-empty closed convex values. However, this
mapping does not even possess a quasicontinuous selection. Recall that a
(single-valued) mapping f : X → Y is quasicontinuous if for every pair
of open sets U ⊆ X and W ⊆ Y with f(U) ∩ W 6= ∅, there exists a
non-empty open set V ⊆ U such that f(V ) ⊆ W . In a series of papers
[3, 4, 5, 6], Matejdes studied the problem of when a set-valued mapping
admits a quasicontinuous selection. To achieve his goal, Matejdes introduced
the following definition, [3].

Definition 1.1 ([3]). A set-valued mapping T : X → 2Y is called upper
Baire continuous at a point x ∈ X if for each pair of open sets U and W
with x ∈ U and T (x) ⊆ W , there is a subset B ⊆ U of the second category,
having the Baire property, such that T (z) ⊆ W for all z ∈ B.
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We shall say that a set-valued mapping T : X → 2Y is upper Baire
continuous if it is upper Baire continuous at every point of X, and a Baire
continuous single-valued mapping is just a special case of an upper Baire
continuous set-valued mapping. Analogously, one can define lower Baire
continuity for a set-valued mapping. However, we shall not do so here, since
we are not going to use such a notion in this paper.

The following two facts on (upper) Baire continuity of mappings can be
readily proved:

• If f : X → 2Y is upper Baire continuous with non-empty values, then
X is Baire.

• If a (single-valued) mapping f : X → Y is Baire continuous, X is Baire
and Y is regular, then f must be quasicontinuous, [3].

By applying the previous two facts Matejdes proved the following theo-
rem.

Theorem 1.2 ([3]). Let X be a T1-space and Y be a compact metric space.
If T : X → 2Y is upper Baire continuous with non-empty compact values,
then T admits a quasicontinuous selection.

In [4], it was further shown that the compactness of Y in the previous
theorem can be relaxed to the separability of Y . The main purpose of this
paper is to extend Theorem 1.2 using a different approach. Specifically, in
Section 2, we show that the conclusion of Theorem 1.2 still holds when the
condition “Y a compact (or separable) metric space” is weakened to “Y
a regular T1-space”. The last section is dedicated to the study of quasi-
continuous selections of a special class of upper semicontinuous set-valued
mappings. Throughout the paper, T : X → 2Y always denotes a set-valued
mapping acting from a space X to a space Y and f : X → Y stands for a
single-valued mapping from X into Y . The graph Gr(T ) of T : X → 2Y is
defined by Gr(T ) := {(x, y) ∈ X × Y : y ∈ T (x)}. All of our notation is
standard and any undefined concepts may be found in the references.

2. An extension of Theorem 1.2

The following characterisation for upper Baire continuity of a set-valued
mapping is easier to work with than the original definition in Definition 1.1.

Lemma 2.1. A set-valued mapping T : X → 2Y with non-empty values is
upper Baire continuous if, and only if, X is Baire and for each pair of open
subsets U and W with x ∈ U and T (x) ⊆ W , there exist a non-empty open
set V ⊆ U and a residual set R ⊆ V such that T (z) ⊆ W for all z ∈ R.

Proof. (⇒). Suppose that T : X → 2Y is upper Baire continuous. First, by
remarks in Section 1, X must be Baire. Furthermore, by the definition, for
each pair of open sets U and W with x ∈ U and T (x) ⊆ W , there exists
some subset B ⊆ U of the second category having the Baire property such
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that T (z) ⊆ W for all z ∈ B. Let B = G∆C, where G is an open set and
C is a set of the first category. Next, put V = G ∩ U and R = G r C.
Then V ⊆ U is a non-empty open set and R is a residual set in V such that
T (z) ⊆ W for each z ∈ R.

(⇐). Conversely, suppose that X is Baire and for each pair of open sets
U and W with x ∈ U and T (x) ⊆ W , there exists a non-empty open subset
V ⊆ U and a residual subset R ⊆ V such that T (z) ⊆ W for all z ∈ R.
Since V is of the second category, then R must be of the second category.
In addition, R = V∆(V rR). Thus, R has the Baire property as well. �

Our next theorem extends Theorem 1.2 from a compact (or separable)
metric range space to an arbitrary regular T1 range space.

Theorem 2.2. Let X be a topological space and Y a regular T1-space. If
T : X → 2Y is an upper Baire continuous set-valued mapping with non-
empty compact values, then T admits a quasicontinuous selection.

Proof. First, by Lemma 2.1, X must be a Baire space. Let M be the family
of all upper Baire continuous set-valued mappings from X to Y with non-
empty compact values such that for every H ∈ M , Gr(H) ⊆ Gr(T ). Since
T ∈ M , M 6= ∅. We define a partial order � on M by writing

H1 � H2 if, and only if, Gr(H1) ⊆ Gr(H2).

Next, we show that M has a minimal element. To this end, let M0 be
any linearly ordered non-empty subfamily of M . Then, define a set-valued
mapping HM0

: X → 2Y by letting

HM0
(x) :=

⋂

{H(x) : H ∈ M0}

for all x ∈ X. Fix an arbitrary point x0 ∈ X. Since {H(x0) : H ∈ M0} is a
linearly ordered family of non-empty compact subsets of Y , HM0

(x0) is also
a non-empty compact subset of Y . Now, suppose that U ⊆ X and W ⊆ Y
are a pair of non-empty open subsets with x0 ∈ U and HM0

(x0) ⊆ W .
Then, there must be some element H ∈ M0 such that H(x0) ⊆ W . By
upper Baire continuity of H at x0, there is a non-empty open set V ⊆ U
and a residual subset R ⊆ V such that H(x) ⊆ W for all x ∈ R. This implies
that HM0

(x) ⊆ W for all x ∈ R. Thus, HM0
∈ M . By Zorn’s lemma, M

has a minimal member, which we will denote by ΦM .

Claim 1. For each pair of open subsets U ⊆ X and W ⊆ Y such that
ΦM (U)∩W 6= ∅, there exist a non-empty open subset V ⊆ U and a residual
set R ⊆ V such that ΦM (x) ⊆ W for all x ∈ R.

Proof. Suppose the contrary. Then, there is a pair of open subsets U ⊆ X
and W ⊆ Y with ΦM (U) ∩ W 6= ∅ such that for every non-empty open
subset V ⊆ U and every residual subset R ⊆ V there exists an x ∈ R
such that ΦM (x) 6⊆ W . Since ΦM is upper Baire continuous, this implies
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that ΦM (x) 6⊆ W for any x ∈ U . Next, we define a set-valued mapping
Γ : X → 2Y by

Γ(x) :=

{

ΦM (x) ∩ (Y rW ), if x ∈ U ,
ΦM (x), otherwise.

Then Γ has non-empty compact values. We will show that Γ is upper Baire
continuous. Pick any point x0 ∈ X. If x0 6∈ U , then the result is clear,
since ΦM is upper Baire continuous and Γ � ΦM . Assume x0 ∈ U . Let U ′

and W ′ be a pair of open sets with x0 ∈ U ′ ⊆ U and Γ(x0) ⊆ W ′. Then
ΦM (x0) ⊆ W ∪W ′, thus there exist a non-empty open set V ′ ⊆ U ′ and a
residual set R′ ⊆ V ′ such that ΦM (x) ⊆ W ∪ W ′ for all x ∈ R′. Clearly,
Γ(x) ⊆ W ′ for every point x ∈ R′. This implies that Γ is upper Baire
continuous at every point of U . Thus, we have shown that Γ ∈ M . But
this is impossible since Γ � ΦM and Φ 6= ΦM . Hence we have obtained our
desired contradiction. �

Claim 2. ΦM is single-valued at every point x ∈ X.

Proof. If not, there must exist a point x1 ∈ X such that ΦM (x1) contains at
least two points. Now, pick any point y1 ∈ ΦM (x1), and then define another
set-valued mapping Ψ : X → 2Y by

Ψ(x) :=

{

{y1}, if x = x1,
ΦM (x), otherwise.

It is clear that Ψ has non-empty compact images. Let x ∈ X and consider
open sets U ⊆ X and W ⊆ Y such that x ∈ U and Ψ(x) ⊆ W . By Claim 1,
there exist a non-empty open subset V ⊆ U and a residual subset R ⊆ V
such that ΦM (x) ⊆ W for all x ∈ R. It follows that Ψ(x) ⊆ W for all
x ∈ R. Thus Ψ is upper Baire continuous. But, Ψ � ΦM and Ψ 6= ΦM ;
which contradicts the minimality of ΦM . �

Finally, by Claim 2, ΦM is a Baire continuous selection of T . Therefore,
since X is Baire and Y is regular, ΦM is quasicontinuous. �

3. Strongly injective set-valued mappings

In this section, we shall examine when an upper semicontinuous set-valued
mapping acting between topological spaces admits a quasicontinuous selec-
tion. Our considerations are based upon the following notion.

Definition 3.1. A set-valued mapping T : X → 2Y is strongly injective if
T (x1) ∩ T (x2) = ∅ for any two distinct points x1, x2 ∈ X.

Furthermore, we shall also require the definition of property (∗∗) intro-
duced in [2]. Let X be a space, F a proper filter (or filterbase) in X. We
shall consider the following G(F )-game played in X between players A and
B: Player A goes first (always!) and chooses a point x1 ∈ X. Player B re-
sponds by choosing a member F1 ∈ F . Following this, player A must select
another (possibly the same) point x2 ∈ F1 and in turn player B must again
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respond to this by choosing a member F2 ∈ F . Repeating this procedure
infinitely, the players A and B produce a sequence p := ((xn, Fn) : n ∈ N)
with xn+1 ∈ Fn for all n ∈ N, called a play of the G(F )-game. We shall say
that B wins a play of the G(F )-game if the sequence (xn : n ∈ N) has a
cluster point in X. Otherwise, the player A is said to have won this play.

We shall call a pair (F , σ) a σ-filter (σ-filterbase) if F is a proper filter
(filterbase) in X and σ is a winning strategy for player B in the G(F )-game.
Finally, we say that a space X has property (∗∗) if

⋂

{F : F ∈ F} 6= ∅ for
each σ-filterbase (F , σ) in X. The class of spaces having property (∗∗)
includes all metric spaces [1], all Dieudoné-complete spaces, all function
spaces Cp(X) for compact Hausdorff spaces X, and all Banach spaces in
their weak topologies [2]. Recall that a space X is a q-space if for every
point x ∈ X, there is a sequence (Un : n ∈ N) of neighbourhoods of x such
that if xn ∈ Un for all n ∈ N, the sequence (xn : n ∈ N) has a cluster point
in X (which is not necessarily x itself). All first countable spaces and all
Čech complete spaces are q-spaces.

The following theorem may be deduced from [2, Theorem 3.3].

Theorem 3.2 ([2]). Let T : X → 2Y be a strongly injective upper semicon-
tinuous set-valued mapping with non-empty closed values. If X is a regular
q-space and Y is a regular space with property (∗∗), then for any point
x0 ∈ X,

K :=
⋂

U∈U (x0)

T (U r {x0})

is a compact subset of T (x0), where U (x0) is the family of all neighbourhoods

of x0 in X and T (U r {x0}) is the closure of T (Ur{x0}) in Y . In addition,
the mapping TK : X → 2Y , defined by

TK(x) :=

{

K, if x = x0,
T (x), otherwise,

is upper semicontinuous on X.

In the previous theorem it follows that if x0 ∈ X is not an isolated point
then K is non-empty.

Theorem 3.3. Let T : X → 2Y be an upper semicontinuous set-valued
mapping acting from a regular q-space X into a regular T1-space Y with
property (∗∗). If T is strongly injective, then it admits a quasicontinuous
selection.

Proof. For any isolated point x ∈ X, pick an arbitrary point yx ∈ T (x).
Next, define the set-valued mapping Φ : X → 2Y by,

Φ(x) :=

{
⋂

U∈U (x) T (U r {x}), if x is not isolated,

{yx}, if x is isolated.
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By Theorem 3.2 and the subsequent remark, Φ has non-empty compact
values.

Now, fix an arbitrary point x0 ∈ X. To show that Φ is upper semicon-
tinuous at x0, we consider two possible cases. If x0 is an isolated point of
X, then the upper semicontinuity of Φ at x0 is trivial. In the case that
x0 is non-isolated, it follows from the second part of Theorem 3.2. Thus,
Φ is an upper semicontinuous non-empty compact-valued set-valued map-
ping whose graph is contained in the graph of T . By Theorem 2.2, Φ has a
quasicontinuous selection f , which is also a selection of T . �

If f : X → Y is a mapping with f(X) = Y , then f−1 : Y → 2X is
strongly injective. Conversely, for any strongly injective set-valued mapping
T : Y → 2X with non-empty values and T (Y ) = X, there exists a mapping
f : X → Y such that T = f−1.

Corollary 3.4. Let f : X → Y be a closed mapping from a regular T1-space
X with property (∗∗) onto a regular q-space Y . If f−1(y) is closed for every
y ∈ Y , then there exists a quasicontinuous mapping ϕ : Y → X such that
(f ◦ ϕ)(y) = y for all y ∈ Y .

Proof. Note that f−1 : Y → 2X is an upper semicontinuous strongly injec-
tive set-valued mapping with non-empty closed values. By applying The-
orem 3.3, f−1 admits a quasicontinuous selection ϕ : Y → X. Evidently,
(f ◦ ϕ)(y) = y for all y ∈ Y . �

Remark 3.5. By [2, Theorem 1.2] and an argument similar to that in The-
orem 3.3, one can show the following: Let T : X → 2Y be an upper semicon-
tinuous set-valued mapping from a first countable space X into a Hausdorff
angelic space Y . If T is strongly injective, then it admits a quasicontinuous
selection. As a consequence of this result, the condition “f−1(y) is closed
for every y ∈ Y ” in Corollary 3.4 can be dropped when X is Hausdorff an-
gelic and Y is first countable, i.e., for any closed mapping f : X → Y from
a Hausdorff angelic space X onto a first countable space Y , there exists a
quasicontinuous mapping ϕ : Y → X such that (f ◦ϕ)(y) = y for all y ∈ Y .
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