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Abstract. In this paper we prove the following theorem. “Let H be a strongly Baire topological
group, X be a topological space and (G,-,7) be a topological group. If f: Hx X — G is a
separately continuous mapping with the property that for each z € X, the mapping h — f(h, z)
is a group homomorphism and D is a dense subset of X then for each gp-point zy € X the
mapping f is jointly continuous at each point of H X {z}.” We also present some applications
of this result.
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1 Introduction

In this short note we prove a theorem significantly more general than the following. “Let H and
G be topological groups and let X be a topological space. If H is Cech-complete (i.e., a G5 subset
of its Stone-Cech compactification), X is a g-space and f: H x X — G is a separately continuous
mapping that possesses the property that for each x € X, the mapping h — f(h,z) is a group
homomorphism, then f is jointly continuous on H x X.”

We begin with some definitions. If X, Y and Z are topological spaces and f : X XY — Z is a
function then we say that f is quasi-continuous with respect to'Y at (x,y) if for each neighbourhood
W of f(x,y) and each product of open sets U x V' C X X Y containing (z,y) there exists a non-
empty open subset U’ C U and a neighbourhood V'of y such that f(U’ x V') C W and we say that
f is separately continuous on X x Y if for each xg € X and yo € Y the functions y — f(zo,y) and
x — f(x,y0) are both continuous on Y and X respectively.

Our contribution to this problem is based upon the following game. Let (X,7) be a topological
space and let D be a dense subset of X. On X we consider the Gg(D)-game played between two
players a and . Player 8 goes first (always!) and chooses a non-empty open subset B; C X.
Player a must then respond by choosing a non-empty open subset A; C B;. Following this, player
8 must select another non-empty open subset By C A; C Bj and in turn player o must again
respond by selecting a non-empty open subset A5 C By C A; C By. Continuing this procedure
indefinitely the players o and 8 produce a sequence ((4,, By) : n € N) of pairs of open sets called a
play of the Gg(D)-game. We shall declare that o wins a play ((4,, By) : n € N) of the Gg(D)-game
if; (,,eny An is non-empty and each sequence (a, : n € N) with a,, € A, N D has a cluster-point in
X. Otherwise the player S is said to have won this play. By a strategy t for the player § we mean a
‘rule’ that specifies each move of the player 5 in every possible situation. More precisely, a strategy
t:= (t, : n € N) for g is a sequence of 7-valued functions such that t,41(A41, .. A4,) C A, for each
n € N. The domain of each function t, is precisely the set of all finite sequences (A1, Ag, .. Ap—1)
of length n — 1 in 7 with A; C ¢;(Aq, .. Aj—q) forall 1 < j <n—1. (Note: the sequence of length
0 will be denoted by ).) Such a finite sequence (Aj, Az, . .. A,—1) or infinite sequence (A, : n € N)
is called a t-sequence. A strategy t := (t, : n € N) for the player § is called a winning strategy
if each infinite ¢-sequence is won by 5. We will call a topological space (X, 7) a strongly Baire or



(strongly [-unfavourable) space if it is regular and there exists a dense subset D of X such that
the player 8 does not have a winning strategy in the Gg(D)-game played on X. It follows from
Theorem 1 in [9] that each strongly Baire space is in fact a Baire space and it is easy to see that
each strongly Baire space has at least one gp-point. Indeed, if ¢ := (¢, : n € N) is any strategy for
B then there is a t-sequence (A, : n € N) where o wins. In this case we have that each point of
(Mhen An is a gp-point. Recall that a point z € X is called a gp-point (with respect to some dense
subset D of X) if there exists a sequence of neighbourhoods (U,, : n € N) of = such that every
sequence (z,, : n € N) with x,, € U, N D has a cluster-point in X. A gx-point is usually just called
a g-point. For more information on strongly Baire spaces see [5, Section 4].

2 Main Result
We shall use the following key results.

Lemma 1 [5, Lemma 1] Let H be a strongly Baire space, X a topological space and G a regular
space. If f: H x X — G 1is a separately continuous mapping and D is a dense subset of X then
for each qp-point xo € X the mapping f is quasi-continuous with respect to X at each point of
H x {.%'0}

Lemma 2 [6, Lemma 3.2] Let (G, -, T) be a topological group. Then the topology on G is determined
by the set of all continuous left-invariant pseudo-metrics d on G for which the mapping (G,T) X
(G,d) — (G, d) defined by, (g,h) — g - h is continuous.

Recall that a pseudo-metric d defined on a topological group (G, -, 7) is call left-invariant if for each
g,h and k in G, d(kg,kh) = d(g,h) and it is called continuous if the topology generated by d is
coarser than 7.

One immediate consequence of this Lemma is the Banach-Steinhaus [8, Theorem 2].

Proposition 1 (Banach-Steinhaus Theorem) If f : H — G is a Baire-1 (i.e., the pointwise limit
of a sequence of continuous functions) group homomorphism acting from a Baire topological group
H into a topological group G then f is continuous.

Proof: Let d be any continuous left-invariant pseudo-metric on G. In light of Lemma 2 it is
sufficient to show that f : H — (G, d) is continuous. By Osgood’s Theorem [4, p. 86] (i.e., Baire-1
functions defined on Baire spaces and mapping into pseudo-metric spaces are continuous on dense
G5 subsets of their domains) there exists a residual set Hy in H on which f is d-continuous. Let
h be any element of H and let hy € Hy. Then for any net {h, : « € D} in H converging to h we
have that f(ha) = f(hhg')f(hoh ™ he), with f(hoh™'ha) — f(ho) in (G,d) since hoh™hs — ho
in H. Therefore, f(hy) — f(hhg')f(ho) = f(h) in (G,d); which completes the proof. O

Theorem 1 Let H be a strongly Baire topological group, X be a topological space and (G,-,T) be
a topological group. If f : H x X — G is a separately continuous mapping with the property that
for each x € X, the mapping h — f(h,x) is a group homomorphism and D is a dense subset of X
then for each qp-point xog € X the mapping f is jointly continuous at each point of H x {xo}.

Proof: Suppose zy € X is a gp-point. As with the Banach-Steinhaus Theorem we will appeal
to Lemma 2 to deduce that it will be sufficient to prove that for any continuous left-invariant
pseudo-metric d on G for which that mapping (G, 7) X (G,d) — (G, d), defined by, (g,h) — g-h is



continuous, the mapping f: H x X — (G,d) is continuous at each point of H x {zg}. Fix e > 0
and consider the open set:

O := U{open sets U C H : there is a neighbourhood V of 2y with d — diam[f(U x V)] < e}.

We shall show that O, is dense in H. To this end, let Uy be a non-empty open subset of H and let
ho € Up. Since, by Lemma 1, f is quasi-continuous with respect to X there exists a non-empty open
subset U of Uy and a neightbourhood V' of xg such that f(U x V') C By(f(ho,x0);&/3). Therefore,
d — diam[f(U x V)] < e and so ) # U C O N Up; which shows that O. is dense in H. Hence, f is
d-continuous at each point of ([,cny O1/n) X {zo}; which is non-empty. We now show that f is in
fact d-continuous at each point of H x {xo}. To this end, let hg be any element of (1, .y O1 /n and
let h be any element of H and suppose that {(hqy,zs) : @ € D} is a net in H x X converging to
(h,20). Then by using the fact that,

f(ha,za) = F(RhGY 20) f(hoh ™ Ry o)

and hoh™'h, — ho we obtain that f(ha,xa) — f(hhg',z0)f(ho,x0) = f(h,x0). [Note: we also
used the fact that f(hhy',za) — f(hhg',x0) in (G, 7).] This proves that f is d-continuous at each
point of H X {zp}; which in turn implies that f is continuous at each point of H x {z¢}. O

Remark: If H is Cech-complete then we may relax the hypothesis that “for each z € X, h
f(h,x) is continuous” to “for each x € X, h+— f(h,z) is Souslin measurable” [7].

3 Applications

In this section we present a few sample applications of Theorem 1.
Let X and Y be arbitrary sets and let A C X and B C Y. We shall write F'(A4; B) for the set of
all functions from X into Y that map A into B, that is,

F(A;B):={f eY¥X: f(A) C B}.

If X and Y are topological spaces then the compact-open (pointwise) topology on Y X is the topology
generated by the sets

{F(A;B): A€ o/ and B ¥}
where 7 denotes the class of compact subsets (singleton subsets) of X and ¢ denotes the class of
open subsets of Y.

For a topological group G' we shall denote by End,(G) the space of all continuous endomorphisms

on G endowed with the topology of pointwise converegence on G.

Corollary 1 Suppose that G is a strongly Baire topological group. If ¥ is a qp-subspace of End,(G)
for some dense subset D of ¥ (i.e., each point in ¥ is a qp-point) then the mapping m : Endy(G) X
¥ — Endy(G), defined by m(m,m’) :=m/ om is continuous. In particular, m is continuous on X.

Proof: Consider the mapping f : G x ¥ — G, defined by f(g,m) := m(g). Then f satisfies the
hypotheses of Theorem 1 and so is jointly continuous on G x X. Now, if {(ma,m)) : @ € D} is a
net in End,(G) x ¥ converging to (m,m’) and g € G then,

m(ma, mg ) (9) = mg(ma(g)) — m'(m(g)) = m(m,m’)(g).
Hence 7 is continuous on End,(G) x ¥. O

Let G and H be topological groups. We shall denote by Hom,(H; G) the space of all continuous
homomorphisms from H into G endowed with the topology of pointwise convergence on H.



Corollary 2 Let G and H be topological groups and let ¥ be a subset of Hom,(H;G). If H is a
strongly Bare space and ¥ is a gp-subspace of Hom,(H;G) for some dense subset D of ¥ then on
> the pointwise and compact-open topologies coincide.

Proof: Since the compact-open topology is always finer than the pointwise topology it will be
sufficient to show that for each compact set K C H and open set W C G, F(K;W) is open in the
pointwise topology. To this end, let K be a non-empty compact subset of H, W be a non-empty
open subset of G and my € F(K;W) (i.e., mo(K) C W). From Theorem 1 it follows that the
mapping f : H x ¥ — G defined by, f(h,m) := m(h) is jointly continuous on H x ¥ and so
from a simple compactness argument it follows that there exists an open set U in H and an open
neighbourhood V' of mg in 3 such that K C U and f(U x V) C W. In particular this means that
mog €V C F(K;W) and so F(K;W) is open in the pointwise topology. O

If (M,+) is an Abelian group endowed with a topology 7 and (R, +,-) is a ring endowed with a
topology 1o then we say M is a semitopological R-module (over R) if it is an R-module (over R)
and both the mappings (x,y) — x + y and (r,z) — 7 - x are separately continuous on M x M and
R x M respectively.

Corollary 3 Let M be a semitopological R-module over a ring R. If R is a qp-space for some
dense subset D of R and M is a strongly Baire space then M is a topological R-module, i.e., (M,+)
is a topological group and (r,x) — r -z is jointly continuous.

Proof: By Theorem 2 in [5], which states that every group endowed with a strongly Baire topology
for which mulitplication is separately continuous is in fact a topological group, we may deduce that
(M, +) is a topological group. The result then follows for Theorem 1 since for each fixed € R the
mapping x — 7 - is an endomorphism of M. 0O

Remark: If strongly Baire is replaced by Cech-complete (in M) and gp-space is replaced by Cech-
completeness (in R) then we may relax the hypothesis that (r,z) — r - x is separately continuous
to (r,xz) — r -z being separately Souslin measurable [7].

We say that a mapping f : X — Y acting between Banach spaces X and Y is almost C' on X if
for each y € X the mapping x — f'(x;y) defined by, f/(z;y) := weak- lim_o[f(x + ty) — f(x)]/t is
norm-to-norm continuous on X.

Corollary 4 Let f: X — Y be a continuous mapping acting between Banach spaces X and Y. If
[ is almost C' on X then the mapping (x,y) — f'(z;y) is jointly norm continuous on X x X.

Proof: Fix zg € X. We shall show first that the mapping y — f’(z¢;y) is linear. To do this it is
sufficient to show that for each y* € Y* the mapping y — y*(f'(xo;y)) is linear on X. Fix y* € Y*
and let g : X — R be defined by, g(x) := (y* o f)(x), then g is continuous and almost C' with
d(z;y) = y*(f'(z;y)) for each y € X. It now follows, as in the finite dimensional case, (see [1],
p.261) that the mapping y — ¢'(xo;y) is linear on X [Note: ¢'(xg,y) is linear on X if it is linear
on every 2 dimensional subspace of X|. Next, let {¢, : n € N} be any sequence of positive numbers
converging to 0 and define f,, : X — Y by, fn(y) := [f(xo + tny) — f(x0)]/tn. Then each f, is
continuous and weak- lim,, o, fn(y) = f'(z0;y) for each y € X. Therefore by the Banach-Steinhaus
Theorem y — f/(x;y) is norm-to-weak continuous. Since y — f’(z¢;y) is linear it follows from the
uniformly boundedness theorem that y — f/(zo;y) is norm-to-norm continuous. The result then
follows from Theorem 1. O

Remark: We say that a mapping f : X — Y acting between Banach spaces X and Y is weakly C*
if for each y € X and y* € Y* the mapping x — (y* o f)'(x;y) is continuous on X. Now if YV is



reflexive and for each fixed xgp € X and y € X the mapping T,7° : Y* — R defined by Tj°(y*) :=
(y* o f)'(zo;y) is a bounded linear functional on Y* (note: this mapping is necessarily linear) then
weak- limy_,o[f (zo + ty) — f(x0)]/t exists. Moreover, by examining the proof of Corollary 4 we see
that if f is norm-to-weak continuous and weakly C! then for each o € X such that each Ty0 is
bounded for all y € X, the mapping y — f’(z;y) is a bounded linear operator between X and Y.
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