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Abstract. In this paper we prove the following theorem. “Let H be a strongly Baire topological
group, X be a topological space and (G, ·, τ) be a topological group. If f : H ×X → G is a
separately continuous mapping with the property that for each x ∈ X , the mapping h 7→ f(h, x)
is a group homomorphism and D is a dense subset of X then for each qD-point x0 ∈ X the
mapping f is jointly continuous at each point of H × {x0}.” We also present some applications
of this result.
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1 Introduction

In this short note we prove a theorem significantly more general than the following. “Let H and
G be topological groups and let X be a topological space. If H is Čech-complete (i.e., a Gδ subset
of its Stone-Čech compactification), X is a q-space and f : H ×X → G is a separately continuous
mapping that possesses the property that for each x ∈ X, the mapping h 7→ f(h, x) is a group
homomorphism, then f is jointly continuous on H ×X.”

We begin with some definitions. If X, Y and Z are topological spaces and f : X × Y → Z is a
function then we say that f is quasi-continuous with respect to Y at (x, y) if for each neighbourhood
W of f(x, y) and each product of open sets U × V ⊆ X × Y containing (x, y) there exists a non-
empty open subset U ′ ⊆ U and a neighbourhood V ′of y such that f(U ′×V ′) ⊆ W and we say that
f is separately continuous on X × Y if for each x0 ∈ X and y0 ∈ Y the functions y 7→ f(x0, y) and
x 7→ f(x, y0) are both continuous on Y and X respectively.
Our contribution to this problem is based upon the following game. Let (X, τ) be a topological
space and let D be a dense subset of X. On X we consider the GS(D)-game played between two
players α and β. Player β goes first (always!) and chooses a non-empty open subset B1 ⊆ X.
Player α must then respond by choosing a non-empty open subset A1 ⊆ B1. Following this, player
β must select another non-empty open subset B2 ⊆ A1 ⊆ B1 and in turn player α must again
respond by selecting a non-empty open subset A2 ⊆ B2 ⊆ A1 ⊆ B1. Continuing this procedure
indefinitely the players α and β produce a sequence ((An, Bn) : n ∈ N) of pairs of open sets called a
play of the GS(D)-game. We shall declare that α wins a play ((An, Bn) : n ∈ N) of the GS(D)-game
if;

⋂
n∈NAn is non-empty and each sequence (an : n ∈ N) with an ∈ An ∩D has a cluster-point in

X. Otherwise the player β is said to have won this play. By a strategy t for the player β we mean a
‘rule’ that specifies each move of the player β in every possible situation. More precisely, a strategy
t := (tn : n ∈ N) for β is a sequence of τ -valued functions such that tn+1(A1, . . An) ⊆ An for each
n ∈ N. The domain of each function tn is precisely the set of all finite sequences (A1, A2, . . An−1)
of length n− 1 in τ with Aj ⊆ tj(A1, . . Aj−1) for all 1 ≤ j ≤ n− 1. (Note: the sequence of length
0 will be denoted by ∅.) Such a finite sequence (A1, A2, . . . An−1) or infinite sequence (An : n ∈ N)
is called a t-sequence. A strategy t := (tn : n ∈ N) for the player β is called a winning strategy

if each infinite t-sequence is won by β. We will call a topological space (X, τ) a strongly Baire or
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(strongly β-unfavourable) space if it is regular and there exists a dense subset D of X such that
the player β does not have a winning strategy in the GS(D)-game played on X. It follows from
Theorem 1 in [9] that each strongly Baire space is in fact a Baire space and it is easy to see that
each strongly Baire space has at least one qD-point. Indeed, if t := (tn : n ∈ N) is any strategy for
β then there is a t-sequence (An : n ∈ N) where α wins. In this case we have that each point of⋂

n∈NAn is a qD-point. Recall that a point x ∈ X is called a qD-point (with respect to some dense
subset D of X) if there exists a sequence of neighbourhoods (Un : n ∈ N) of x such that every
sequence (xn : n ∈ N) with xn ∈ Un ∩D has a cluster-point in X. A qX-point is usually just called
a q-point. For more information on strongly Baire spaces see [5, Section 4].

2 Main Result

We shall use the following key results.

Lemma 1 [5, Lemma 1] Let H be a strongly Baire space, X a topological space and G a regular
space. If f : H ×X → G is a separately continuous mapping and D is a dense subset of X then
for each qD-point x0 ∈ X the mapping f is quasi-continuous with respect to X at each point of
H × {x0}.

Lemma 2 [6, Lemma 3.2] Let (G, ·, τ) be a topological group. Then the topology on G is determined
by the set of all continuous left-invariant pseudo-metrics d on G for which the mapping (G, τ) ×
(G, d) → (G, d) defined by, (g, h) 7→ g · h is continuous.

Recall that a pseudo-metric d defined on a topological group (G, ·, τ) is call left-invariant if for each
g, h and k in G, d(kg, kh) = d(g, h) and it is called continuous if the topology generated by d is
coarser than τ .

One immediate consequence of this Lemma is the Banach-Steinhaus [8, Theorem 2].

Proposition 1 (Banach-Steinhaus Theorem) If f : H → G is a Baire-1 (i.e., the pointwise limit
of a sequence of continuous functions) group homomorphism acting from a Baire topological group
H into a topological group G then f is continuous.

Proof: Let d be any continuous left-invariant pseudo-metric on G. In light of Lemma 2 it is
sufficient to show that f : H → (G, d) is continuous. By Osgood’s Theorem [4, p. 86] (i.e., Baire-1
functions defined on Baire spaces and mapping into pseudo-metric spaces are continuous on dense
Gδ subsets of their domains) there exists a residual set H0 in H on which f is d-continuous. Let
h be any element of H and let h0 ∈ H0. Then for any net {hα : α ∈ D} in H converging to h we
have that f(hα) = f(hh−1

0
)f(h0h

−1hα), with f(h0h
−1hα) → f(h0) in (G, d) since h0h

−1hα → h0
in H. Therefore, f(hα) → f(hh−1

0
)f(h0) = f(h) in (G, d); which completes the proof. ✷

Theorem 1 Let H be a strongly Baire topological group, X be a topological space and (G, ·, τ) be
a topological group. If f : H ×X → G is a separately continuous mapping with the property that
for each x ∈ X, the mapping h 7→ f(h, x) is a group homomorphism and D is a dense subset of X
then for each qD-point x0 ∈ X the mapping f is jointly continuous at each point of H × {x0}.

Proof: Suppose x0 ∈ X is a qD-point. As with the Banach-Steinhaus Theorem we will appeal
to Lemma 2 to deduce that it will be sufficient to prove that for any continuous left-invariant
pseudo-metric d on G for which that mapping (G, τ)× (G, d) → (G, d), defined by, (g, h) 7→ g · h is
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continuous, the mapping f : H ×X → (G, d) is continuous at each point of H × {x0}. Fix ε > 0
and consider the open set:

Oε :=
⋃

{open sets U ⊆ H : there is a neighbourhood V of x0 with d− diam[f(U × V )] < ε}.

We shall show that Oε is dense in H. To this end, let U0 be a non-empty open subset of H and let
h0 ∈ U0. Since, by Lemma 1, f is quasi-continuous with respect to X there exists a non-empty open
subset U of U0 and a neightbourhood V of x0 such that f(U ×V ) ⊆ Bd(f(h0, x0); ε/3). Therefore,
d− diam[f(U × V )] < ε and so ∅ 6= U ⊆ Oε ∩ U0; which shows that Oε is dense in H. Hence, f is
d-continuous at each point of (

⋂
n∈NO1/n)× {x0}; which is non-empty. We now show that f is in

fact d-continuous at each point of H × {x0}. To this end, let h0 be any element of
⋂

n∈NO1/n and
let h be any element of H and suppose that {(hα, xα) : α ∈ D} is a net in H ×X converging to
(h, x0). Then by using the fact that,

f(hα, xα) = f(hh−1

0
, xα)f(h0h

−1hα, xα)

and h0h
−1hα → h0 we obtain that f(hα, xα) → f(hh−1

0
, x0)f(h0, x0) = f(h, x0). [Note: we also

used the fact that f(hh−1

0
, xα) → f(hh−1

0
, x0) in (G, τ).] This proves that f is d-continuous at each

point of H × {x0}; which in turn implies that f is continuous at each point of H × {x0}. ✷

Remark: If H is Čech-complete then we may relax the hypothesis that “for each x ∈ X, h 7→
f(h, x) is continuous” to “for each x ∈ X, h 7→ f(h, x) is Souslin measurable” [7].

3 Applications

In this section we present a few sample applications of Theorem 1.

Let X and Y be arbitrary sets and let A ⊆ X and B ⊆ Y . We shall write F (A;B) for the set of
all functions from X into Y that map A into B, that is,

F (A;B) := {f ∈ Y X : f(A) ⊆ B}.

IfX and Y are topological spaces then the compact-open (pointwise) topology on Y X is the topology
generated by the sets

{F (A;B) : A ∈ A and B ∈ G }

where A denotes the class of compact subsets (singleton subsets) of X and G denotes the class of
open subsets of Y .

For a topological group G we shall denote by Endp(G) the space of all continuous endomorphisms
on G endowed with the topology of pointwise converegence on G.

Corollary 1 Suppose that G is a strongly Baire topological group. If Σ is a qD-subspace of Endp(G)
for some dense subset D of Σ (i.e., each point in Σ is a qD-point) then the mapping π : Endp(G)×
Σ → Endp(G), defined by π(m,m′) := m′ ◦m is continuous. In particular, π is continuous on Σ.

Proof: Consider the mapping f : G × Σ → G, defined by f(g,m) := m(g). Then f satisfies the
hypotheses of Theorem 1 and so is jointly continuous on G × Σ. Now, if {(mα,m

′

α) : α ∈ D} is a
net in Endp(G) ×Σ converging to (m,m′) and g ∈ G then,

π(mα,m
′

α)(g) = m′

α(mα(g)) → m′(m(g)) = π(m,m′)(g).

Hence π is continuous on Endp(G)× Σ. ✷

Let G and H be topological groups. We shall denote by Homp(H;G) the space of all continuous
homomorphisms from H into G endowed with the topology of pointwise convergence on H.
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Corollary 2 Let G and H be topological groups and let Σ be a subset of Homp(H;G). If H is a
strongly Bare space and Σ is a qD-subspace of Homp(H;G) for some dense subset D of Σ then on
Σ the pointwise and compact-open topologies coincide.

Proof: Since the compact-open topology is always finer than the pointwise topology it will be
sufficient to show that for each compact set K ⊆ H and open set W ⊆ G, F (K;W ) is open in the
pointwise topology. To this end, let K be a non-empty compact subset of H, W be a non-empty
open subset of G and m0 ∈ F (K;W ) (i.e., m0(K) ⊆ W ). From Theorem 1 it follows that the
mapping f : H × Σ → G defined by, f(h,m) := m(h) is jointly continuous on H × Σ and so
from a simple compactness argument it follows that there exists an open set U in H and an open
neighbourhood V of m0 in Σ such that K ⊆ U and f(U × V ) ⊆ W . In particular this means that
m0 ∈ V ⊆ F (K;W ) and so F (K;W ) is open in the pointwise topology. ✷

If (M,+) is an Abelian group endowed with a topology τ1 and (R,+, ·) is a ring endowed with a
topology τ2 then we say M is a semitopological R-module (over R) if it is an R-module (over R)
and both the mappings (x, y) 7→ x+ y and (r, x) 7→ r · x are separately continuous on M ×M and
R×M respectively.

Corollary 3 Let M be a semitopological R-module over a ring R. If R is a qD-space for some
dense subset D of R and M is a strongly Baire space then M is a topological R-module, i.e., (M,+)
is a topological group and (r, x) 7→ r · x is jointly continuous.

Proof: By Theorem 2 in [5], which states that every group endowed with a strongly Baire topology
for which mulitplication is separately continuous is in fact a topological group, we may deduce that
(M,+) is a topological group. The result then follows for Theorem 1 since for each fixed r ∈ R the
mapping x 7→ r · x is an endomorphism of M . ✷

Remark: If strongly Baire is replaced by Čech-complete (in M) and qD-space is replaced by Čech-
completeness (in R) then we may relax the hypothesis that (r, x) 7→ r · x is separately continuous
to (r, x) 7→ r · x being separately Souslin measurable [7].

We say that a mapping f : X → Y acting between Banach spaces X and Y is almost C1 on X if
for each y ∈ X the mapping x 7→ f ′(x; y) defined by, f ′(x; y) := weak- limt→0[f(x+ ty)− f(x)]/t is
norm-to-norm continuous on X.

Corollary 4 Let f : X → Y be a continuous mapping acting between Banach spaces X and Y . If
f is almost C1 on X then the mapping (x, y) 7→ f ′(x; y) is jointly norm continuous on X ×X.

Proof: Fix x0 ∈ X. We shall show first that the mapping y 7→ f ′(x0; y) is linear. To do this it is
sufficient to show that for each y∗ ∈ Y ∗ the mapping y 7→ y∗(f ′(x0; y)) is linear on X. Fix y∗ ∈ Y ∗

and let g : X → R be defined by, g(x) := (y∗ ◦ f)(x), then g is continuous and almost C1 with
g′(x; y) = y∗(f ′(x; y)) for each y ∈ X. It now follows, as in the finite dimensional case, (see [1],
p.261) that the mapping y 7→ g′(x0; y) is linear on X [Note: g′(x0, y) is linear on X if it is linear
on every 2 dimensional subspace of X]. Next, let {tn : n ∈ N} be any sequence of positive numbers
converging to 0 and define fn : X → Y by, fn(y) := [f(x0 + tny) − f(x0)]/tn. Then each fn is
continuous and weak- limn→∞ fn(y) = f ′(x0; y) for each y ∈ X. Therefore by the Banach-Steinhaus
Theorem y 7→ f ′(x0; y) is norm-to-weak continuous. Since y 7→ f ′(x0; y) is linear it follows from the
uniformly boundedness theorem that y 7→ f ′(x0; y) is norm-to-norm continuous. The result then
follows from Theorem 1. ✷

Remark: We say that a mapping f : X → Y acting between Banach spaces X and Y is weakly C1

if for each y ∈ X and y∗ ∈ Y ∗ the mapping x 7→ (y∗ ◦ f)′(x; y) is continuous on X. Now if Y is
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reflexive and for each fixed x0 ∈ X and y ∈ X the mapping T x0

y : Y ∗ → R defined by T x0

y (y∗) :=
(y∗ ◦ f)′(x0; y) is a bounded linear functional on Y ∗ (note: this mapping is necessarily linear) then
weak- limt→0[f(x0 + ty)− f(x0)]/t exists. Moreover, by examining the proof of Corollary 4 we see
that if f is norm-to-weak continuous and weakly C1 then for each x0 ∈ X such that each T x0

y is
bounded for all y ∈ X, the mapping y 7→ f ′(x; y) is a bounded linear operator between X and Y .
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