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Abstract. The questions listed here do not necessarily represent the most
significant problems from the areas of Non-smooth Analysis, Optimisation
theory and Banach space theory, but rather, they represent a selection of
problems that are of particular interest to the authors.

1. Weak Asplund spaces

Let X be a Banach space. We say that a function ϕ : X → R is Gâteaux
differentiable at x ∈ X if there exists a continuous linear functional x∗ ∈ X∗ such
that

x∗(y) = lim
λ→0

ϕ(x+ λy)− ϕ(x)

λ
for all y ∈ X.

In this case, the linear functional x∗ is called the Gâteaux derivative of ϕ at x ∈ X .
If the limit above is approached uniformly with respect to all y ∈ BX -the closed
unit ball in X , then ϕ is said to be Fréchet differentiable at x ∈ X and x∗ is called
the Fréchet derivative of ϕ at x.

A Banach space X is called a weak Asplund space [Gâteaux differentiability
space] if each continuous convex function defined on it is Gâteaux differentiable
at the points of a residual subset (i.e., a subset that contains the intersection of
countably many dense open subsets of X) [dense subset] of its domain.

Since 1933, when S. Mazur [29] showed that every separable Banach space is
weak Asplund, there has been continued interest in the study of weak Asplund
spaces. For an introduction to this area see, [36] and [17]. Also see the seminal
paper [1] by E. Asplund.

The main problem in this area is given next.

Question 1.1. Provide a geometrical characterisation for the class of weak As- 1001 ?

plund spaces.

Note that there is a geometrical dual characterisation for the class of Gâteaux
differentiability spaces, see [39]. However, it has recently been shown that there
are Gâteaux differentiability spaces that are not weak Asplund [33]. Hence the
dual characterisation for Gâteaux differentiability spaces cannot serve as a dual
characterisation for the class of weak Asplund spaces.
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The description of the next two related problems requires some additional def-
initions.

Let A ⊆ (0, 1) and let KA := [(0, 1]× {0}] ∪ [({0} ∪A)× {1}]. If we equip this
set with the order topology generated by the lexicographical (dictionary) ordering
(i.e., (s1, s2) ≤ (t1, t2) if, and only if, either s1 < t1 or s1 = t1 and s2 ≤ t2) then
with this topology KA is a compact Hausdorff space [26]. In the special case of
A = (0, 1), KA reduces to the well-known “double arrow” space.

Question 1.2. Is (C(KA), ‖ · ‖∞) weak Asplund whenever A is perfectly meagre?? 1002

Recall that a subset A ⊆ R is called perfectly meagre if for every perfect subset
P of R the intersection A ∩ P is meagre (i.e., first category) in P . An affirmative
answer to this question will provide an example (in ZFC) of a weak Asplund
space whose dual space is not weak∗ fragmentable, see [33] for more information
on this problem. For example, it is shown in [33] that if A is perfectly meagre
then (C(KA), ‖·‖∞) is almost weak Asplund i.e., every continuous convex function
defined on (C(KA), ‖·‖∞) is Gâteaux differentiable at the points of an everywhere
second category subset of (C(KA), ‖ · ‖∞). Moreover, it is also shown in [33] that
if (C(KA), ‖ · ‖∞) is weak Aplund then A is obliged to be perfectly meagre.

Our last question on this topic is the following well-known problem.

Question 1.3. Is (C(K(0,1)), ‖ · ‖∞) a Gâteaux differentiability space?? 1003

The significance of this problem emanates from the fact that (C(K(0,1)), ‖·‖∞) is
not a weak Asplund space as the norm ‖·‖∞ is only Gâteaux differentiable the the
points of a first category subset of (C(K(0,1)), ‖·‖∞), [17]. Hence a positive solution
to this problem will provide another example of a Gaâteaux differentiability space
that is not weak Asplund.

2. Bishop-Phelps Problem

For a Banach space (X, ‖ · ‖), with closed unit ball BX , the Bishop-Phelps
set is the set of all linear functionals in the dual X∗ that attain their maximum
value over BX ; that is, the set {x∗ ∈ X∗ : x∗(x) = ‖x‖ for some x ∈ BX}. The
Bishop-Phelps theorem [3] says that the Bishop-Phelps set is always dense in X∗.

Question 2.1. Suppose that (X, ‖ ·‖) is a Banach space. If the Bishop-Phelps set? 1004

is a residual subset of X∗ (i.e., contains, as a subset, the intersection of countably
many dense open subsets of X∗) is the dual norm necessarily Fréchet differentiable
on a dense subset of X∗?

The answer to this problem is known to be positive in the following cases:

(i) if X∗ is weak Asplund, [18, Corollary 1.6(i)];
(ii) if X admits an equivalent weakly mid-point locally uniformly rotund norm

and the weak topology on X is σ-fragmented by the norm, [34, Theorem
3.3 and Theorem 4.4];

(iii) if the weak topology on X is Lindelöf, [28].
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Condition (ii) can be slightly improved, see [19, Theorem 2]. It is also known
that each equivalent dual norm on X∗ is Fréchet differentiable on a dense subset
on X∗ whenever the Bishop-Phelps set of each equivalent norm on X is residual in
X∗, [32, Theorem 4.4]. Note that in this caseX has the Radon-Nikodým property.

For an historical introduction to this problem and its relationship to LUR
renorming theory see, [27].

Next, we give an important special case of the previous question.

Question 2.2. If the Bishop-Phelps set of an equivalent norm ‖ · ‖ defined on 1005 ?

(ℓ∞(N), ‖ · ‖∞) is residual, is the corresponding closed unit ball dentable?

Recall that a nonempty bounded subset A of a normed linear spaceX is dentable
if for every ε > 0 there exists a x∗ ∈ X∗ \ {0} and a δ > 0 such that

‖ · ‖ − diam{a ∈ A : x∗(a) > sup
x∈A

x∗(x)− δ} < ε.

It is well-known that if the dual norm has a point of Fréchet differentiability
then BX is dentable [46].

3. Metrizability of compact convex sets

One facet of the study of compact convex subsets of locally convex spaces is
the determination of their metrizability in terms of topological properties of their
extreme points. For example, a compact convex subset K of a Hausdorff locally
convex space X is metrizable if, and only if, the extreme points of K (denoted
Ext(K)) are Polish (i.e., homeomorphic to a complete separable metric space),
[12].

Since 1970 there have been many papers on this topic (e.g. [12, 14, 25, 30, 41]
to name but a few).

Question 3.1. Let K be a nonempty compact convex subset of a Hausdorff locally 1006 ?

convex space (over R). Is K metrizable if, and only if, A(K) - the continuous real-
valued affine mappings defined on K, is separable with respect to the topology of
pointwise convergence on Ext(K)?

The answer to this problem is known to be positive in the following cases:

(i) if Ext(K) is Lindelöf, [35];

(ii) if Ext(K) \ Ext(K) is countable, [35].

Question 3.1 may be thought of as a generalization of the fact that a compact
Hausdorff space K is metrizable if, and only if, Cp(K) is separable. Here Cp(K)
denotes the space of continuous real-valued functions defined on K endowed with
the topology of pointwise convergence on K.
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4. The Boundary Problem

Let (X, ‖ · ‖) be a Banach space. A subset B of the dual unit ball BX∗ :=
{x∗ ∈ X∗:‖x∗‖ ≤ 1} is called a boundary if for any x ∈ X , there is x∗ ∈ B

such that x∗(x) = ‖x‖. A simple example of boundary is provided by the set
Ext(BX∗) of extreme points of BX∗ . This notion came into light after James’
characterization of weak compactness [24], and has been studied in several papers
(e.g. [45, 42, 47, 20, 21, 10, 8, 7, 22, 9]. In spite of significant efforts, the following
question is still open (see [20, Question V.2] and [16, Problem I.2]):

Question 4.1. A be a norm bounded and τp(B) compact subset of X. Is A weakly? 1007

compact?

The answer to the boundary problem is known to be positive in the following
cases:

(i) if A is convex, [45];
(ii) if B = Ext(BX∗), [5];
(iii) if X does not contain an isomorphic copy of l1(Γ) with |Γ| = c, [8, 9];
(iv) if X = C(K) equipped with their natural norm ‖ · ‖∞, where K is an

arbitrary compact space, [7].

Case (i) can be also obtained from James’ characterization of weak compactness,
see [21]. The original proof for (ii) given in [5] uses, amongst other things, deep
results established in [4]. Case (iii) is reduced to case (i): if l1(Γ) 6⊂ X , |Γ| = c,
and C ⊂ BX∗ is 1-norming (i.e., ‖x‖ = sup{|x∗(x)| : x∗ ∈ C}), it is proved
in [8, 9] that for any norm bounded and τp(C)-compact subset A of X , the closed

convex hull co(A)
τp(C)

is again τp(C)-compact; the class of Banach spaces fulfilling
the requirements in (iii) is a wide class of Banach spaces that includes: weakly
compactly generated Banach spaces or more generally weakly Lindelöf Banach
spaces and spaces with dual unit ball without a copy of βN. The techniques
used in case (iv) are somewhat different, and naturally extend the classical ideas
of Grothendieck, [23], that led to the fact that norm bounded τp(K)-compact
subsets of spaces C(K) are weakly compact. It should be noted that it is easy to
prove that for any set Γ, the boundary problem has also positive answer for the
space ℓ1(Γ) endowed with its canonical norm, see [7, 9].

We observe that the solution in full generality to the boundary problem without
the concourse of James’ theorem of weak compactness would imply an alternative
proof of the following version of James’ theorem itself: a Banach space X is
reflexive if, and only if, each element x∗ ∈ X∗ attains its maximum in BX .

Finally, we point out that in the papers [43, 50], it has been claimed that the
boundary problem was solved in full generality. Unfortunately, to the best of our
knowledge both proofs seem not to be correct.

5. Separate and Joint Continuity

If X , Y and Z are topological spaces and f : X × Y → Z is a function then we
say that f is jointly continuous at (x0, y0) ∈ X × Y if for each neighbourhood W
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of f(x0, y0) there exists a product of open sets U ×V ⊆ X ×Y containing (x0, y0)
such that f(U × V ) ⊆ W and we say that f is separately continuous on X × Y if
for each x0 ∈ X and y0 ∈ Y the functions y 7→ f(x0, y) and x 7→ f(x, y0) are both
continuous on Y and X respectively.

Since the paper [2] of Baire first appeared there has been continued interest
in the question of when a separately continuous function defined on a product
of “nice” spaces admit a point (or many points) of joint continuity and over the
years there have been many contributions to this area (e.g. [6, 11, 13, 15, 28, 38,
31, 40, 44, 48] etc.) Most of these results can be classified into one of two types.
(I) The existence problem, i.e., if f : X × Y → R is separately continuous find
conditions on either X or Y (or both) such that f has at least one point of joint
continuity. (II) The fibre problem, i.e., if f : X × Y → R is separately continuous
find conditions on either X or Y (or both) such that there exists a nonempty
subset R of X such that f is jointly continuous at the points of R × Y .

The main existence problem is, [49]:

Question 5.1. Let X be a Baire space and let Y be a compact Hausdorff space. 1008 ?

If f : X × Y → R is separately continuous does f have at least one point of joint
continuity?

We will say that a Baire space X has the Namioka Property of has property N
if for every compact Hausdorff space Y and every separately continuous function
f : X × Y → R there exists a dense Gδ-subset G of X such that f is jointly
continuous at each point of G×Y . Similarly, we will say that a compact Hausdorff
space Y has the co-Namioka Property or has property N ∗ if for every Baire space
X and every separately continuous function f : X × Y → R there exists a dense
Gδ-subset G of X such that f is jointly continuous at each point of G× Y .

The main fibre problems are:

Question 5.2. Characterize the class of Namioka spaces. 1009 ?

Question 5.3. Characterize the class of co-Namioka spaces. 1010 ?

For a good introduction to this topic see, [31, 40].
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(1979), 239–251.
[49] M. Talagrand, Espaces be Baire et espaces de Namioka, Math. Ann. 270 (1985), 159–164.
[50] XiaominWang and Lixin Cheng, A note on weakly compact sets in Banach space, Northeast.

Math. J. 12 (1996), no. 4, 466–468. MR 98g:46021


