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Abstract

Sigma-fragmentability of a Banach space E is equivalent to the existence of a win-
ning strategy for one of the players in a topological “fragmenting” game in (E,weak).
We show that the absence of a winning strategy for the other player is equivalent
to each of the following properties:

(i) for every continuous mapping f : Z → (E,weak), where Z is an α-favorable
space, there exists a dense Gδ-subset A ⊂ Z at the points of which f is norm

continuous;

(ii) for every quasi-continuous mapping f : Z → (E,weak), where Z is a complete

metric space, there exists a point at which f is weakly continuous;

(iii) for every quasi-continuous mapping f : Z → (E,weak), where Z is an α-
favorable space, there exists a dense Gδ-subset A ⊂ Z at the points of which f is

norm continuous.

Thus we provide an internal characterization of those Banach spaces that satisfy
property (i). Moreover we show that similar properties hold for spaces of the type
C(T ), endowed with the topology of pointwise convergence on T . From this we
derive some results concerning joint continuity of functions f(z, t) which are “quasi-
separately continuous” on Z × T .

For E = l∞ and E = l∞/c0 we explicitly describe how to construct a weakly con-
tinuous nowhere norm continuous mapping f : Z → E, where Z is some completely
regular α-favorable space.

1 Introduction.

Let X be a topological space, ρ some metric on it (not necessarily generating the topology
of X) and ε > 0. A subset X1 ⊂ X is said to be fragmented by ρ down to ε if, for
every nonempty subset A ⊂ X1, there exists a nonempty relatively open subset B ⊂ A
such that ρ−diameter(B) < ε.
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The following notion introduced by Jayne and Rogers [JR] was one of the inspiration
points for our investigations. It concerns the situations when the topology of a given
space X is not metrizable but has a specific relation to some metric ρ.

Definition 1 ([JR]) Let (X, τ) be a topological space and ρ some metric on it. The space
(X, τ) (or the topology τ) is said to be fragmented by the metric ρ, if every nonempty
subset of X is fragmented by ρ down to ε, for every ε > 0.

This notion suggested itself as a convenient tool in the investigation of, (i) the geometry
of Banach spaces; (ii) the study of the set of points where a given convex function is
(Gateaux or Frechet) differentiable and (iii) the generic well-posedness of optimization
problems. Unfortunately, the weak topology on a Banach space is rarely fragmented
by the norm metric. Much more frequently though, the following notion which was
introduced and studied by Jayne, Namioka and Rogers in [JNR1] - [JNR5] does occur.

Definition 2 A space X (or its topology τ) is said to be sigma-fragmented by a
metric ρ if, for every ε > 0, there exists a countable family (Xi)i≥1 of subsets of X such
that:

i) X =
⋃

i≥1Xi;

ii) every Xi, i = 1, 2, 3, . . ., is fragmented by ρ down to ε.

In what follows, if a Banach space E is under consideration, then the words “E is
sigma-fragmented by the norm” or “E is sigma-fragmented” will mean that the weak
topology on E is sigma-fragmented by the norm metric. We will also say that a given
space is “fragmentable (sigma-fragmentable)”, if it is fragmented (sigma-fragmented) by
some metric. The following theorem (see [KM2], [KM3]) shows that in a Banach space
setting the two notions, fragmentability and sigma-fragmentability are closely related.

Theorem 1 For a subset X of a Banach space E the next properties are equivalent:
i) X admits a metric ρ which fragments the weak topology and majorizes the norm
topology (i.e. the topology generated by the metric ρ contains the norm topology);
ii) X admits a metric ρ which fragments the weak topology and majorizes the weak topol-
ogy;
iii) X is sigma-fragmented by the norm.

In [KM1], [KM2] the fragmentability of a general topological space (X, τ) by a metric
which majorizes some other topology τ ′ on X was characterized by the existence of a
winning strategy for the player Ω in a special “fragmenting” game described below in
Section 2. A slightly weaker condition, the absence of a winning strategy for the other
player Σ, characterizes the spaces we investigate in this paper. In this way, the distinction
between the spaces considered in this paper and fragmentable spaces is made explicit.
We also give several equivalent conditions that characterize these spaces. All of which
are in terms of the existence of points of τ ′-continuity for some τ -continuous or “τ -quasi-
continuous” mappings.
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Definition 3 A mapping g : Z → X between topological spaces Z and X is said to be
quasi-continuous at z0 if, for every open subset U ⊂ X with g(z0) ∈ U , there exists
some open set V ⊂ Z such that:

a) z0 ∈ V (the closure of V in Z);
b) g(V ) :=

⋃
{g(z) : z ∈ V } ⊂ U .

The mapping g is called quasi-continuous if it is quasi-continuous at each point of Z.

For real-valued functions the notion of “quasi-continuity” was introduced by Kempisty
in [Kem]. However the roots of this notion go back to V. Volterra (see Baire [Ba], p. 94-
95).

Intuitively, one might expect that quasi-continuous mappings have many points of
continuity; which indeed is often the case. Levine ([Le]) has shown that if X has a
countable base, then every quasi-continuous map g : Z → X can only be discontinuous
at the points of a first Baire category subset of Z. Bledsoe ([Bl]) proved a similar result
for the case when X is a metric space. Results of this kind can be found in many articles
(see for instance, the survey papers [Ptr2], [Ptr3] of Piotrowski). There are however
quasi-continuous mappings that are nowhere continuous. Take Z := (0, 1) with the usual
topology, X := (0, 1) with the Sorgenfrey topology and the identity mapping g : Z → X .
Then the map g is quasi-continuous but nowhere continuous.

In Section 2 we consider spaces with two topologies τ and τ ′. Theorem 4 gives a game
characterization (in terms of the absence of a winning strategy for the player Σ in the
fragmenting game) of the spaces (X, τ, τ ′) with the property:

For every quasi-continuous mapping f : Z → (X, τ) defined on a complete
metric space Z there exists a point at which f is τ ′-continuous.

In fact, the set of such points of τ ′-continuity is dense in Z. Moreover, it is of the
second Baire category in every nonempty open subset of Z. Theorem 4 also shows that if
the space (X, τ, τ ′) has the above property, then it has the same property with respect to
quasi-continuous mappings defined on spaces belonging to the class of α-favorable spaces,
which is much larger than the class of completely metrizable spaces. The considerations in
Section 2 are very similar to those contained in [KKM] where the partial case τ = τ ′ was
treated. There is one exception however, which is contained in Theorem 5 and concerns
the case when the topology τ ′ is metrizable. Under this restriction, each one of the
equivalent conditions listed in Theorem 4 which refer to quasi-continuous mappings is
equivalent to the following condition (which only involves continuous mappings):

Every continuous mapping f : Z → (X, τ) from an α-favorable space Z into
(X, τ) is τ ′-continuous at the points of a dense Gδ-subset of Z.

When X is a subset of a Banach space E, τ is the weak and τ ′ the norm topology,
one additional phenomenon has place. In Section 3 we give several characterizations of
the class L of Banach spaces E such that, for every quasi-continuous mapping f : Z →
(E,weak) defined on a complete metric space Z, there exists a dense set of points at which
f is norm continuous. The phenomenon we have in mind is expressed by the following
statement:
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A Banach space E belongs to the class L if and only if every quasi-continuous mapping
f : Z → (E,weak) from a complete metric space Z has a point at which f is weakly
continuous (not necessarily norm continuous).

This follows from Theorem 6 which establishes that each of the equivalent assertions
listed in Corollary 2 are equivalent to any of the statements listed in Corollary 3.

The class L is closely connected with a result of Namioka [Na1]. Namioka proved
that every weakly continuous mapping f : Z → E, where Z belongs to a large class of
topological spaces (including all complete metric spaces), must be norm continuous at the
points of a dense subset of its domain. Note that the set of points of norm continuity
of any mapping f : Z → E is always a Gδ set in Z. It was expected that the result of
Namioka would remain valid for any arbitrary Baire space Z. Talagrand [Ta1] however
provided a counter-example to this expectation by exhibiting a weakly continuous nowhere
norm continuous mapping defined on an α-favorable space. This situation suggested the
investigation of the class N (the class T ) of Banach spaces E for which every weakly
continuous mapping f : Z → E defined on a Baire space (on an α-favorable space) Z is
norm continuous at the points of dense Gδ-subset of Z. Clearly, N and L are subclasses
of T . An example of Haydon [Ha] based on a tree of Todorčević shows that N and T are
distinct classes of Banach spaces. On the other hand we prove in Section 3, Corollary 3,
that the classes T and L coincide.

We also show (see Proposition 3) that E = l∞ and E = l∞/c0 do not belong to
T . In both cases we explicitly describe how to construct a weakly continuous mapping
h : Z → E defined on a completely regular α-favorable space Z which is nowhere norm
continuous. This brings clarity to a concern expressed by Haydon (see [Ha], end of page
30, beginning of page 31).

We give similar results for Banach spaces of the type C(T ), where T is a compact
space. We prove that, if every mapping f : Z → C(T ) which is defined on a complete
metric space Z and is quasi-continuous with respect to τp (the topology of pointwise
convergence on T ) has a point at which it is τp-continuous, then every such f has a dense
set of points at which it is norm continuous. This is used in Section 4 to establish the
existence of points of joint continuity of functions of two variables which have a property
slightly weaker than separate continuity.

At the end of this introductory section we show how fragmentability of a Banach space
(E,weak) by a metric majorizing the norm topology on E implies the existence of many
points of norm continuity for a weakly quasi-continuous mapping defined on a Baire space.
Note that, in view of Theorem 1, Banach spaces admitting such a fragmenting metric are
precisely those Banach spaces that are sigma-fragmented by their norm.

Theorem 2 Let Z be a topological space and (X, τ) be a topological space which is frag-
mented by some metric ρ. Suppose that f : Z → (X, τ) is a quasi-continuous mapping.
Then there exists a subset C(f) ⊂ Z such that:

i) Z \ C(f) is of the first Baire category in Z (i.e. C(f) is a residual subset of Z);
ii) at the points of C(f) the mapping f is ρ-continuous.

In particular, if the topology generated by the metric ρ majorizes some topology τ ′ on the
space X, then f : Z → X is τ ′-continuous at every point of the set C(f).
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Proof. Consider, for every n = 1, 2, . . ., the set Vn :=
⋃
{V : V open inZ and ρ −

diameter(f(V )) ≤ n−1}. The set Vn is open in Z. It is also dense in Z. Indeed, suppose
W is a nonempty open subset of Z. Consider the nonempty set A := f(W ) ⊂ X . By
the fragmentability of X there is some nonempty relatively open subset B := A ∩ U =
f(W )∩U , where U is τ -open in X , such that ρ-diameter(B) ≤ n−1. The quasi-continuity
of f implies that there is some nonempty open V ⊂ W with f(V ) ⊂ U ∩ f(W ) = B.
This shows that ∅ 6= V ⊂ Vn ∩W . Hence, Vn is dense in Z. Obviously, at each point of
C(f) :=

⋂
n≥1 Vn, the map f is ρ-continuous.

Some remarks are in order in connection with this theorem and the notions used in
it. Every metrizable space X is, of course, fragmentable. There are however many non-
metrizable spaces that are fragmentable (see the papers of Namioka [Na2] and Ribarska
[Ri1], [Ri2] for further information concerning fragmentable spaces).

The notion of quasi-continuity is frequently used when establishing the existence of
points of joint continuity of separately continuous real-valued functions of two variables
(for the further development in this direction over the years see the papers of Martin [Mrt],
Marcus [Mrc], Mibu [Mi], Namioka [Na1], Piotrowski [Ptr1]- [Ptr4], Troallic [Tro]). The
general form of the notion of quasi-continuity (for mappings between general topological
spaces) turned out to be instrumental in the proof that some semitopological groups
are actually topological groups (see Bouziad [Bou1]-[Bou2]) and in the proof of some
generalizations of Michael’s selection theorem (see Giles and Bartlett [GB]). A lot of
information concerning quasi-continuity of mappings may be found in the survey paper
[Neu2] of Neubrunn.

The study of the class L is a natural continuation of the considerations in [KG],
[GKMS] and [MG]. In [MG] the spaces from the class L were called “GGC spaces”
(General Generic Continuity Spaces) in contrast to some related classes of spaces which
were called “Generic continuity spaces” that were considered in [KG], [GKMS].

The first named author is grateful to the Department of Applied Mathematics, The
University of Bayreuth, for their support and hospitality during the time this paper was
in preparation.

2 The game G(X, τ, τ ′) and the continuity of quasi-

continuous mappings.

The main technical tool in this paper is the topological game G(X, τ, τ ′) which we call the
“fragmenting game” and play in the following way. Two players Σ and Ω select, one after
the other, subsets of X . Ω starts the game by selecting the whole space X . Σ answers
by choosing any nonempty subset A1 of X and Ω goes on by taking a nonempty subset
B1 ⊂ A1 which is relatively τ -open in A1. After the first nmoves of the game, Σ selects any
nonempty subset An of the last move Bn−1 of Ω and the latter answers by taking again a
nonempty relatively τ -open subset Bn of the set An, just chosen by Σ. Acting in this way,
the players produce a sequence of nonempty sets A1 ⊃ B1 ⊃ A2 ⊃ ... ⊃ An ⊃ Bn ⊃ ...,
which is called a play and will be denoted by p := (Ai, Bi)i≥1 (there is no need to include
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in this notation the space X which is the initial obligatory move of Ω). The winning rule
depends upon the topology τ ′. The player Ω is said to have won the play p := (Ai, Bi)i≥1,
if the set

⋂
n≥1An is either empty or contains exactly one point x and for every τ ′-open

neighborhood U of x, there is some positive n with Bn ⊂ U . Otherwise the player Σ is
said to have won the play.

A partial play is a finite sequence which consists of the first several moves A1 ⊃
B1 ⊃ A2 ⊃ ... ⊃ An (or A1 ⊃ B1 ⊃ A2 ⊃ ... ⊃ Bn) of a play. A strategy ω for the player
Ω is a mapping which assigns to each partial play A1 ⊃ B1 ⊃ A2 ⊃ ... ⊃ An some set Bn

such that A1 ⊃ B1 ⊃ A2 ⊃ ... ⊃ An ⊃ Bn is again a partial play. A strategy σ for Σ is
defined in a similar way. Sometimes we will denote the first choice A1 under a strategy
σ by σ(X). A σ-play (ω-play) is a play in which Σ (Ω) selects his/her moves according
to the strategy σ (ω). The strategy ω (σ) is said to be a winning one if every ω-play
(σ-play) is won by Ω (Σ). The game G(X, τ, τ ′) or the space X is called Ω-favorable
(Σ-favorable), if there is a winning strategy for the player Ω (Σ). The game G(X, τ, τ ′)
(or the space X) is called Σ-unfavorable, if there does not exist a winning strategy for
the player Σ.

This game has already been used to characterize the fragmentability of a topological
space. The following statement was proved in [KM1], [KM2].

Theorem 3 A topological space (X, τ) is fragmentable by a metric ρ which majorizes a
topology τ ′ if and only if there exists a winning strategy for the player Ω in the game
G(X, τ, τ ′).

When τ ′ is the trivial topology (consisting of the empty set and the whole space X),
this yields a criterion for fragmentability of (X, τ). One derives from this theorem and
Theorem 2 that if the game G(X, τ, τ ′) is Ω-favorable, Z is a complete metric space and
f : Z → (X, τ) is a quasi-continuous map, then the set of points C(f, τ ′) where f is
τ ′-continuous contains a dense and Gδ-subset of Z.

For non-fragmentable spaces X one should not expect that the set C(f, τ ′) is always
residual in Z. However density of this set can have place even without fragmentability of
(X, τ) by a metric that majorizes τ ′. As we shall see it suffices to know that the game
G(X, τ, τ ′) is unfavorable for the player Σ. To give a general formulation of our results
we need the concept of α-favorability, which we introduce by means of a topological
game which is the grandparent of many other topological games. This is the well known
“Banach-Mazur game” (also called the “Choquet game”).

Let Z be a topological space. The Banach-Mazur game BM(Z) is played by two
players α and β, who select alternatively nonempty open subsets of Z. It is β who starts
the game by taking some nonempty open subset V0 of Z. At the n-th move, n ≥ 1,
the player α takes a nonempty open subset Wn ⊂ Vn−1 and β answers by taking a
nonempty open subset Vn of Wn. Using this way of selection, the players generate a
sequence (Wn, Vn)

∞
n=1 which is called a play. The player β is said to have won this play if⋂

n≥1Wn = ∅; otherwise this play is won by α. A partial play is a finite sequence which
consists of the first several moves of a play. A strategy ζ for the player α is a mapping
which assigns to each partial play (V0,W1, V1,W2, V2...,Wn−1, Vn−1) some nonempty open
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subset Wn of Vn−1. A ζ-play is a play in which α selects his/her moves according to ζ .
The strategy ζ is said to be a winning one if every ζ-play is won by α. A space Z is
called α-favorable if there exists a winning strategy for α in BM(Z). Also in this game
it is possible to consider that the player α starts every play by always selecting the set
W0 := Z.

Let us recall that a space Z is called Čech complete if it is a Gδ-subset of some
compact space. Z is said to be almost Čech complete if it contains a dense Čech
complete subset. It is known that complete metric spaces are Čech complete and that
every almost Čech complete space is α-favorable. Below we will also use the simple
observation that for any α-favorable space Z and any subset H which is of the first
Baire category in Z, there exists a strategy ζ for player α such that

⋂
i≥0Wi 6= ∅ and

H
⋂
(
⋂

i≥0Wi) = ∅, whenever (Vi,Wi)i≥0 is a ζ-play.

Theorem 4 Let τ , τ ′ be two T1 topologies on a set X. Suppose that for every τ ′-open set
U and every point x ∈ U there exists a τ ′-neighborhood V of x such that V

τ
⊂ U . Then

the following conditions are equivalent:
(i) The game G(X, τ, τ ′) is Σ-unfavorable;
(ii) every quasi-continuous mapping f : Z → (X, τ) from the complete metric space Z
into (X, τ) has at least one point of τ ′- continuity;
(iii) every quasi-continuous mapping f : Z → (X, τ) from an α-favorable space Z into
(X, τ) is τ ′-continuous at the points of a subset which is second category in every
nonempty open subset of Z.

Note that the absence of a winning strategy for the player Σ does not necessarily
imply that Ω has a winning strategy, that is, the condition “the game G(X, τ, τ ′) is Σ-
unfavorable (or the space X is Σ-unfavorable)” is weaker than the condition “(X, τ) is
fragmentable by a metric that majorizes τ ′”. As an example in this direction one could
take the space C(T ) constructed by Haydon [Ha]. It will become clear after Corollary 3,
that the game G(C(T ), τp, norm) is unfavorable for both players.

Proof of Theorem 4. We only outline the proof of this theorem here because it is
very similar to the proof of the main result from [KKM]. We show that (i) ⇒ (iii) and
(ii) ⇒ (i). The implication (iii) ⇒ (ii) is obvious.
(i) ⇒ (iii). Suppose X is Σ-unfavorable for G(X, τ, τ ′) and f : Z → X is a τ -quasi-
continuous mapping from the α-favorable space Z. Let H be any first Baire category
subset of Z. There is some winning strategy ζ for the player α in BM(Z) which “avoids”
the set H , that is,

⋂
i≥0Wi 6= ∅ and H

⋂
(
⋂

i≥0Wi) = ∅ whenever (Vi,Wi)i≥0 is a ζ-play.
Take an open V0 6= ∅, V0 ⊂ Z. We will show that f is continuous at some point of V0 \H .
To do this we first construct a strategy σ for the player Σ in G(X, τ, τ ′) and then use the
fact that Σ does not win some σ-play. Define the first move of β in BM(Z) to be V0 and let
W1 := ζ(V0) be the answer of α. Assign A1 := f(W1) to be the first move in the strategy
σ. Suppose that the answer of Ω in G(X, τ, τ ′) is B1, a nonempty relatively τ -open subset
of A1. Then the τ -quasi-continuity of f implies there exists some nonempty open subset
V1 of W1, such that f(V1) ⊂ B1. Suppose the set V1 is the next move of the player β in
the game BM(Z). The player α, of course, uses the strategy ζ to answer this move and
selects the set W2 := ζ(V0,W1, V1). Then we define the second move of Σ in G(X, τ, τ ′) to
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be A2 := σ(A1, B1) := f(W2). Proceeding like this, we inductively construct a strategy σ.
Together with each σ-play (Ai, Bi)i≥1 in G(X, τ, τ ′) we also construct a ζ-play (Wi, Vi)i≥1

in BM(Z) with An := f(Wn) and Wn := ζ(V0,W1, V1, ...,Wn−1, Vn−1) for n = 1, 2, . . ..
As ζ is a winning strategy for α, we have

⋂
i≥1Wi 6= ∅. Therefore ∅ 6= f(

⋂
i≥1Wi) ⊂⋂

i≥1 f(Wi) =
⋂

i≥1Ai. Since X is Σ-unfavorable, there is some σ-play (Ai, Bi)i≥1 that
is won by Ω; hence the nonempty set

⋂
i≥1Ai consists of just one point x such that for

every τ ′-neighborhood U of x there is some n with An = f(Wn) ⊂ U . This implies that
f(z) = x for every z ∈

⋂
i≥1Wi ⊂ V0 \H and that f is continuous at each such z.

(ii) ⇒ (i). Let σ be an arbitrary strategy for the player Σ in G(X, τ, τ ′). We will show
that it is not a winning one. Consider the space P of all σ-plays p := (Ai, Bi)i≥1 endowed
with the Baire metric d; that is, if p := (Ai, Bi)i≥1 ∈ P and p′ := (A′

i, B
′
i)i≥1 ∈ P , then

d(p, p′) := 0 if p = p′ and d(p, p′) := 1/n where n := min{k : Bk 6= B′
k}, if p 6= p′. Note

that all the plays in P start with the same set A1 := σ(X), the first choice of the strategy
σ. Also, if Ai = A′

i and Bi = B′
i for all i ≤ n, then

An+1 := σ(A1, B1, ..., An, Bn) = σ(A′
1, B

′
1, ..., A

′
n, B

′
n) := A′

n+1.

In other words, if p 6= p′, then there is some n, such that Bn 6= B′
n, Ai = A′

i for i ≤ n and
Bi = B′

i for i < n. It is easy to verify that (P, d) is a complete metric space.
Consider the (set-valued) mapping F : P → X defined by F ((Ai, Bi)i≥1) :=

⋂
i≥1Ai.

If for some σ-play p we have F (p) = ∅, then the play p is won by Ω and there is nothing to
prove. Therefore, without loss of generality, we may assume that F is nonempty-valued
at every point of P . Let f : P → X be an arbitrary selection of the nonempty-valued
map F : P → X (i.e. f(p) ∈ F (p) for every p ∈ P ). Next we will show that f is
τ -quasi-continuous. Then, by property (ii), f will be τ ′-continuous at some point p0 ∈ P .
Finally we will show (see Proposition 1 below) that the play p0 is won by Ω. This will
show that σ is not a winning strategy and will complete the proof.

The next simple Lemma which is similar to Proposition 2.3 of [KO] plays an important
role for our considerations.

Lemma 1 Let the play p0 := (Ai, Bi)i≥1 be an element of the space P and let U a τ -open
subset of X with U ∩ An 6= ∅ for every n = 1, 2, 3, . . .. Then there exists an open subset
V in P such that:

a) p0 ∈ V ;
b) F (V ) :=

⋃
{F (p) : p ∈ V } ⊂ U .

Proof of the lemma. Let p0 := (Ai, Bi)i≥1 and U be as required in the formulation
of the Lemma. Given a positive integer n, consider the nonempty set B′

n := An∩U (which
is relatively τ -open in An and is a possible move of the player Ω). Denote by A′

n+1 the
set σ(A1, . . . , B

′
n) which is the answer of player Σ by means of the strategy σ. Let p′ ∈ P

be some play in G(X, τ, τ ′) which starts with the partial play (A1, . . . , A
′
n+1). Clearly,

d(p0, p
′) ≤ n−1. Moreover, the d-ball D(p0, n

−1) := {p : d(p0, p) ≤ n−1} contains the ball
D(p′, (n + 1)−1) and for every play p′′ in the latter ball we have F (p′′) ⊂ B′

n ⊂ U . Put
Vn to be the interior of D(p′, (n + 1)−1). Thus, for every integer n > 0, we found an
open subset Vn ⊂ D(p0, n

−1) such that F (Vn) ⊂ U . The set V :=
⋃

n≥1 Vn satisfies the
requirements of a) and b).
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This Lemma immediately yields:

Corollary 1 Every single-valued selection f of the set-valued mapping F : P → X defined
above is τ -quasi-continuous.

By (ii) f has a point of τ ′-continuity. To complete the proof of the theorem we need
the following statement.

Proposition 1 Let f be an arbitrary single-valued selection of the set-valued mapping
F : P → X. If f is τ ′-continuous at some point p0 ∈ P , then the play p0 := (Ai, Bi)i≥1 is
won by the player Ω in the game G(X, τ, τ ′).

Proof of the proposition. Let W be a τ ′-open subset of X with f(p0) ∈ W . Since
f is τ ′-continuous at p0 := (Ai, Bi)i≥1, there exists some open V ′ ⊂ P , p0 ∈ V ′, with
f(V ′) ⊂ W . We will show that there is some integer n > 0 for which An ⊂ W

τ
. In

view of the relation between the topologies τ and τ ′ assumed in the formulation of the
theorem, this will suffice to deduce that the play p0 is won by the player Ω.

Suppose that the τ -open set U := X \W
τ
intersects all sets An, n = 1, 2, . . .. By the

above Lemma 1, there is some open set V ⊂ P such that p0 ∈ V and f(V ) ⊂ F (V ) ⊂ U .
In particular, V 6= ∅. Hence there is a point p′ ∈ V ∩ V ′ 6= ∅. For p′ we have the
contradiction: f(p′) ∈ U ∩W = ∅. This shows that, for some n > 0, An ⊂ W

τ
.

This completes the proofs of both Proposition 1 and Theorem 4.

Remark 1 The relation An ⊂ W
τ
implies that F (D(p0, n

−1)) ⊂ W
τ
. Since W was an

arbitrary τ ′-open neighborhood of f(p0), we can derive from here that F (p0) = f(p0) and
that F is τ ′-upper semi-continuous at p0.

Theorem 5 Under the hypotheses of Theorem 4 and the additional assumption that τ ′

is a metrizable topology the list of equivalent conditions in Theorem 4 can be extended by
the following one:

(iv) every continuous mapping f : Z → (X, τ) from an α-favorable space Z into
(X, τ) is τ ′-continuous at the points of a dense Gδ-subset of Z.

Proof. We need a simple fact which is probably of independent interest as well.

Proposition 2 Let f : Z → X be an open and quasi-continuous mapping defined on
an α-favorable space Z. Then the image of f is an α-favorable space. In particular, for
any quasi-continuous mapping f : Z → X defined on an α-favorable space Z the graph
G(f) := {(z, x) ∈ Z ×X : x = f(z)} of f is α-favorable.

Proof of the Proposition. Let ζ be a winning strategy for the player α in the
Banach-Mazur game BM(Z) and let L1 be the first move of the player β in the Banach-
Mazur game played on f(Z). By the quasi-continuity of f there exists a nonempty open
subset V1 ⊂ Z such that f(V1) ⊂ L1. Consider V1 as the first move of β in the game
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BM(Z) and denote by, V ′
1 := ζ(V1) the answer of α according to the strategy ζ . We

define a strategy η for α in BM(f(Z)) as follows:

L′
1 := η(L1) := f(V ′

1).

Proceeding inductively we construct a strategy η so that for every η-play (L1, L
′
1)i≥1 in

BM(f(Z)) there corresponds a ζ-play (Vi, V
′
i )i≥1 in BM(Z) with the following properties

that are fulfilled for every i ≥ 1:
i) f(Vi) ⊂ Li;
ii) L′

i := η(L1, L
′
1, . . . , Li) := f(V ′

i ), where V ′
i := ζ(V1, V

′
1 , . . . , Vi).

Since ζ is a winning strategy there is a point z0 ∈
⋂

i≥1 V
′
i and so f(z0) ∈

⋂
i≥1 L

′
i.

This completes the first part of the proof. To deduce that G(f) is α-favorable whenever
f is quasi-continuous and Z is α-favorable we need only apply the previous result to the
function F : Z → G(f) defined by, F (z) := (z, f(z)).

Note that in the previous Proposition if both X and Z are completely regular then so
is G(f).

We now return to the proof of the theorem. It is clear that condition (iv) is implied
by condition (iii) of Theorem 4. We show now that (iv) implies (iii). Denote by ρ some
metric generating the topology τ ′. Let f : Z → X be a τ -quasi-continuous mapping
and Z an α-favorable space. Denote by π the standard projection of Z × (X, τ) onto
(X, τ). The restriction of π to the graph G(f) of f is continuous and by (iv) and the
above Proposition, will also be τ ′-continuous at the points of a dense subset of G(f).
Consider some ε > 0 and some nonempty open subset W ⊂ Z. It suffices to show that
there exists a nonempty open subset V ′ ⊂ W such that the ρ-diameter of the set f(V ′)
is smaller than or equal to ε. Indeed, having this done, we could proceed as in the
proof of Theorem 2. This would provide us with the dense and open sets Vn :=

⋃
{V :

V open inZ and ρ − diameter(f(V )) ≤ n−1}, n = 1, 2, . . ., such that f is ρ-continuous at
the points of the intersection

⋂
n≥1 Vn.

Since W is open, the set W×X is also open and intersects the α-favorable space G(f).
Therefore there exists some point (z∗, f(z∗)) ∈ W ×X at which π is τ ′-continuous. Then,
for some open sets V ⊂ Z and U ⊂ X containing z∗ and f(z∗) respectively, we have
ρ− diam(π((V × U)

⋂
G(f))) ≤ ε. By the quasi-continuity of f there is some nonempty

open V ′ ⊂ V such that f(V ′) ⊂ U . Clearly, f(V ′) ⊂ π((V × U)
⋂
G(f)).

3 Norm continuity of quasi-continuous mappings into

Banach spaces.

In this section we consider two particular cases of the general results from the preceeding
section (Theorem 4 and Theorem 5). These are the cases when X is a subset of some
Banach space E and either:

a) τ = τ ′ = weak or,
b) τ = weak and τ ′ = norm.
In case a) Theorem 4 immediately yields.

10



Corollary 2 The following properties of a subset X of a Banach space E are equivalent:
(i) G(X,weak, weak) is Σ-unfavorable;
(ii) every quasi-continuous mapping f : Z → (X,weak) from a complete metric space Z
is weakly continuous at some point of Z;
(iii) every quasi-continuous mapping f : Z → (X,weak) from an α-favorable space Z
is weakly continuous at the points of a subset of Z which is second category in every
nonempty open subset of Z.

In the case b) where τ ′ is a metrizable topology, the set of τ ′-continuity points is always
a Gδ set. Hence, from Theorem 4 and Theorem 5, we have the following result.

Corollary 3 The following properties of a subset X of a Banach space E are equivalent:
(i) G(X,weak, norm) is Σ-unfavorable;
(ii) every quasi-continuous mapping f : Z → (X,weak) from a complete metric space Z
is norm continuous at some point of Z;
(iii) (E belongs to L) every quasi-continuous mapping f : Z → (X,weak) from a complete
metric space Z is norm continuous at the points of some dense and Gδ subset of Z;
(iv) every quasi-continuous mapping f : Z → (X,weak) from an α-favorable space Z is
norm continuous at the points of a dense and Gδ subset of Z;
(v) (E belongs to T ) every continuous mapping f : Z → (X,weak) from a completely
regular α-favorable space Z is norm continuous at the points of a dense and Gδ subset of
Z. In particular, the classes L and T coincide.

Note that the equivalence between (i) and (iii) in the last corollary was proved in
Theorem 5.2 of [MG].

The main aim of this section is to present a phenomenon which is specific to Banach
spaces. It implies that every one of the equivalent conditions in Corollary 2 is equivalent
to any of the conditions in Corollary 3. Thus the fact that a given Banach space belongs
to the class L can be expressed in many different ways.

Theorem 6 Let X be a subset of a Banach space E. The following conditions are equiv-
alent:
(a) there is a winning strategy for the player Σ in G(X,weak, weak);
(b) there is a winning strategy for the player Σ in G(X,weak, norm);
(c) there is a strategy σ′ for the player Σ such that, for every σ′- play (A′

i, B
′
i)i, the set⋂

i≥1A
′
i 6= ∅ and there is at least one sequence (xi)i≥1 with xi+1 ∈ A′

i, that has no cluster
points in (E,weak).
In particular, conditions (i) from Corollary 2 and Corollary 3 are equivalent to each other.

Proof. The implications (c) ⇒ (a) ⇒ (b) are evident. We prove now that (b) ⇒ (c).
This will be done by a construction already used in [KM3] to show that the player Ω has a
winning strategy in G(X,weak, weak) if and only if he/she has a winning strategy in the
game G(X,weak, norm). Before that the same idea was exploited by Christensen [Chr]
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to show that every weakly continuous mappings defined on a “good” space must be norm
continuous at many points.

Suppose σ is the winning strategy for Σ in the game G(X,weak, norm). We will
construct a strategy σ′ with the property described in (c). For technical reasons, we need
the first choice under σ′ to be a bounded subset of E. The following statement allows us
to do so.

Lemma 2 If there is a winning strategy σ for the player Σ in the game G(X,weak, norm),
then there is a winning strategy σ∗ for the same player (in the same game) such that
A∗

1 := σ∗(X) is a bounded subset.

Proof of the lemma. Assume the set σ(X) := A1 ⊂ X is the first choice of the
player Σ under the strategy σ. If A1 is a subset of the closed unit ball of B of E, there is
nothing to prove. If this is not the case we consider the relatively open (and nonempty)
set B1 := A1

⋂
{x : ‖x‖ > 1} and the set A2 := σ(A1, B1). If A2 is a subset of 2B, we set

A∗
1 := σ∗(X) := A2. In this case, in the next steps we can apply the winning strategy σ:

σ∗(A∗
1, B

∗
1 , . . . , A

∗
k, B

∗
k) := σ(A1, B1, A

∗
1, B

∗
1 , . . . , A

∗
k, B

∗
k).

In this way we define a winning strategy σ∗. If A2 is not a subset of 2B, we consider the
nonempty sets B2 := A2

⋂
{x : ‖x‖ > 2} and A3 := σ(A1, B1, A2, B2). If A3 ⊂ 3B, we put

A∗
1 := σ∗(X) := A3 and play further according to the winning strategy σ. Continuing in

this way we must arrive at some k for which Ak ⊂ kB. Otherwise a σ-play p = (Ai, Bi)ı≥1

will appear for which
Bi := Ai

⋂
{x : ‖x‖ > i} 6= ∅

for every i ≥ 1. Such a play p would be won by Ω (the intersection of the elements of the
play would be empty) which is a contradiction. Let m > 0 be the first integer for which
Am ⊂ mB. We put A∗

1 := σ∗(X) := Am and define the strategy σ∗ as follows:

σ∗(A∗
1, B

∗
1 , . . . , A

∗
k, B

∗
k) := σ(A1, B1, . . . , Bm−1, A

∗
1, B

∗
1 , . . . , A

∗
k, B

∗
k).

This completes the proof of the lemma.

Without loss of generality we may assume that A1 ⊂ B. Take some x1 ∈ A1 and
put d1 := inf{t > 0 : tB ⊃ A1}. We have d1 > 0, as otherwise A1 would be a
singleton and Ω would win every play in the game G(X,weak, norm). The set A1 \

1

2
d1B

is nonempty and relatively open in A1. Take some open U such that A′
1 := U

⋂
A1 6= ∅

and U
⋂
(x1 +

1

2
d1B) = ∅ (here, as everywhere in this proof, we denote by C the closure

in (E,weak) of the set C). Define σ′(X) := A′
1. Note that A′

1 is nonempty and relatively
open in A1 and A′

1

⋂
(x1+

1

2
d1B) = ∅. Let the answer of Ω to this move be some relatively

open subset B1 of A′
1 (and therefore of A1). Then (A′

1, B1) is a partial σ′-play and
(A1, B1) is a partial σ-play. Suppose that, in the course of defining the strategy σ′, we
have constructed the partial σ-play pn := (Ai, Bi)

n
i=1, the partial σ

′-play p′n := (A′
i, Bi)

n
i=1,

the points (xi)
n
i=1 and the numbers (di)

n
i=1 so that, for every i = 1, 2, 3 . . . , n,

i) A′
i is a relatively open subset of Ai;

ii) xi ∈ Ai;

12



iii) di := inf{t > 0 : co(x1, . . . , xi) + tB ⊃ Ai} > 0, where co(x1, . . . , xi) stands for the
convex hull of the set {x1, . . . , xi};
iv) The closure A′

i of A
′
i in (E,weak) does not intersect the set co(x1, . . . , xi) +

i
i+1

diB;

v) ‖ · ‖ − diam(A′
i) ≤ 2(di +

1

i+1
).

Let An+1 := σ(pn) be the next choice of Σ in the game G(X,weak, norm). Take some
xn+1 ∈ An+1 and put

dn+1 := inf{t > 0 : co(x1, . . . , xn+1) + tB ⊃ An+1}.

We must have dn+1 > 0, since otherwise the set An+1 would be a subset of a finite-
dimensional linear space in which the weak and the norm topology coincide and Ω would
have an obvious winning strategy. Consider the nonempty set

An+1 \ (co(x1, . . . , xn+1) +
n + 1

n + 2
dn+1B)

and take some nonempty relatively open subset A of it such that

A
⋂
(co(x1, . . . , xn+1) +

n+ 1

n+ 2
dn+1B) = ∅.

Clearly, A is a relatively weakly open subset of An+1. Now there is a minimal (with
respect to cardinality) finite set M such that

co(x1, . . . , xn+1) ⊂ (M +
1

n + 2
B).

Since A ⊂ An+1 ⊂ co(x1, . . . , xn+1) + dn+1B, we have A ⊂ M + (dn+1 +
1

n+2
)B. Then, for

some m0 ∈ M , the set

A′
n+1 := A \ [(M \ {m0}) + (dn+1 +

1

n+ 2
)B] 6= ∅.

Since A′
n+1 ⊂ m0 + (dn+1 +

1

n+2
)B, we have ‖ · ‖ − diam(A′

n+1) ≤ 2(dn+1 +
1

n+2
).

Define the move of Σ under σ′ to be σ′(p′n) := A′
n+1. By the construction it is a

relatively open subset ofAn+1. LetBn+1 be a relatively open subset of A′
n+1. It is relatively

open in An+1 as well. Thus we constructed the partial σ-play pn+1 := (Ai, Bi)
n+1
i=1 and the

partial σ′-play p′n+1 := (A′
i, Bi)

n+1
i=1 satisfying the conditions i) – v). This considered as an

inductive step, completes the construction of the strategy σ′. Note that the sets Bi in both
partial plays are the same. Hence Ai+1 ⊂ Bi ⊂ A′

i and xi+1 ∈ A′
i. The sequence (di)i≥1 of

non-negative numbers is non-increasing. Put d∞ := limn→∞ dn. As (Ai, Bi)i≥1 is a σ-play
and σ is a winning strategy for Σ in G(X,weak, norm), the intersection

⋂
i≥1Ai =

⋂
i≥1A

′
i

is nonempty and limn→∞ ‖ · ‖ − diam(An+1) = limn→∞ ‖ · ‖ − diam(A′
n+1) > 0. Hence,

by property (v), we have d∞ > 0. We will show that the sequence (xi)i≥1 has no weak
cluster points in E, thus proving (c). Assume that it has a weak cluster point x∞; it
necessarily belongs to

⋂
i≥1A

′
i. Since the sequence (xi) is in a Banach space, the point

x∞ must belong to the norm closure of the convex set
⋃

i≥1 co(x1, . . . , xi) = co(
⋃

i≥1{xi}).
Property iv) however implies that the latter set does not intersect the norm ball of radius
1

2
d∞ centered at x∞. This contradiction completes the proof of the theorem.
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Corollary 4 The class L = T is preserved by weak-to-weak homeomorphisms. I.e. if E1

and E2 are Banach spaces such that E1 belongs to L and (E1, weak) is homeomorph to
(E2, weak), then E2 also belongs to L.

Proof. This is so because condition (a) in Theorem 6 characterizes the class L = T
solely in terms of the weak topology.

Taken together, Theorem 1, Theorem 3 and Theorem 6 show that the two games
G(X,weak, norm) andG(X,weak, weak) are equivalent, that is, each player has a winning
strategy in one of the games if, and only if, she/he has a winning strategy in the other
game.

Condition c) in the last theorem suggests that we consider another game, denoted
G∗(X, τ, τ ′) which is similar to the game G(X, τ, τ ′). The moves of the players Ω and Σ
in G∗(X, τ, τ ′) are the same as in the game G(X, τ, τ ′). Only the winning rule is different.
By definition, the player Ω wins the play p := (Ai, Bi)i≥1 in G∗(X, τ, τ ′) if either

⋂
i Ai = ∅

or (when this intersection is nonempty) every sequence (xi)i≥1 with xi ∈ Ai, i = 1, 2, . . .,
has a τ ′-cluster point. Clearly, some subset X of a Banach space E satisfies any of the
equivalent conditions in Corollary 2 and Corollary 3 if, and only if, X is unfavorable for
Σ in the game G∗(X,weak, weak). Also, it follows from Theorem 1.3 and Theorem 2.1 of
[KM3] that the player Ω has a winning strategy in G∗(X,weak, weak) if, and only if, X
is fragmentable by a metric that majorizes the norm topology. In view of Theorem 1, the
latter happens if and only if (X,weak) is sigma-fragmentable by the norm.

In [Ha] (see bottom of page 30 and the beginning of page 31) Haydon comments that
it is not clear if there exists a weakly continuous mapping f : Z → l∞ defined on an
α-favorable space which is nowhere norm continuous. It was conjectured that this “...
may conceivably depend upon additional set-theoretic assumptions”. The next statement
clarifies this situation.

Proposition 3 Neither of the Banach spaces l∞ nor l∞/c0 belong to L. Hence there
exist weakly continuous functions defined on completely regular α-favorable spaces that
map into l∞ and l∞/c0 that are nowhere norm continuous.

Proof. Let first E = l∞. In Proposition 5.1 from [KM3] it is proved that there exists
a strategy σ for the player Σ in the game G(E,weak, norm) such that, for every play
p := (Ai, Bi)i≥1, the set

⋂
i≥1Ai is nonempty and limi(norm-diameterAi) > 0. Corollary

3 shows that there exists a weakly continuous mapping h : Z → E defined on a complete
metric space which is nowhere norm continuous. This completes the proof. We would like
however to describe this mapping h. Consider the complete metric space P of all σ-plays
p := (Ai, Bi)i≥1 and the set-valued mapping F : P → E defined by F ((Ai, Bi)i≥1) :=⋂

i≥1Ai. The properties of σ imply the set F (p) is nonempty for every p ∈ P . Let
f : Z → E be some single-valued selection of F . Apply the proof of Theorem 4 (especially
the part where the implication (ii) ⇒ (i) was established) to the case when X = E,
τ = weak and τ ′ = norm. By Corollary 1, f is a weakly quasi-continuous mapping defined
on the complete metric space Z. According to Proposition 1 and the properties of σ the
mapping f is nowhere norm continuous. Consider the projection π : G(f) → (E,weak)
from the graph G(f) of f into (E,weak). From Proposition 2 we know that G(f) is
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completely regular and α-favorable. The proof of Theorem 5 reveals that there exists
some open subset L of G(f) at the points of which π is not norm continuous (otherwise f
would be norm continuous at many points). Note that L is also α-favorable. Now we can
put h := π, Z := L. Clearly, h : Z → E is a weakly continuous nowhere norm continuous
mapping defined in a completely regular α-favorable space. This completes the proof for
the case E = l∞.

The case E = l∞/c0 is very similar. The only difference is that instead of Proposition
5.1 from [KM3] we apply Theorem 2.3 from [KM1]. The latter says that there exists
a strategy σ for the player Σ in the game G(E,weak, norm) such that, for every play
p := (Ai, Bi)i≥1, the set

⋂
i≥1Ai has more than one point.

4 Continuity of quasi-separately continuous func-

tions of two variables

Let T be a compact space and C(T ) the space of continuous real-valued functions on T .
Denote by τp, the topology of pointwise convergence on T and by “norm” the topology
generated by the sup-norm. The following statements have place.

Theorem 7 Let X be a subset of a space C(T ), for some compact space T . Then the
following conditions are equivalent:
(a) there is a winning strategy for the player Σ in G(X, τp, τp);
(b) there is a winning strategy for the player Σ in G(X, τp, norm);
(c) there exists a strategy σ′ for the player Σ such that, for every σ′-play (A′

i, B
′
i)i, the

set
⋂

i≥1A
′
i 6= ∅ and there is some sequence (xi)i≥1 with xi+1 ∈ A′

i that has no τp−cluster
points in C(T ).

Proof. Clearly, (c) ⇒ (a) ⇒ (b). The proof of (b) ⇒ (c) coincides with the proof of the
same implication in Theorem 6 up to the following single change. If x∞ is any τp-cluster
point of the sequence (xi)i≥1 then there is a subsequence (xik)k≥1 which τp-converges to
x∞. This follows from the fact that, (i) (xi)i≥1 is a relatively countably τp-compact subset
of B and (ii) C(T ) with the pointwise topology is angelic. The Lebesgue dominated
convergence theorem then shows that (xik)k≥1 converges weakly to x∞. Hence x∞ must
belong to the norm closure of the convex set co(

⋃
k≥1{xik}) which contradicts property

iv). This completes the proof of the theorem.

In [KM3] it was noted that the games G(X, τp, τp) and G(X, τp, norm) are simultane-
ously favorable (or unfavorable) for the player Ω. The above theorem shows that the two
games are equivalent. The example of Haydon [Ha], mentioned in the Introduction, is a
space which is unfavorable for both players in these games.

We formulate here some assertions concerning the space (C(T ), τp) which are in the
style of the results from the previous section.

Corollary 5 The following properties of a subset X of a C(T ) space are equivalent:
(i) G(X, τp, τp) is Σ-unfavorable;
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(ii) every quasi-continuous mapping f : Z → (X, τp) from a complete metric space Z is
τp-continuous at some point of Z;
(iii) every quasi-continuous mapping f : Z → (X, τp) from an α-favorable space Z is
τp-continuous at the points of a subset which is second category in every nonempty open
subset of Z.

Corollary 6 The following properties of a subset X of a C(T ) space are equivalent:
(i) G(X, τp, norm) is Σ-unfavorable;
(ii) every quasi-continuous mapping f : Z → (X, τp) from a complete metric space Z is
norm continuous at some point of Z;
(iii) every quasi-continuous mapping f : Z → (X, τp) from an α-favorable space Z is
norm continuous at the points of a dense (and Gδ) subset of Z;
(iv) every continuous mapping f : Z → (X, τp) from a completely regular α-favorable
space Z is norm continuous at the points of a dense (and Gδ) subset of Z.

Corollary 7 i) All the conditions listed in the above two corollaries are equivalent to each
other.

ii) Let X1, X2 be subsets of C(T1), C(T2) correspondingly. If (X1, τp) is homeomorph
to (X2, τp) and X1 has some of the equivalent properties listed in the last two corollaries,
then X2 also has these properties.

Proof. Follows immediately from Theorem 7.

Let Z be a topological space, T a compact Hausdorff space and f(z, t) a real-valued
function defined on Z × T . The function f is said to be separately continuous if for
every z0 ∈ Z and every t0 ∈ T the functions f(z0, t) and f(z, t0) are continuous in T
and Z respectively. Under rather mild restrictions imposed on the spaces Z and T it was
established that for every separately continuous function f(z, t) there exists a dense Gδ

subset A of Z such that f is continuous at every point of A× T (see [Na1], [Bou1], [Ta1],
[Ta2], [De]).

We establish here similar results for functions f which satisfy a requirement slightly
weaker than separate continuity.

Definition 4 We call a real-valued function f(z, t) quasi-separately continuous at
(z0, t0) if f(z0, t) is continuous in T and for every finite set K ⊂ T and every ε > 0 there
exists some open V ⊂ Z such that z0 ∈ V and |f(z, t)− f(z0, t)| < ε whenever z ∈ V and
t ∈ K. The function f is called quasi-separately continuous if it is quasi-separately
continuous at every point of Z × T .

Clearly, every separately continuous function f is quasi-separately continuous as well.
Simple examples (in which T is a singleton) show that the two notions do not coincide.
The terminology we use becomes natural if we adopt another point of view and consider
the function f(z, t) as a mapping from Z into the space RT of all real-valued functions on
T . This mapping (denoted by, f : Z → RT ) puts into correspondence to every z0 ∈ Z the
function f(z0)(t) := f(z0, t). The function f(z, t) is separately continuous, if and only if
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f(z) ∈ C(T ) for every z ∈ Z and the mapping f : Z → (C(T ), τp) is continuous. It is easy
to see that f(z, t) is separately quasi-continuous if and only if the map f : Z → (C(T ), τp)
is well defined and quasi-continuous.

On the other hand, f(z, t) is continuous at (z0, t), for all t ∈ T , exactly when f :
Z → C(T ) is continuous at z0 with respect to the norm in C(T ). Therefore the problem
we discuss now is, in fact, identical with what we were studying above: characterize the
situation when every quasi-continuous mapping f : Z → (C(T ), τp) defined on a complete
metric space Z has a dense Gδ subset of points of norm continuity. The next statement
presents several equivalent characterizations. They are either in the language of quasi-
separately continuous or just separately continuous functions.

Theorem 8 Let T be a compact space and C(T ) the space of continuous functions on it.
The following properties are equivalent:
(i) G(C(T ), τp, τp) is Σ-unfavorable;
(ii)(equivalent to condition (ii) from Corollary 5) for every quasi-separately continuous
function f : Z×T → R, where Z is a complete metric space, there is a point z0 ∈ Z such
that, for every fixed t0 ∈ T the function f(z, t0) is continuous at z0;
(iii)(equivalent to condition (ii) from Corollary 6) for every quasi-separately continuous
function f : Z × T → R, where Z is a complete metric space, there exists a point z0 ∈ Z
such that f is continuous at each point of the set {z0} × T ;
(iv)(equivalent to condition (iii) from Corollary 6) for every quasi-separately continuous
function f : Z × T → R, where Z is an α-favorable space, there exists a dense Gδ subset
A ⊂ Z such that f is continuous at each point of the set A× T ;
(v)(equivalent to condition (iv) from Corollary 6) for every separately continuous function
f : Z × T → R, where Z is a completely regular α-favorable space, there exists a dense
Gδ subset A ⊂ Z such that f is continuous at each point of the set A× T ;
(vi) G(C(T ), τp, norm) is Σ-unfavorable.

Proof. Follows immediately from the Remark after Corollary 6.
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[Bou1] Bouziad, A., Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer.
Math. Soc. , 124 (1996), 953-959.

[Bou2] Bouziad, A., Continuity of separately continuous group actions in p-spaces, Topology Appl., 71
(1996), 119-124 .

[Chr] Christensen, J. P. R.,Theorems of I. Namioka and R. E. Johnson type for upper semi-continuous

and compact-valued set-valued mappings, Proc. Amer. Math. Soc., 86 (1982), 649-655.
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