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"A CONTINUITY PROPERTY RELATED TO AN INDEX
- " OF NON-WCG AND ITS IMPLICATIONS

Warren B. Moors

Consider a set—valued mapping @ from a topological space A into subsets of a
topological space X. Then @ is said to be upper semi—continuous at t € A if given an open set W
in X containing ®(t) there exists an open neighbourhood U of t such that ®(U) € W. For
brevity we éall @ an usco if it is upper semi—continuous on A and ®(t) is a non—empty compact
subset of X foreachteA. X ié a linear topological space we call @ a cusco if it is upper
semi—continuous on A and &(t) is a non-empty convex compact subset of X for each t € A. An
usco (cusco) & from a topological space A into subsets of a topological (linear topological) space
X is said to be minimal if its graph does not strictly contain the graph of any other usco (cusco)
with the same domain.

For a bounded set E in a metric space X, the Kuratowski index of non—compactness is

o(E) = inf{r > 0 : E is covered by a finite family of sets of diameter less than r}.
It is well known that if X is complete then a(E) = 0 if and only if E is relatively compact,
6, p.303]. | |

In a recent paper by Giles and Moors [4], a nev? continuity propeﬁy related to
Kuratowski's index of non-compactness was examined. In that paper they said that a set—valued
mapping @ from a topological space A into subsets of a metric space X is & upper semi—
continuous at t € A if given € > 0 there exists an open neighbourhood U of t such that
o(®(U)) < &. They showed that if the subdifferential mapping of a continuous convex function
¢ on an open convex subsét of a Banach épace is o upper semi—continuous on a dense subset of
its domain then ¢ is Fréchet differentiable on a dense and GS subset of its domain. This result
led to the consideration of two generalisations of Kuratowski's index of non—compactnéss.

For a set E in a metric space X the index of non-separability is

BE) = inf{r >0 : Eis covered by a countable family of balls of radius less thanr},
when E can} belcove,red by a countable family of balls of a fixed radius, otherwise, B(E) = oo.

Further B(E)= 0 if and only if E is a separable subset of X, [7].
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Now, a set-valued mapping @ from a topological space A into subsets of a metric space
X is said to be B upper semi—continuous at a point t € A if given € > 0 there exists an open
neighbourhood U of t such that B(®(U)) <&. Moors proved that if the subdifferential mapping
of a continuous convex function ¢ on an open convex subset of a Banach space is 3 upper semi—
continuous on a dense subset of its domain, then ¢ is Fréchet differentiable on a dense Gg subset
of its domain.

The second generalisation of Kuratowski's index of non—compactness involves a weak
index of nori—compactness introduced by de Blasi. Let us denote the closed unit ball
{xeX: Il‘x <1} by.B'(X) and the unit sphere {x e X : lIx I1=1} by S(X). Fr a bounded set
E in a normed linear space X, the weak index ofﬁon—c’ompactness is

o(E) = inf { r > 0 : there exist a weakly compact set C such that E € C + rB(X) }
For a bounded set E in a Banach space X, ®(E) = 0 if and only if E is relatively weakly
compact, [3]. ,

A set valued mapping ® from a topological space A into subsets of a normed linear space
X is said to be @ upper semi—continuous at t € A, if given € > 0 there exists an open neighbour—
hood U of t such that @(®(U)) < £. Giles and Moors [5, Theorem 2.4] showed that if the
subdifferential mapping of a continuous convex function ¢ on an open convex subset of a
Banach space is @ upper semi—continuous on a dense subset of its domain then ¢ is Fréchet
differentiable on a dense Gg subset of its domain.

We now introduce a new index, which generalises both the B index of ﬁon—séparability,
and the ® weak index of non—compactness. |

For a set E in a normed linear space X, the index of non-WCG is

Y(E) =inf { r > 0 : there exists a countable family of weakly compact sets

{Co}77 suchthat EC U1 C, +BX) }.
| e .

A subset E of a normed linear space is said to be weakly compactly generated if there exists 2

weakly compact set C such that E <5p {C}.
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Proposition 1

For a normed linear space X, the index of non-WCG on X satisfies the following
properties

1. YE)20 foranyEC X
2. . yB)=0 ‘if and only if E is a weakly compactly generated subset of X.
3. Y®<YF),.for ECFCS X
4. Y(_Gl E,) = sup{Y(E,) :ne N}, where E, C X forallneN.
n=

5. YE) = "{(1_3) forany E C X, where E denotes the closure of E.

6. YE N R < min{yE), ¥}, for E,F C X.

7. YE+F) < WE) +y(F), forEF C X.

8. Y&E) =1k I 'W(E), forEC X and keR.

9. Y(co E) =WE) for E C X when X is a Banach space, where co E denotes the convex hull
of 'E.

Proof

The proofs of the properties 1. to 9. are straightforward, with the possible exception of
2. and 9. which we now prove.

2. Clearly, if E is weakly compactly generated subset of X then y(E) = 0.
Conversely, if Y(E) = 0 then there exists a sequence of weakly compact sets {C,, };1~ such that

oo (-~ _1
Ec U1 C, . LetC= U1 AL G (0} where A= (sup{lix i :x € Gy} +1) 2" < oo,
n= n=

We will now show that C is weakly compact. To this end, let {W'Y C X:ye I'} be aweak

open cover of C. So, for some y,€I', 0 W"Yo’ and in fact for some m € N we have that
~1

2MB(X) € Wy . Now,C\W, = Ul(x;‘cn \ WYO)=[ U1 alc, J\w70 which is
n= n= :

weakly compact (possibly empty). Let {W’Yi cX:ie{l,2,..n} } be a finite subcover of

' n
C\W, . thencc U w,

that C, € A,C & sp{C}.

. So, indeed C is weakly compact, and for every n € N we have
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. Therefore, E ¢ U1 C, < sp {C} and so E is a weakly compactly generated subset of X.
n= )

9. Clearly, Y(E) < y(co E) by 3., so we prove the reverse inequality. Given r > Y(E) there

exists a countable family of weakly compact sets { Cn}:;l such that E © U C, +1B(X). So

n=1
oo o0 n
coEcco ( Uc ) +1B(X) ¢ U co Ucc | +BX). NowcoC is weakly compact
n=1 1 n=1 n=1 k k

n
foreach k € N, 2, p.68], so co 1’(U1'66 Ck is weakly compact for each n € N and then y(co E) <r.

Therefore, Y(co E) < y(E). M

" Consider a non—empty bounded subset K of X. Given f € X*\ {0} and 8 > 0, the slice
of K defined by f and & is the set S(K, f, 8) = {x e K : f(x) > sup f(K) — 8}. For a set-valued
mapping P from a topological space A into subsets of a normed linear space X we say the @ is
Yupper semi—continuous att € A, if given € > 0 there exists an open neighbourhood U of t such
that Y(@(U)) <.

Before proceeding to the main theorem we need the following two lemmas

(see [7, Proposition 3.2]).

Lemma 2

Consider an usco (cusco) ® from a topological space A into subsets of a Hausdorff space
(separated linear topological space) X. Then @ is a minimal usco (cusco) if and only if for any
open set V in A and closed (closed and convex) set K in X where ®(V) € K there exists a non-

eﬁpty open subset V' C V such that dV) K =O.

Lemma 3

Let A be a topological space and X a Hausdorff space (separated linear topological
spaée). Consider ® a minimal usco (cusco) from A into subsets of X. Let B be a closed (closed
and convex) subset of X. If for each open subset U in A, ®(U) &L B then {x € A: ®(x) NB=

B} is a dense open subset of A.




167

Theorem 4

Consider a Baire space A, and a Banach space X. Let T denote either the weak or norm
topologies on X or, if X is the dual of a Banach space, also the weak * topology on X. Consider
a minimal T—-usco (t—cusco) ® from A into subsets of X. If @ is y upper semi—continuous on a
dense subset of A then ® is single~valued and norm upper semi—continuous on a dense Gg

subset of A.

Proof
We will prove the theorem only for the case of minimal T cuscos, as the proof for
minimal T uscos is analogous.

For each n € N, denote by Uy, the union of all open sets U in A such that the
diam &(U) < }11— .Foreachn e N, U, is open; we will show that Uy, is dense in A. Consider W a

non-empty open subset of A. Now there exist a t € W where @ is y upper semi—continucus. So

there exists an open neighbourhood V of t contained in W such that {®(V)) < ZIH . Therefore there
exists a sequence {C, }:_ | of weakly compact sets in X such that dV)C U Cy + Zl-ﬁ BX).
h k=1

We now prove that there exist a non-empty open subset G of V such that &(®(G)) < 41_n .

Now if (V) cco C it -le; B(X) for some non—empty subset V' of V, write G = V', but if not,

then by Lemma 3 there exists a dense open set O; € V such that <I>(Ol) nco C+ 41_n BX)=0.

Now if ®(V") c co C2 + ﬁ B(X) for some non-empty open subset V' of V, write G = V', but if
not, then by Lemma 3 there exists a depse open set OZQ v sﬁéh that (D(OZ) N Cco 02+T1n— BX)=4.
Cpntinuing in this way we will have defined G at some stage, because if not, O__ = kfojl Ok isa
dense G subset of V and ®(0..) N (k(:jlck + ;%ﬁ B (X)) =J. However, for gny teV we have
ﬁat S N (kt?lc Kk + Zlfr; B (X)) #(J. So we can conclude that V contains a non—empty open set

. 1
G with o(®(G)) < In
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We now prove that there exists a non—empty open subset U of G such that the

diam ®(U) < % . Now there exists a minimal convex weakly compact set Cp, such that
B(G) S Cpy + 75 BX), [5, Lemma 2.2]
We may assume that the diam Cy, 2 21 Since Cy, is weakly compact and convex there
exists an f € S(X*) and a & > 0 such that diam S(Cy,, f, 8) < Z , [1, p.199]. Now
K = Cy \S(Cpy, £, 8) is a non-empty weakly compact and convex subset of X, and so it is
7 closed and convex. But K + 41 B(X) is also T closed and convex. However, since Cp, is a
minimal convex weakly compact set such that ®(G) € Cp+ Zlﬁ B(X) we must have that
PG L K+ % B(X). Since @ is a minimal © cusco it follows from Lemma 2 that there exists a
non—empty open subset U of G such that
o) S (cm +2-BOO)\(K + 4= B(X)) C S(Cpy £, ) + 3= BEX).

So the diam ®(U) < H , and we have that @ = U € U, " W. We conclude that for eachn e N,

U, is dense in A and so ® is single-valued and nerm upper semi—continuous on the dense Gg

subset ﬁ U of A. /
n=1

Theorem 4 has some important implications in differentiability theory. But first we need

the following facts about convex functions. A continuous convex function ¢ on an open convex

O(x+ty)— ¢(x)

subset A of a Banach space X, is said to be Fréchet differentiable at x € A if h'mO :
t—>

bexists and.is approached uniformly for all y e S(X). A subgradieﬁt of ¢ at Xy € A is a continuous
linear functional f on X such that f(x—xg) < 0(x) — ¢(xq) for all x € A. The subdifferential of g at
xq is denoted by 9¢(x() and is the set of all subgradients of ¢ at xo. The subdifferential
mapping x—> 9¢(x) is a minimal weak * cusco from A into subsets of X*, [8, p.100]. Further
¢ is Fréchet differentiable at x € A if and only if the subdifferential mapping X —> 9¢(x) is
single—valued and norm upper semi—continuous at x, [8, p.18]. So from Theorem 4, we have

the following two corollaries.
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Corollary 5
A continuous convex function ¢ on an open convex subset A of a Banach space X
whose subdifferential mapping x — 9¢(x) is y upper semi—continuous on a dense subset of A

is Fréchet differentiable on a dense Gg subset of A.

The well-known property for spaces with weakly compactly generated dual, [8,p.38],
follows naturally. |

Corollary 6
Every Banach space, whose dual is weakly compactly generated has the property that

every continuous convex function on an open convex subset is Fréchet differentiable on a

dense Gg subset of its domain.
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