A CONTINUITY PROPERTY RELATED TO AN INDEX OF NON-WCG AND ITS IMPLICATIONS ### Warren B. Moors Consider a set-valued mapping Φ from a topological space A into subsets of a topological space X. Then Φ is said to be *upper semi-continuous* at $t \in A$ if given an open set W in X containing $\Phi(t)$ there exists an open neighbourhood U of t such that $\Phi(U) \subseteq W$. For brevity we call Φ an *usco* if it is upper semi-continuous on A and $\Phi(t)$ is a non-empty compact subset of X for each $t \in A$. If X is a linear topological space we call Φ a *cusco* if it is upper semi-continuous on A and $\Phi(t)$ is a non-empty convex compact subset of X for each $t \in A$. An usco (cusco) Φ from a topological space A into subsets of a topological (linear topological) space X is said to be *minimal* if its graph does not strictly contain the graph of any other usco (cusco) with the same domain. For a bounded set E in a metric space X, the *Kuratowski index of non-compactness* is $\alpha(E) \equiv \inf\{r > 0 : E \text{ is covered by a finite family of sets of diameter less than r}\}.$ It is well known that if X is complete then $\alpha(E) = 0$ if and only if E is relatively compact, [6, p.303]. In a recent paper by Giles and Moors [4], a new continuity property related to Kuratowski's index of non-compactness was examined. In that paper they said that a set-valued mapping Φ from a topological space A into subsets of a metric space X is α upper semicontinuous at $t \in A$ if given $\varepsilon > 0$ there exists an open neighbourhood U of t such that $\alpha(\Phi(U)) < \varepsilon$. They showed that if the subdifferential mapping of a continuous convex function ϕ on an open convex subset of a Banach space is α upper semi-continuous on a dense subset of its domain then ϕ is Fréchet differentiable on a dense and G_{δ} subset of its domain. This result led to the consideration of two generalisations of Kuratowski's index of non-compactness. For a set E in a metric space X the index of non-separability is $\beta(E) \equiv \inf\{r > 0 : E \text{ is covered by a countable family of balls of radius less than } r\},$ when E can be covered by a countable family of balls of a fixed radius, otherwise, $\beta(E) = \infty$. Further $\beta(E) = 0$ if and only if E is a separable subset of X, [7]. Now, a set-valued mapping Φ from a topological space A into subsets of a metric space X is said to be β upper semi-continuous at a point $t \in A$ if given $\varepsilon > 0$ there exists an open neighbourhood U of t such that $\beta(\Phi(U)) < \varepsilon$. Moors proved that if the subdifferential mapping of a continuous convex function ϕ on an open convex subset of a Banach space is β upper semi-continuous on a dense subset of its domain, then ϕ is Fréchet differentiable on a dense G_{δ} subset of its domain. The second generalisation of Kuratowski's index of non-compactness involves a weak index of non-compactness introduced by de Blasi. Let us denote the closed unit ball $\{x \in X : \|x\| \le 1\}$ by B(X) and the unit sphere $\{x \in X : \|x\| = 1\}$ by S(X). For a bounded set E in a normed linear space X, the weak index of non-compactness is $\omega(E) \equiv \inf \{ r > 0 : \text{there exist a weakly compact set C such that } E \subseteq C + rB(X) \}.$ For a bounded set E in a Banach space X, $\omega(E) = 0$ if and only if E is relatively weakly compact, [3]. A set valued mapping Φ from a topological space A into subsets of a normed linear space X is said to be ω upper semi-continuous at $t \in A$, if given $\varepsilon > 0$ there exists an open neighbour-hood U of t such that $\omega(\Phi(U)) < \varepsilon$. Giles and Moors [5, Theorem 2.4] showed that if the subdifferential mapping of a continuous convex function ϕ on an open convex subset of a Banach space is ω upper semi-continuous on a dense subset of its domain then ϕ is Fréchet differentiable on a dense G_δ subset of its domain. We now introduce a new index, which generalises both the β index of non-separability, and the ω weak index of non-compactness. For a set E in a normed linear space X, the index of non-WCG is $\gamma(E) \equiv \inf \{r > 0 : \text{there exists a countable family of weakly compact sets} \}$ $$\left\{C_n\right\}_{n=1}^{\infty} \text{ such that } E \subseteq \bigcup_{n=1}^{\infty} \ C_n + rB(X) \left\}\,.$$ A subset E of a normed linear space is said to be weakly compactly generated if there exists a weakly compact set C such that $E \subseteq \overline{sp}$ {C}. ## Proposition 1 For a normed linear space X, the index of non-WCG on X satisfies the following properties - 1. $\gamma(E) \ge 0$ for any $E \subseteq X$ - 2. $\gamma(E) = 0$ if and only if E is a weakly compactly generated subset of X. - 3. $\gamma(E) \leq \gamma(F)$, for $E \subseteq F \subseteq X$. - 4. $\gamma \left(\bigcup_{n=1}^{\infty} E_n \right) = \sup \{ \gamma(E_n) : n \in \mathbb{N} \}, \text{ where } E_n \subseteq X \text{ for all } n \in \mathbb{N}.$ - 5. $\gamma(E) = \gamma(E)$ for any $E \subseteq X$, where E denotes the closure of E. - 6. $\gamma(E \cap F) \le \min{\{\gamma(E), \gamma(F)\}, for E, F \subseteq X.}$ - 7. $\gamma(E+F) \leq \gamma(E) + \gamma(F)$, for $E,F \subseteq X$. - 8. $\gamma(kE) = |k| \gamma(E)$, for $E \subseteq X$ and $k \in \mathbb{R}$. - 9. $\gamma(co E) = \gamma(E)$ for $E \subseteq X$ when X is a Banach space, where co E denotes the convex hull of E. ### Proof The proofs of the properties 1. to 9. are straightforward, with the possible exception of 2. and 9. which we now prove. 2. Clearly, if E is weakly compactly generated subset of X then $\gamma(E) = 0$. Conversely, if $\gamma(E) = 0$ then there exists a sequence of weakly compact sets $\{C_n\}_{n=1}^{\infty}$ such that $$E\subseteq \overline{\bigcup_{n=1}^{\infty}C_n} \text{ . Let } C\equiv \bigcup_{n=1}^{\infty}\,\lambda_n^{-1}\,C_n\cup\{0\} \text{ where } \lambda_n\equiv \left(\sup\{\parallel x\parallel:x\in C_n\}+1\right)2^n<\infty.$$ We will now show that C is weakly compact. To this end, let $\{W_{\gamma} \subseteq X : \gamma \in \Gamma\}$ be a weak open cover of C. So, for some $\gamma_0 \in \Gamma$, $0 \in W_{\gamma_0}$, and in fact for some $m \in \mathbb{N}$ we have that $$2^{-m}B(X) \subseteq W_{\gamma_0}. \ \, \text{Now, } C \setminus W_{\gamma_0} = \bigcup_{n=1}^{\infty} \Bigl(\lambda_n^{-1}C_n \setminus W_{\gamma_0}\Bigr) = \left(\bigcup_{n=1}^{m-1} \lambda_n^{-1}C_n \right) \setminus W_{\gamma_0} \ \, \text{which is}$$ weakly compact (possibly empty). Let $\left\{W_{\gamma_i}\subseteq X:i\in\{1,2,...n\}\right\}$ be a finite subcover of $C\setminus W_{\gamma_0}$, then $C\subseteq\bigcup_{i=0}^nW_{\gamma_i}$. So, indeed C is weakly compact, and for every $n\in\mathbb{N}$ we have that $C_n\subseteq\lambda_nC\subseteq\operatorname{sp}\{C\}$. Therefore, $E \subseteq \bigcup_{n=1}^{\infty} C_n \subseteq \overline{sp} \{C\}$ and so E is a weakly compactly generated subset of X. 9. Clearly, $\gamma(E) \leq \gamma(co|E)$ by 3., so we prove the reverse inequality. Given $r > \gamma(E)$ there exists a countable family of weakly compact sets $\left\{C_n\right\}_{n=1}^{\infty}$ such that $E \subseteq \bigcup_{n=1}^{\infty} C_n + rB(X)$. So $co|E \subseteq co|\Big(\bigcup_{n=1}^{\infty} C_n\Big) + rB(X) \subseteq \bigcup_{n=1}^{\infty} co|\Big(\bigcup_{n=1}^{n} \overline{co}|C_n\Big) + rB(X)$. Now $\overline{co}|C_n$ is weakly compact for each $k \in \mathbb{N}$, [2, p.68], so $co|\bigcup_{k=1}^{n} \overline{co}|C_k$ is weakly compact for each $n \in \mathbb{N}$ and then $\gamma(co|E) \leq r$. Therefore, $\gamma(co|E) \leq \gamma(E)$. Consider a non-empty bounded subset K of X. Given $f \in X^* \setminus \{0\}$ and $\delta > 0$, the *slice* of K defined by f and δ is the set $S(K, f, \delta) \equiv \{x \in K : f(x) > \sup f(K) - \delta\}$. For a set-valued mapping Φ from a topological space A into subsets of a normed linear space X we say the Φ is γ upper semi-continuous at $t \in A$, if given $\varepsilon > 0$ there exists an open neighbourhood U of t such that $\gamma(\Phi(U)) < \varepsilon$. Before proceeding to the main theorem we need the following two lemmas (see [7, Proposition 3.2]). # Lemma 2 Consider an usco (cusco) Φ from a topological space A into subsets of a Hausdorff space (separated linear topological space) X. Then Φ is a minimal usco (cusco) if and only if for any open set V in A and closed (closed and convex) set K in X where $\Phi(V) \subseteq K$ there exists a non-empty open subset $V' \subseteq V$ such that $\Phi(V') \cap K = \emptyset$. #### Lemma 3 Let A be a topological space and X a Hausdorff space (separated linear topological space). Consider Φ a minimal usco (cusco) from A into subsets of X. Let B be a closed (closed and convex) subset of X. If for each open subset U in A, Φ (U) \subseteq B then $\{x \in A : \Phi(x) \cap B = \emptyset\}$ is a dense open subset of A. ### Theorem 4 Consider a Baire space A, and a Banach space X. Let τ denote either the weak or norm topologies on X or, if X is the dual of a Banach space, also the weak * topology on X. Consider a minimal τ -usco (τ -cusco) Φ from A into subsets of X. If Φ is γ upper semi-continuous on a dense subset of A then Φ is single-valued and norm upper semi-continuous on a dense G_{δ} subset of A. #### Proof We will prove the theorem only for the case of minimal τ cuscos, as the proof for minimal τ uscos is analogous. For each $n \in \mathbb{N}$, denote by U_n the union of all open sets U in A such that the diam $\Phi(U) < \frac{1}{n}$. For each $n \in \mathbb{N}$, U_n is open; we will show that U_n is dense in A. Consider W a non-empty open subset of A. Now there exist a $t \in W$ where Φ is γ upper semi-continuous. So there exists an open neighbourhood V of t contained in W such that $\gamma(\Phi(V)) < \frac{1}{4n}$. Therefore there exists a sequence $\{C_n\}_{k=1}^{\infty}$ of weakly compact sets in X such that $\Phi(V) \subseteq \bigcup_{k=1}^{\infty} C_k + \frac{1}{4n} B(X)$. We now prove that there exist a non–empty open subset G of V such that $\omega(\Phi(G)) < \frac{1}{4n}$. Now if $\Phi(V') \subseteq \overline{\operatorname{co}} \, C_1 + \frac{1}{4n} \, B(X)$ for some non–empty subset V' of V, write $G \equiv V'$, but if not, then by Lemma 3 there exists a dense open set $O_1 \subseteq V$ such that $\Phi(O_1) \cap \overline{\operatorname{co}} \, C_1 + \frac{1}{4n} \, B(X) = \varnothing$. Now if $\Phi(V') \subseteq \overline{\operatorname{co}} \, C_2 + \frac{1}{4n} \, B(X)$ for some non–empty open subset V' of V, write $G \equiv V'$, but if not, then by Lemma 3 there exists a dense open set $O_2 \subseteq V$ such that $\Phi(O_2) \cap \overline{\operatorname{co}} \, C_2 + \frac{1}{4n} \, B(X) = \varnothing$. Continuing in this way we will have defined G at some stage, because if not, $O_\infty \equiv \bigcap_{k=1}^\infty \, O_k$ is a dense G_δ subset of V and $\Phi(O_\infty) \cap \left(\bigcup_{k=1}^\infty \, C_k + \frac{1}{4n} \, B(X)\right) = \varnothing$. However, for any $t \in V$ we have that $\Phi(t) \cap \left(\bigcup_{k=1}^\infty \, C_k + \frac{1}{4n} \, B(X)\right) \neq \varnothing$. So we can conclude that V contains a non–empty open set G with $\omega(\Phi(G)) < \frac{1}{4n}$. We now prove that there exists a non-empty open subset U of G such that the diam $\Phi(U) < \frac{1}{n}$. Now there exists a minimal convex weakly compact set C_m such that $\Phi(G) \subseteq C_m + \frac{1}{4n} B(X)$, [5, Lemma 2.2]. We may assume that the diam $C_m \ge \frac{1}{2n}$. Since C_m is weakly compact and convex there exists an $f \in S(X^*)$ and a $\delta > 0$ such that diam $S(C_m, f, \delta) < \frac{1}{2n}$, [1, p.199]. Now $K \equiv C_m \setminus S(C_m, f, \delta)$ is a non-empty weakly compact and convex subset of X, and so it is τ closed and convex. But $K + \frac{1}{4n} B(X)$ is also τ closed and convex. However, since C_m is a minimal convex weakly compact set such that $\Phi(G) \subseteq C_m + \frac{1}{4n} B(X)$ we must have that $\Phi(G) \nsubseteq K + \frac{1}{4n} B(X)$. Since Φ is a minimal τ cusco it follows from Lemma 2 that there exists a non-empty open subset U of G such that $\Phi(U) \subseteq \left(C_m + \frac{1}{4n} B(X)\right) \setminus \left(K + \frac{1}{4n} B(X)\right) \subseteq S(C_m, f, \delta) + \frac{1}{4n} B(X).$ So the diam $\Phi(U) < \frac{1}{n}$, and we have that $\emptyset \neq U \subseteq U_n \cap W$. We conclude that for each $n \in \mathbb{N}$, U_n is dense in A and so Φ is single-valued and norm upper semi-continuous on the dense G_δ subset $\bigcap_{n=1}^\infty U_n$ of A. Theorem 4 has some important implications in differentiability theory. But first we need the following facts about convex functions. A continuous convex function ϕ on an open convex subset A of a Banach space X, is said to be *Fréchet differentiable* at $x \in A$ if $\lim_{t\to 0} \frac{\phi(x+ty)-\phi(x)}{t}$ exists and is approached uniformly for all $y \in S(X)$. A *subgradient* of ϕ at $x_0 \in A$ is a continuous linear functional f on X such that $f(x-x_0) \leq \phi(x) - \phi(x_0)$ for all $x \in A$. The *subdifferential* of ϕ at x_0 is denoted by $\partial \phi(x_0)$ and is the set of all subgradients of ϕ at x_0 . The *subdifferential* mapping $x \to \partial \phi(x)$ is a minimal weak * cusco from A into subsets of X*, [8, p.100]. Further ϕ is Fréchet differentiable at $x \in A$ if and only if the subdifferential mapping $x \to \partial \phi(x)$ is single-valued and norm upper semi-continuous at x, [8, p.18]. So from Theorem 4, we have the following two corollaries. ### Corollary 5 A continuous convex function ϕ on an open convex subset A of a Banach space X whose subdifferential mapping $x \to \partial \phi(x)$ is γ upper semi–continuous on a dense subset of A is Fréchet differentiable on a dense G_δ subset of A. The well-known property for spaces with weakly compactly generated dual, [8,p.38], follows naturally. # Corollary 6 Every Banach space, whose dual is weakly compactly generated has the property that every continuous convex function on an open convex subset is Fréchet differentiable on a dense G_{δ} subset of its domain. # References - J. Bourgain, "Strongly exposed points in weakly compact convex sets in Banach spaces", Proc. Amer. Math. Soc. 58 (1976) 197-200. - M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 3rd ed. 1973. - 3. F.S. de Blasi, "On a property of the unit sphere in a Banach space", Bull.Math.Soc.Sci. Math R.S. Roumaine (NS) 21 (1977) 259–262. - 4. John R. Giles and Warren B. Moors, "A continuity property related to Kuratowski's index of non-compactness, its relevance to the drop property and its implications for differentiability theory", (preprint) - 5. John R. Giles and Warren B. Moors "The implications for differentiability of a weak index of non-compactness" (preprint). - 6. Casmir Kuratowski, "Sur les espaces complets", Fund Math. 15 (1930), 301-309. - 7. Warren B. Moors, "A continuity property related to an index of non-separability and its applications, *Bull.Austral.Math.Soc.* (to appear). - 8. R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture notes in Mathematics, 1364, Springer-Verlag, Berlin, Heidelberg, New York, 1989. Department of Mathematics University of Newcastle NSW 2308, Australia.