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Goldstine’s Theorem says that the natural embedding of the closed unit ball
B(X) of a Banach space X is weak* dense in the second dual ball B(X**). In this
paper we characterise, in terms of the geometry of B(X ), when the natural embed-
ding of B(X) into B(X™**) is not only weak* dense, but also residual. Using this
characterisation, we show that a Banach space X has the convex point of continu-
ity property, if and only if, for each equivalent norm ball B(X). the natural embed-
ding of B(X) into B(X**) is residual with respect to the weak* topology. We also
show that a Banach space X has the Radon~Nikodym property if and only if, for
each equivalent norm ball B(X), the set of linear functionals in X* which attain
their norm on B(X) is residual in X*. 1994 Academic Press, Inc.

INTRODUCTION

In Section one we recall some well-known conditions which are suffi-
cient for a set-valued mapping to be norm continuous on a dense subset of
its domain.

In the remainder of this paper we consider some simple applications of
these results to the geometry of Banach spaces.

We begin by first considering only separable Banach spaces.

For this class of Banach spaces we provide some simple, but elegant
topological characterisations of the following properties.

(1) The point of continuity property and the convex point of conti-
nuity property;
(2) the weak* point of continuity property and the weak* convex
point of continuity property.
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In Section three we extend the results given in Section two to non-
separable Banach spaces.

Section four is concerned with the solution of the following conjecture,
which was brought to the attention of the author by P. S. Kenderov.

A Banach space X has the Radon-Nikodym property if and only if, for
each equivalent norm ball B(X) on X the set of functionals in X* which
attain their norm on B(X) is residual in X*. This result is an advance on
the following theorem, which is due to Bourgain [2].

A Banach space X has the Radon—Nikodym property if and oualy if, for
each closed, bounded, convex subset C of X the set of functionals which
attain their maximum value on C is residual in X*.

Finally, Section five is concerned with expanding the characterisations
given in Section three, using some new continuity properties introduced
in [7, 10].

Notation. All the Banach spaces considered in this paper will be over
the real numbers.
For a Banach space (X, |||), we denote by:

X* the dual of X;
X** the second dual of X;
B(X) the closed unit ball in X, with respect to a given norm;
S(X) the unit sphere in X, with respect to a given norm;
X The natural embedding of X into X**.
For a non-empty subset £ of X we denote by:
co E the convex hull of E;
Co E the closed convex hull of E;
E the norm closure of £;
E*" the weak* closure of E.

1. SoME CONTINUITY RESULTS

In this first section, we investigate two continuity results which have
useful applications in the geometry of Banach spaces.

The first one is due to I. Namioka [11], and relates weak continuity to
norm continuity for single-valued mappings from ‘‘nice’’ Baire spaces
into Banach spaces.

The second result which has appeared in many different forms over the
last twenty years, relates the separability of the range of a set-valued
mapping to its norm continuity. We provide a simple self-contained proof
of the form of this result that we require.

A set-valued mapping ® from a topological space A into subsets of a
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topological space X is said to be upper semi-continuous at t in A if, given
an open set W containing ®(¢) there exists an open neighbourhood U of ¢
such that ®(U) is contained in W, where ®(U) = U{d(r) : r € U}. We call
such a mapping an usco if for each t € A, ®(¢) is non-empty and compact;
when X is a linear topological space we call such a mapping a cusco if for
each t € A, ®() is non-empty, convex, and compact.

In order to state our first theorem we will need the following definition.

Let o be an open covering of a topological space X. Then a subset S of
X is said to be sd-small if S is contained in a member of A.

A topological space X is said to be strongly countably complete if there
is a sequence {4, : n € N} of open coverings of X such that any sequence
{F, : n € N} of non-empty closed subsets of X has M{F,: n € N} # &
provided that F,., C F, for all n € N and each F, is #,-small.

THEOREM 1.1. Let A be a strongly countably complete regular space
and let X be a Banach space. If f: A — (X, weak) is a continuous map,
then there is a dense Gy subset G of A such that at each point of G, fis
norm continuous.

THEOREM 1.2. Let A be a regular compact topological space;, G be a
dense and Gg subset of A, and let f be a weak* continuous function from
A into the dual of a Banach space X. If the restriction of fto G is weak
continuous on G, then f is norm continuous on a dense Gy subset of A.

Proof. We begin by proving that G with the relative topology is a
strongly countably complete regular topological space.

To this end, let G = MN{0, : n € N}, where each O, is a dense open
subset of A.

For each £k € N and x € G choose an open neighbourhood U,(x) of x
such that

Ui(x) C Ox.

Let o, = {Ui(x) N G:x € G}. We now claim that a decreasing
sequence {F, : n € N} of non-empty closed subsets of G has M{F,:
n € N} # & provided that each F, is o ,-small; that is, provided that for
each n € N there exists an x,, € G such that F,, C U,{(x,). To see this, let F,
= F! N G, where each F, is a closed subset of A.

Now,

N {F..neN}=[){F,NG:nEN}

(Y {F:neNy N () {U.G) : n €N}

(M) {FaN Uyx,) : n € N}
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But M{F, N U,(x,) : n € N} # & by the compactness of A. Therefore
M{F,:n € N} is non-empty. Hence G with the relative topology is
strongly countably complete.

So from Theorem 1.1 there is a dense G subset G, of G on which the
restriction of fto G is norm continuous.

Next, we show that fis norm continuous wherever g, the restriction of
fto G, is norm continuous. Let ¢t € G and suppose g is norm continuous
at ¢. Then given & > 0 we can find an open neighbourhood U of ¢ such
that g(U N G) C (glr)y + eB(X*)). We now claim that f(U) C (g(t) +
eB(X*)) = (f(t) + eB(X*)). Suppose this is not the case. Then there
exists an x € U such that f(x) & (f(1) + eB(X*)). Now, since f is weak*
continuous at x there exists a non-empty open subset V of U such that
VYN (f(r) + eB(X*) # &. However, forany y E VN G f(y) = g(y) €
(g(1) + eB(X*)) which is a contradiction; therefore we must have that fis
norm continuous at f.

The result now follows by observing that G is in fact a dense G5 subset
of A.

A weak* cusco mapping from a topological space A into subsets of the
dual of a Banach space X is said to be minimal if its graph does not contain
the graph of any other weak* cusco with the same domain.

The following well-known property of minimal weak* cuscos is given in
[6, Lemma 2.5].

PrOPOSITION 1.3. A minimal weak* cusco ® from a topological space
A into subsets of the dual of a Banach space X has the property that, for
each non-empty open subset V of A and weak* closed and convex subset
Kof X*,if (V) € K then there exists a non-empty open subset of V' of V
such that ®(V') N K = .

ProOPOSITION 1.4. Let ® be a minimal weak* cusco from a topological
space A into subsets of the dual of a Banach space X, and let K be a non-
empty weak* closed and convex subset of X*. If for each non-empty open
subset U of A, D(U) € K then{tr € S: ®(t) N K = T} is a dense open
subset of A.

Proof. LetW={t€ A : &) N K = J}. Since ® is weak* upper semi-
continuous and K is weak* closed, W is open. So it is sufficient to show
that Wis dense in A. To this end, let V be a non-empty open subset of A.
Then ®(V) ¢ K so from Proposition 1.3 there exists a non empty open
subset V  of Vsuchthat (V) N K = Jandsod +# V C WnNYV.
Therefore W is dense in A.

THEOREM 1.5. Let U be a non-empty open subset of a Baire space A
and X a Banach space. Consider a minimal weak* cusco ® from A into
subsets of X*. If for some countable family {B, : n € N} of weak* closed
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and convex subsets of X* we have that (1) N U{B, : n € N} # J for
each t in a second category subset D of U, then for some k € N there
exists a non-empty open subset V of U such that ®(V) C By.

Proof. Let @' be the restriction of ® to U. It follows from Proposition
1.3 that ¢’ is a minimal weak* cusco on U. We note also, that U with the
relative topology is a Baire space. Now if ®'(W) C B, for some non-empty
open subset W of U write V = W, but if not, we have by Proposition 1.4
that there is a dense open subset O, of U such that ®'(0,) N B, = J. Now
if ®'(W) C B, for some non-empty open subset W of U write V = W, but if
not, we have by Proposition 1.4 that there is a dense open subset O, of U
such that ®'(0;) N B, = &. Continue in this way. We will have defined V
at some stage, because if not, we will have a dense G; subset O.. of U,
where O. = N{0, : n € N} and ®'(0.) N U{B, : n € N} = J, contradict-
ing the fact that foreachr € O. N D # S P(r) N U{B, : n € N} + J. So
U contains a non-empty open subset V, such that for some & € N,
d(V) C B,.

COROLLARY 1.6. Let A be a Baire space, X a Banach space, and ® a
minimal weak* cusco from A into subsets of X*. If for some separable
subset C of X* we have that ®(t) N C + & for each t in a second category
subset D of A, then for each € > 0 there exists a non-empty open subset V
of A such that diam ®(V) < g.

2. SOME GEOMETRICAL PROPERTIES OF BANACH SPACES

In this section we shall apply Corollary 1.6 to obtain some new topolog-
ical characterisations of some geometrical properties possessed by (sepa-
rable) Banach spaces.

Let C be a non-empty bounded subset of a Banach space X. We say that
a point x € C is a point of continuity of (C, weak) if the weak and norm
topologies agree at x. Furthermore, for a non-empty bounded subset C of
X* we say that a point f € C is a weak* point of continuity of (C, weak*) if
the weak* and norm topologies agree at f.

PROPOSITION 2.1. Let C be a (convex) weak* compact subset of the
dual of a Banach space X. Then the weak* points of continuity of (C,
weak*) are residual in (C, weak®) if and only if, each non-empty (convex)
relatively weak* open subset of C possesses non-empty relatively weak*
open subsets of arbitrarily small diameter.

Proof. Suppose that W is a non-empty (convex) relatively weak* open
subset of C and that the weak* points of continuity of (C, weak*) are
residual in (C, weak*). Then clearly W contains a weak* point of continu-

409188 3-8
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ity of (C, weak*), and so W possesses relatively weak* open subsets of
arbitrarily small diameter.

Conversely, given £ > 0 consider the following open subset of C: O, =
U{weak* open sets U/ in C : diam U < g}; we will show that O, is dense in
(C, weak*). To see this, let V be a non-empty relatively weak* open
subset of C; note that if C is convex then without loss of generality we
may assume that V is also convex. Now, by the hypothesis V contains a
non-empty relatively weak* open subset U of V with diameter less than e.
Hence @+ U C O. N V, and so O. is dense in C. The proof is completed
by observing that each element of M{0,, : n € N} is a weak* point of
continuity of (C, weak*).

PROPOSITION 2.2, Let C be a non-empty closed bounded (convex)
subset of a Banach space X. Then each non-empty relatively weak open
(convex) subset of C possesses non-empty relatively weak open subsets of
arbitrarily small diameter if, and only if, each non-empty relatively weak*
open (convex) subset of C*" possesses non-empty relatively weak*
open subsets of arbitrarily small diameter.

Proof. The proof of this result comes from the following three obser-
vations.

(1) Foreach relatively weak* open subset U of E“’*, U N Cis weak*
dense in U;

__ (2) for each non-empty bounded subset U of X** diam U = diam
Uv,

(3) each relatively weak open subset U of C extends to be a
relatively weak* open subset U of C** such that U N € =

We say that a Banach space X has the convex point of continuity prop-
erty (or CPCP for short) if for each non-empty closed, bounded, convex
subset C of X and each £ > 0 there exists a non-empty relatively weak
open subset of C with diameter less than . Furthermore, we say that the
dual of a Banach space X has the weak™ convex point of continuity prop-
erty (or C*PCP for short) if for each non-empty weak* compact, convex
subset C of X* and each £ > 0 there exists a non-empty relatively weak*
open subset of C with diameter less than ¢ [8].

A notion very similar to that of the convex point of continuity property
has also been considered [12]. We say that a Banach space X has the point
of continuity property (or PCP for short) if for each non-empty bounded
subset C of X and ¢ > 0 there exists a non-empty relatively weak open
subset of C with diameter less than . Similarly, we say that the dual of a
Banach space has the weak* point of continuity property (or P*CP for
short) if for each non-empty bounded subset C of X* and £ > 0 there
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exists a non-empty relatively weak* open subset of C with diameter less
than e.

THEOREM 2.3. Let X be a separable Banach space. Then X has the
point of continuity property (convex point of continuity property) if and
only if, for each non-empty closed, bounded (convex) subset C of X, C is
second category in (C*", weak*).

Proof. Suppose that X has the point of continuity property (convex
point of continuity property) and that C is a closed and bounded (convex)
subset of X. It follows from Proposition 2.2 that each non-empty (convex)
relatively weak* open subset of C*" possesses non-empty relatively
weak™* open subsets of arbitrarily small diameter. Therefore from Proposi-
tion 2.1 the set of weak* points of continuity of (C*", weak*) are residual;
and so second category in (C*", weak*). .

However each weak* point of continuity of (C**. weak*) must lie in C,
and so we are done.

The converse statement follows immediately from Corollary 1.6.

THEOREM 2.4, Let X be a separable Banach space. Then X* has the
weak* point of continuity property (weak*® convex point of continuity
property) if and only if, for each non-empty weak* compact (convex)
subset C of X* the points where the weak™ and weak topologies agree are
second category in (C, weak™).

Proof. It follows directly from Proposition 2.1 that if X* has the
weak* point of continuity property (weak* convex point of continuity)
then for every weak* compact (convex) subset C of X* the points where
the weak and weak™ topologies agree are second category in (C, weak*);
in fact they are residual in (C, weak*). Conversely, suppose that C is a
non-empty weak* compact (convex) subset of X* and that the set § of
points where the weak and weak* topologies agree is second category in
(C. weak*). Now, since X is separable (C, weak*) is metrisable, and
hence separable, and furthermore (S, weak*) is also separable. Let {f, :
n € N} be a dense subset of (S, weak*), and let F = ¢co{/f, : n € N}
Clearly § is contained in F, because if there exists an element ¢+ € S\F
then there exists a weak* open neighbourhood U of r such that UN F # &
(since the weak and weak* topologies agree at r). However, this contra-
dicts the fact that the set {f, : n € N} is dense in (S, weak*). The conclu-
sion now follows from Corollary 1.6).

We end this section with the following example.

EXAMPLE 2.5. Consider X = co(N) with its usual norm. Then B(X) is
first category in (B(X**), weak*).
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Proof. ltis easy to check that there are no non-empty relatively weak
open subsets of (B(X), weak) with diameter less than 2. Therefore Corol-
lary 1.6 tells us that B(X) cannot be second category in (B(X**), weak*).

On the other hand, it is well known that ¢y(N) can be equivalently
renormed to be locally uniformly rotund, and in this case, Proposition 2.1
and Proposition 2.2. together tell us that the natural embedding of this
equivalent norm ball into its second dual ball is residual with respect to
the relative weak* topology.

3. ON WEAK AND WEAK* FRAGMENTABILITY OF BANACH SPACES

In this section we extend the results given in Section two to non-
separable Banach spaces. In doing so we obtain an interesting variation
on Goldstine’s theorem.

THEOREM 3.1. For a non-empty closed, bounded (convex) subset C of
a Banach space X the following properties are equivalent.

(1) The points inTCT“" where the weak and weak* topologies of e
agree are residual in (CY", weak*).

(2) C is residual in (CT »* weak*). ‘
- (3) The weak* points of continuity of (EW*, weak*) are residual in
(C*, weak™).

(4) The points of continuity of (C, weak) contain a dense Gs subset
of (C, weak).

(5) Each non-empty (convex) relatively weak* open subset of ¢
possesses non-empty relatively weak* open subsets of arbitrarily small
diameter.

(6) Each non-empty (convex) relatively weak open subset of C pos-
sesses non-empty relatively weak open subsets of arbitrarily small diame-
ter.

Proof. That (1) implies (2) comes from the observation that each
point, where the weak and weak* topologies agree, lies in C.

That (2) implies (3) follows immediately from Theorem 1.2. .

That (3) is equivalent to (4) comes from noticing that a point F € C*" is
a weak* point of continuity of (C**, weak*) if and only if, F is a member of
C and F is a point of continuity of (C, weak).

That (4) is equivalent to (5) comes from Proposition 2.1.

Finally, from Proposition 2.2 we see that (5) is equivalent to (6), and so
the proof is completed by noticing that (3) implies (1).

COROLLARY 3.2. A Banach space X has the point of continuity prop-
erty (convex point of continuity property) if and only if for each non-
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empty closed bounded (convex) subset C of X, C is residual in (C7 W
weak*).

The following corollary answers a natural question raised by Gold-
stine’s theorem. Namely, when is the natural embedding of B(X) into
B(X**) not only dense, but also residual in (B(X**), weak*)?

COROLLARY 3.3 _Let B(X) be an equivalent norm ball on a Banach
space X. Then B(X) is residual in (B(X**), weak*) if and only if, the
points of continuity of (B(X), weak) contain a dense Gy subset of (B(X),
weak).

ProPOSITION 3.4. A Banach space X has the convex point of continu-
ity property, if and only if, each equivalent norm ball on X possesses
relatively weak open subsets of arbitrarily small diameter.

Proof. Clearly if X has the convex point of continuity property then
each equivalent norm ball possesses non-empty relatively weak open sub-
sets of arbitrarily small diameter. Now we consider the converse.

Suppose that £ > 0 is given and that C is a non-empty closed bounded
convex subset of X. It will be sufficient to show that C possesses a non-
empty relatively weak open subset of diameter less than e. If B(X) is an
equivalent norm ball on X, then sois By(X) = B(X) + (=C) + C. Now let
W be a weak open subset of X such that W N B|(X) # & and diam(W N
B((X)) < e.Clearly forsomex EB(X)andy € —C,({x+y}+ C)N W #
@and so C N (W — {x + y}) # &; but clearly diam(C N (W — {x + y})) <&
and so we are done.

THEOREM 3.5. A Banach space X has the convex point of continuity
property if and only if, for each equivalent norm ball on X, B(X) is
residual in (B(X**), weak™).

Proof. 1t is clear from Theorem 3.1 that if X has the convex point of
continuity property then for each equivalent norm ball B(X) on X, B(X)
will be residual in (B(X**), weak*). On the other hand, if for each equiva-
lent norm ball B(X) on X B(X) is residual in (B(X**), weak*) then by
Theorem 3.1 B(X) will possess non-empty relatively weak open subsets of
arbitrarily small diameter, and so from Proposition 3.4 X will have the
convex point of continuity property.

We now consider a dual version of this theorem.

THEOREM 3.6. The dual of a Banach space X has the weak* point of
continuity property (weak* convex point of continuity property) if and
only if, for each non-empty weak* compact (convex) subset C of X* the
points where the weak and weak* topologies agree are residual in (C,
weak*).
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We note that by repeating the argument used in Proposition 3.4, we
could, in the theorem above, prove that X* has the weak* convex point of
continuity property if and only if, for each equivalent dual ball B(X*) the
points where the weak and weak™* topologies agree are residual in (B(X*),
weak¥).

4. ON A CHARACTERISATION OF THE RADON-NIKODYM PROPERTY

Consider a non-empty bounded subset E of a Banach space X.

Given f € X*\{0} and a 8 > 0 the slice of E defined by fand § is the
subset S(E, f,8) ={x € E : f(x) > sup(E) — 8}. When E lies in the dual of
a Banach space, and the slicing functional fgiven above is weak* continu-
ous, then we call the slice of E a weak* slice of E.

We say that a Banach space X has the Radon-Nikodym Property (or
RNP for short) if each non-empty bounded subset E of X possesses a slice
of arbitrarily small diameter.

In order to prove our main theorem we will need a few basic results
concerning the differentiability of the norm on a Banach space.

Let X be a Banach space and let |-|| be an equivalent dual norm on X*.
The subdifferential of |-| at f € X* is denoted by 3| f|| and is the set {F €
S(X**) : F(f) = | fI}- The subdifferential mapping f— 3| f|| is a minimal
weak* cusco from X* into subsets of S(X**) [13, p. 100]. The next propo-
sition establishes a close connection between the subdifferential mapping
and the geometry of the corresponding second dual ball. For a proof of
this result see [9].

ProposiTiON 4.1, Let X be Banach space, and let ||-|| be an equivalent
dual norm on X*. Then for each f € X* and & > 0, S(B(X**), f, §2) C
3|B(f, 8)| + SB(X*).

The next theorem is a slight variation on a well-known characterisation
of spaces which have the Radon-Nikodym property {4].

THEOREM 4.2. A Banach space X has the Radon-Nikodym property if
and only if, for each equivalent dual norm ||| on X* the subdifferential
mapping f— 3| fl| is single-valued and norm upper semi-continuous on a
dense Gy subset of X*.

Proof. The proof of this theorem comes straight from Corollary 3 and
Theorem 4 in [4] and the result that the dual norm ||:| on X* is Frechet
differentiable at g € X* if and only if, the subdifferential mapping f —
d|lf]l is single-valued and norm upper semi-continuous at g [13, p. 100].

It is a straightforward consequence of the Bishop-Phelps theorem [1]
that wherever the subdifferential mapping f— 9| f]| is single-valued and
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norm upper semi-continuous its subdifferential lies in X. So from Theo-
rem 4.2 we get the following corollary.

CoRroLLARY 4.3.  [fa Banach space X has the Radon—Nikodym prop-
erty then for each equivalent dual norm ||| on X* the set {f € X* : 9| f|| N
X # O} is residual in X*.

THEOREM 4.4. A Banach space X has the Radon—Nikodym property
if and only if, for each equivalent dual norm ||| on X* the set {f € X* :
fll N X # B} is residual in X*.

Proof. 1t is immediate from Coroliary 4.3 that if X has the Radon-
Nikodym property then for each equivalent norm ||| on X the correspond-
ing set {f € X* : 3||f|| N X # &} is residual in X*. We now consider the
converse. It is well known that a Banach space X has the Radon-Niko-
dym property if each non-empty closed, bounded, convex, and separable
subset of X possesses slices of arbitrarily small diameter [3, p. 31]. This is
the approach that we shall adopt. So let C be a non-empty closed,
bounded, convex, and separable subset of X, and suppose € > 0 is given.
After possibly re-scaling, we may assume that sup{|x| : x € C} = 2. Let
K =7©o{C U —C} and let B(X) be an equivalent norm ball on X. It is not
too difficult to see that if K possesses a slice with a diameter less than &,
then so does C. So our goal from here will be to construct a slice of K with
a diameter less than . We being by noticing that By(X) = To{B(X) U K} is
an equivalent norm ball on X and that B,(X**) = co{B(X**) U K*'}.
Now choose z € Bi(X)\B(X) and let f € X* strongly separate z from
B(X). We can now select a 8 > 0 such that z € S(B((X), f, 8) and S(B\(X),
£, 8) N B(X) = &. Clearly d||f]| C S(B)(X**), £, 8) and so by the weak*
upper semi-continuity of d||-|| there exists an open neighbourhood U of f
such that 3| U] C S(B(X**), f, 8). However, we must in actual fact
have that o||U|| C K**, since the images of d|||| are extremal subsets of
Bi{(X**). We now observe that G N U is residual in U, and that for each
gEGN Ug| N K+ . So by Corollary 1.6 there exists a non-empty
open subset V of U such that diam(3||V|) < &/3. Choose h € V\{0} and
0 < r < €/3 such that B(h, r) C V. Hence by Proposition 4.1
diam S(B,(X**), h, r}) < &/3 + 2(e/3) = ¢, from which it follows that
diam S(K, A, r?) < &, and we are done.

Let ||| be an equivalent norm on a Banach space X. Then we call the set
{f € S(X*) : fattains its norm on B(X)} the Bishop—Phelps set. From the
Bishop—Phelps theorem [1] we know that this set is always dense in
S(X*).

Theorem 4.4 may now be written in terms of the Bishop—Phelps set.

THEOREM 4.5. A Banach space X has the Radon-Nikodym property if
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and only if, for each equivalent norm on X the corresponding Bishop—
Phelps set is residual in §(X¥).

Proof. This result follows from the fact that for an equivalent norm
ball B(X) on X, f € S(X*) attains its norm on B(X) if and only if, 4| f]| N
X+ Q.

5. MORE ON THE POINT oF CONTINUITY PROPERTY

In this section we extend the characterisation given in Theorem 3.1, by
exploiting some recent continuity properties considered in (7, 10].

Let fbe a function from a topological space A into a Banach space X.
We say that fis w continuous at t € A if for each £ > 0 there exists a weak
compact set K in X and an open neighbourhood U of ¢ such that f(U) C
K + eB(X). Extending this notion further, we say that fis y continuous at
t € A if for each € > 0 there exists a countable family {K, : n € N} of weak
compact subsets of X and an open neighbourhood U of ¢ such that f(U) C
U{K, : n € N} + eB(X). The significance of these continuity properties is
revealed in the next proposition.

PROPOPOSITION 5.1.  For a weak* continuous function f, from a Baire
space A into the dual of a Banach space X, the following are equivalent.

(1) fis norm continuous on a residual subset of A.
(2) fis w continuous on a residual subset of A.
(3) fis vy continuous on a residual subset of A.

Proof. It is clear that (1) implies (2) and (2) implies (3), so it is suffi-
cient to show that (3) implies (1). However, (3) implies (1) comes from
Theorem 4 in [10].

Let C be a non-empty bounded subset of a Banach space X. We say that
x € Cis a point of w continuity of (C, weak) if for each £ > 0 there exists a
weak compact set K in X and a weak open set Wof X suchthatx & C N
W C K + &B(X). Similarly, we say that a point x € C is a point of y
continuity of (C, weak) if for each ¢ > 0 there exists a countable family
{K, : n € N} of weak compact subsets of X and a weak open set W of X
suchthatx€e CN WC U{K, : n € N} + eB(X). Furthermore, for a non-
empty bounded subset C of X* we say that a point f € C is a weak* point
of w continuity of (C, weak*) if for each & > 0 there exists a weak compact
subset K of X* and a weak* open set Wof X*suchthat fECNWCK +
eB(X*). Finally, we say that a point f € C is a weak® point of y continuity
of (C, weak*) if for each & > 0 there exists a countable family {K, : n € N}
of weak compact subsets of X* and a weak* open set W of X* such that
feECN WC UK, :n€N}+ eB(X*).
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PROPOSITION 5.2. Let C be a non-empty closed, bounded subset of a
Banach space X. If a point x € Cis a point of o continuity of (C, weak)
then % is a weak* point of w continuity of C*", weak*).

Proof. Suppose that x € C is a point of w continuity of (C, weak)
and that € > 0 is given. We can choose a relatively weak* open subset
W of C* such that £ € C N W C K + eB(X) for some weak compact
subset K of X. Now W N C is weak* dense in W, so x € W C
W N C* CK + eB(X**), since K + eB(X**) is weak* closed. Therefore
£ is a weak* point of w continuity of (C**, weak*).

THEOREM 5.3. For a non-empty closed, bounded subset C of a
Banach space X the following properties are equivalent.

(1) The points of continuity of (C, weak) contain a dense Gy subset
of (C, weak).
(2) The points of o continuity of (C, weak) contain a dense G,
subset of (C, weak).
- (3) The weak* points of w continuity of(é“", weak*) are residual in
(C*", weak*).
- (4) The weak* points of y continuity of (C**, weak*) are residual in
(C*", weak™).
- (5) The weak* points of continuity of (C*", weak*) are residual in
(C*", weak*).

Proof. It is obvious that (1) implies (2). That (2) implies (3) comes
from Proposition 5.2. That (4) implies (5) comes from Proposition 5.1.
Finally, from Theorem 3.1, we see that (5) implies (1).

Remark 5.4. We note that for a function f from a topological space A
into a Banach space X, the points where f'is continuous, with respect to
the norm, w or y always form a G; subset of A. Hence in Theorem 3.1 and
Theorem 5.3, we may replace ‘“dense G5’ by simply dense.

We now show that, even if every point of B(X) is a point of y continu-
ity, B(X) may contain no points of continuity.

ExaMPLE 5.5. Consider X = ¢o(N) with its usual norm. Then each
point of B(X) is a point of y continuity of (B(X), weak). However, no
point of B(X) is a point of continuity of (B(X), weak).
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