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Abstract. In this note we consider the question of when a nearly continuous function
acting between topological spaces is continuous. In doing so we obtain a topological
version of the classical closed graph theorem and a topological version of the Banach-
Steinhaus theorem.
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1 Introduction

Let f : X → Y be a function acting between topological spaces X and Y . We say that f is
nearly continuous on X if for each open set U in Y , f−1(U) ⊆ intf−1(U). Clearly every continuous
mapping is nearly continuous. In this note we consider the converse question, ie: when is a given
nearly continuous function continuous?

We begin in Section 2 by summarising some of the known results in terms of the notion of “very
near continuity”. Then in Section 3 we use the notion of “very near continuity” to show that every
nearly continuous mapping with closed graph (or nearly Gδ graph) acting from a Baire space into
a partition complete (strong Choquet) space is continuous.

2 Very nearly continuous mappings

Let f : X → Y be a mapping acting between topological spaces X and Y . We will say that
f has property P with respect to X and Y if for each pair of disjoint open sets U and V in Y ,
intf−1(U)∩intf−1(V ) = ∅. Clearly if f is continuous then f has property P . However, if f is nearly
continuous and satisfies property P then for each open set U in Y , f−1(U) ⊆ intf−1(U) ⊆ f−1(U).
Therefore we have the following result.

Proposition 1 Let f : X → Y be a nearly continuous mapping acting from a topological space X
into a regular topological space Y . Then f is continuous on X if, and only if, f satisfies property
P with respect to X and Y .
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Henceforth we shall be concerned with conditions on X, Y and f that imply property P . Let
f : X → Y be a mapping acting between topological spaces X and Y . We shall say that f is very
nearly continuous on X if for each open set U in Y , f−1(U) is a residual subset of intf−1(U).

Theorem 1 Every very nearly continuous mapping acting between a Baire space X and a topolog-
ical space Y satisfies property P with respect to X and Y .

Proof: Suppose U and V are open subsets of Y . If W := intf−1(U) ∩ intf−1(V ) 6= ∅ then
f−1(U) ∩W and f−1(V ) ∩W are residual subsets of W and so,

∅ 6= [f−1(U) ∩W ] ∩ [f−1(V ) ∩W ] = [f−1(U) ∩ f−1(V )] ∩W = f−1(U ∩ V ) ∩W ⊆ f−1(U ∩ V ).

Therefore, U ∩ V 6= ∅; which shows that f satisfies property P . 2

A mapping f : X → Y acting between topological spaces X and Y is said to be Gδ-continuous
(Borel measurable of class one) if f−1(U) is a Gδ subset of X for each open (closed) subset of X.

Corollary 1 ([11], Theorem 3) Let f : X → Y be a nearly continuous mapping acting between a
Baire space X and a regular space Y . If f is either Gδ-continuous or Borel measurable of class one
then f is continuous.

Proof: If f is Gδ-continuous then for each open set U in Y , f−1(U) is a dense Gδ subset of
intf−1(U) and so f is very nearly continuous. If f is Borel measurable of class one then for each
open set V in Y , f−1(V ) ∩ intf−1(V ) is a dense Gδ subset of intf−1(V ). Therefore, for any open
set U in Y , f−1(U) is locally residual in intf−1(U) and so residual in intf−1(U). This shows that
f is very nearly continuous. 2

A mapping f : X → Y acting between topological spaces X and Y that is the pointwise limit of
a sequence (fn : n ∈ N) of continuous mappings is said to be of Baire class one. Now if U is any
open subset of Y then,

f−1(U) ⊆
⋂
n∈N

( ⋃
k≥n

f−1
k (U)

)
⊆ f−1(U)

and so f−1(U) ∩ intf−1(U) is a residual subset of intf−1(U).

Corollary 2 ([11], Theorem 4) Every nearly continuous Baire class one mapping acting from a
Baire space into a regular space is continuous.

Proof: It follows from the above observation that for each open set U in Y , f−1(U) is locally
residual in intf−1(U) and so residual in intf−1(U) . 2

Remark: The previous two corollaries simplify and make more transparent the proofs of Theorems
3 and 4 in [11].

A function f : X → Y acting between topological spaces X and Y is said to be almost continuous
on X if for each open set U in Y , f−1(U) is an everywhere second category subset of intf−1(U).
Clearly every almost continuous mapping is nearly continuous and if X is a Baire space then
every very nearly continuous mapping is almost continuous. So almost continuity lies between near
continuity and very near continuity. If in addition f has the property that the inverse image of
each open set in Y has the Baire property in X then almost continuity implies very near continuity.
Hence we obtain the following result from [17].

Corollary 3 Every almost continuous mapping from a Baire space into a regular space which is
lower Baire (ie: inverse images of open sets are sets with the Baire property) is continuous.
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3 Closed graph theorem

In order to prove our closed graph theorem we need to introduce some more definitions. A sequence
{Vn : n ∈ N} of covers of a topological space X is said to be complete if each filter base F on X
that is Vn-small for each n ∈ N (ie: for each n ∈ N there exists a Vn ∈ Vn containing some F ∈ F)
has

⋂
F∈F F 6= ∅. A cover V of X is call exhaustive provided every nonempty subset A of X

has a nonempty relatively open subset of the form A ∩ V with V ∈ V and a regular space X is
called partition complete or cover complete, [10] if it has a complete sequence of exhaustive covers.
In addition to these definitions we also need to consider the Banach-Mazur game. Let X be a
topological space and let R be a subset of X. On X we consider the BM(R)-game played between
two players α and β. A play of the BM(R)-game is a decreasing sequence of non-empty open sets
An ⊆ Bn ⊆ · · ·B2 ⊆ A1 ⊆ B1 which have been chosen alternatively; the An’s by α and the Bn’s
by β. The player α is said to have won a play of the BM(R)-game if

⋂
n∈NAn ⊆ R; otherwise β is

said to have won. A strategy s for the player α is a “rule” that tells him/her how to play (possibly
depending on all the previous moves of β). Since the move of α may depend on the previous moves
of β we shall denote the n-th move of α by, s(B1, B2, . . . Bn). We say that s is a winning strategy if,
using it, he/she wins every play, independently of player β’s choices. (A more detailed description
of the Banach-Mazur game and a proof of the next lemma may be found in [13].)

Lemma 1 Let R be a subset of a topological space X. Then R is residual in X if, and only if, the
player α has a winning strategy in the BM(R)-game played on X.

Theorem 2 Every nearly continuous mapping with closed graph acting from a Baire space into a
partition complete space is continuous.

Proof: Let f : X → Y be a nearly continuous mapping with closed graph acting from a Baire space
X into a partition complete space Y (with associated complete sequence {Vn : n ∈ N} of exhaustive
covers). It will, in light of Theorem 1, suffice to show that f is very nearly continuous. To this end,
let U be any non-empty open subset of Y . We shall construct a winning strategy for the player α
in the BM(f−1(U))-game played in intf−1(U). Suppose that β’s first move is the non-empty open
subset B1 of intf−1(U). Player α’s response to this is the following. First α chooses an open set U1

such that ∅ 6= D1 := f(B1)∩U1 ⊆ U1 ⊆ U1 ⊆ U and D1 ⊆ V1 for some V1 ∈ V1. Then he/she defines
A1 := intf−1(U1)∩B1 6= ∅ and notes that A1 ⊆ f−1(D1). In general, if β selects a non-empty open
subset Bn+1 ⊆ An ⊆ · · ·A1 ⊆ B1 then the player α responds in the following way. First he/she
chooses an open set Un+1 ⊆ Un such that ∅ 6= Dn+1 := f(Bn+1) ∩ Un+1 ⊆ f(Bn) ∩ Un = Dn and
Dn+1 ⊆ Vn+1 for some Vn+1 ∈ Vn+1. Then he/she defines An+1 := intf−1(Un+1) ∩ Bn+1 6= ∅ and
notes that An+1 ⊆ f−1(Dn+1). With this strategy we see that:⋂

n∈N
An ⊆

⋂
n∈N

f−1(Dn) ⊆ f−1(
⋂
n∈N

Dn) ⊆ f−1(U).

Note: the set inclusion
⋂
n∈N f

−1(Dn) ⊆ f−1(
⋂
n∈NDn) follows from the following argument. Let

x ∈
⋂
n∈N f

−1(Dn) and let N be any neighbourhood base for x. Then,
F := {f(N)∩Dn : N ∈ N and n ∈ N} is a filter base on Y that is Vn-small for each n ∈ N. Hence,

∅ 6=
⋂
{F : F ∈ F} ⊆

⋂
{f(N) : N ∈ N} ∩

⋂
{Dn : n ∈ N}

= {f(x)} ∩
⋂
{Dn : n ∈ N} since f has closed graph
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ie: f(x) ∈
⋂
n∈NDn or equivalently, x ∈ f−1(

⋂
n∈NDn). Therefore, f−1(U) is a residual subset of

intf−1(U); which shows that f is very nearly continuous. 2

The previous theorem improves Theorem 2 of [11] where the condition of “monotonely Čech-
complete” (or equivalently, “strongly complete”, ([11], p.142) or even “sieve-complete”, ([10],
p.114)) was used in place of the weaker hypothesis of partition complete (used here), [10]. The
relationship between monotone Čech-completeness and partition completeness is discussed in [15].
Let us also take the opportunity to present some equivalent formulations of partition completeness.
Let X be a topological space. On X we consider the G(X)-game played between two players I and
II. Players I and II alternatively choose non-empty subsets S1 ⊇ T1 ⊇ S2 ⊇ T2 · · · of X such that
Tn (chosen by II) is relatively open in Sn (chosen by I). Player II wins if (Tn : n ∈ N) is a complete
sequence of subsets of X, [10]. A strategy for the player II is defined in a similar way to a strategy
for the player α in the BM(R)-game.

Proposition 2 For a topological space (X, τ) the following are equivalent:
(a) X is partition complete;
(b) X has a complete exhaustive sieve (see, [10] for definition);
(c) Player II has a winning strategy in the G(X)-game played on X;
(d) there exists a pseudo-metric d on X that “fragments” X and has the property that every
d-Cauchy filter base on X has a τ -cluster point in X (see, [8] for definition of fragment).

Proof: The fact that (a) and (b) are equivalent follow from Propoistion 2.1 in [10] and the equiv-
alence of (a) and (c) is Theorem 7.3 in [9]. Furthermore it is easy to see that (d) implies (c) so it
remains to justify that (c) implies (d). However, this is very similar to Theorem 1.2 in [8]. 2

Next we give a concrete example of a partition complete space that is not monotonely Čech-
complete.

Example: Let X := `1(N) and let BX be the unit ball in X. Then it is well known that the natural
metric on `1(N) fragments (BX ,weak), ([5], p.7) but that 0 ∈ BX is not a q-point of (BX ,weak).
Since if 0 ∈ BX were a q-point then one could show that 0 has a countable local base in (BX ,weak)
and so conclude that X∗ = `∞(N) is separable ([4], V. 5.2); which it is not. Hence, (BX ,weak) is
partition complete but not monotonely Čech-complete. 2

It is now natural to ask if there are any other topological conditions on the graph of a nearly
continuous function that imply continuity. The answer is “yes” and our response to this question is
patterned on Theorem 1 of [11]. Given a subset A of a topological space X we say that A is a nearly
Gδ subset of X if there exists a sequence {On : n ∈ N} of open subsets of X such that

⋂
n∈NOn ⊆ A

and each On ∩ A is dense in A. To formulate the statement of our theorem we need to consider
another topological game. Let X be a topological space. The strong Choquet game on X ([7], p.
196) is played by two players α and β. Player β starts by choosing a non-empty open set B1 and
an element b1 ∈ B1. Player α then plays a non-empty open set A1 with b1 ∈ A1 ⊆ B1. β follows by
choosing a non-empty open set B2 and an element b2 such that b2 ∈ B2 ⊆ A1, etc. We say that α
wins a play of the game if

⋂
n∈NAn 6= ∅; otherwise β wins. A strategy s for the player α is a “rule”

that tells him/her how to play. Since the move of α may depend on the previous moves of β we shall
denote the nth move of α by, s((b1, B1), . . . (bn, Bn)). We say that s is a winning strategy if α wins
every play of the strong Choquet game where he/she follows the strategy s. A topological space
X is call a strong Choquet space if α has a winning strategy in the strong Choquet game played
on X. It is immediately clear from this definition that all locally Čech-complete spaces are strong
Choquet spaces. However, there are many other interesting examples of strong Choquet spaces.
Recall that a topological space X is called pseudo-compact if every real-valued function defined on
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X is bounded. In particular, this means that every real-valued function defined on X attains its
maximum value at some point x0 ∈ X, because if f : X → R does not attain its maximum value
on X then g : X → R defined by, g(x) := 1/[sup{f(t) : t ∈ X} − f(x)] is a continuous function on
X that is not bounded above.

Remark: The strong Choquet game seems to date back to G. Choquet himself when he considered
this game to prove the following theorem “Let X be a non-empty topological space, then X is Polish
if, and only if, X is second countable, T1, regular and strong Choquet.”, ([7], p.197).

Example: Every completely regular pseudo-compact topological space X is a strong Choquet
space. To show that X is a strong Choquet space we need to exhibit a winning strategy s for
the player α in the strong Choquet game played on X. If β selects b1 ∈ B1 then α responds
by choosing an open set A1 and a function f1 : X → [0, 1] such that b1 ∈ A1 ⊆ f−1

1 (1) ⊆ B1.
Then α defines, s((b1, B1)) := A1. In general, if β selects bn ∈ Bn ⊆ An−1 then α responds by
choosing an open set An and a function fn : X → [0, 1] such that bn ∈ An ⊆ f−1

n (1) ⊆ Bn. Then α
defines, s((b1, B1), . . . (bn, Bn)) := An. Now, since X is pseudo-compact there exists a point x0 ∈ X
such that the continuous function g(x) :=

∑∞
n=1(1/2n)fn(x) attains its maximum value. Then,

x0 ∈
⋂
n∈N f

−1
n (1) =

⋂
n∈NAn 6= ∅ and so X is a strong Choquet space.

The following theorem improves Theorem 1 in [11].

Theorem 3 Every nearly continuous mapping with a nearly Gδ graph acting from a Baire space
into a strong Choquet space is continuous.

Proof: Let f : X → Y be a nearly continuous mapping with a nearly Gδ graph (ie: there exists a
sequence {On : n ∈ N} of open subsets of X ×Y such that

⋂
n∈NOn ⊆ G(f) and each On ∩G(f) is

dense in G(f)) acting from a Baire space X into a strong Choquet space Y (with winning strategy
s). As in Theorem 2 it will suffice to show that f is very nearly continuous. To this end, let U be
any non-empty open subset of Y . We shall construct a winning strategy for the player α in the
BM(f−1(U))-game played in intf−1(U). Suppose that β’s first move is the non-empty open subset
B1 of intf−1(U). Player α’s response to this is the following. First α chooses x1, V1 and W1 such
that (x1, f(x1)) ∈ V1×W1 ⊆ O1∩ [B1×U ]. (Note: this is possible since [B1×U ]∩G(f) 6= ∅.) Then
he/she defines U1 := s((f(x1),W1)) and A1 := V1 ∩ intf−1(U1) 6= ∅ and notes that A1 × U1 ⊆ O1

and A1 ⊆ intf−1(U1). In general, if β selects a non-empty open subset Bn+1 ⊆ An ⊆ · · ·A1 ⊆ B1

then the player α responds in the following way. First, he/she chooses xn+1, Vn+1 and Wn+1

such that (xn+1, f(xn+1)) ∈ Vn+1 × Wn+1 ⊆ On+1 ∩ [Bn+1 × Un]. (Note: this is possible since
[Bn+1 × Un] ∩ G(f) 6= ∅.) Then he/she defines Un+1 := s((f(x1),W1), . . . (f(xn+1),Wn+1)) and
An+1 := Vn+1 ∩ intf−1(Un+1) and notes that An+1 × Un+1 ⊆ On+1 and An+1 ⊆ intf−1(Un+1).
With this strategy we see that: ⋂

n∈N
An ⊆ f−1(

⋂
n∈N

Un) ⊆ f−1(U)

since for any x ∈
⋂
n∈NAn and y ∈

⋂
n∈N Un 6= ∅, (x, y) ∈

⋂
n∈N(An×Un) ⊆

⋂
n∈NOn ⊆ G(f), that

is, y = f(x) and so x ∈ f−1(y) ⊆ f−1(
⋂
n∈N Un). Hence f−1(U) is a residual subset of intf−1(U);

which shows that f is very nearly continuous. 2

Remark: It would appear that the notion of “strongly Choquet” considered in this paper and else-
where coincides with what the author in [11] calls “complete”. Also “sets of interior condensation”
are clearly “nearly Gδ subsets” (but not vice versa).
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One might ask whether, in the absense of Baireness (of X), the previous 2 theorems remain vaild.
The answer is “no”. In [16] an example is given of a nearly continuous function with closed graph
acting from a metric space into a complete metric space which is not continuous. Incidentally, this
function provides an example of a very nearly continuous function that is not continuous, (see the
proof of Theorem 2 above). In the other case it is known that for a large class of domain spaces
X, if X is not a Baire space then there exists a nearly continuous mapping from X into R with Gδ
graph that is not continuous, [6]. In fact, for metrizable spaces, this provides a characterisation of
being Baire, ([11], Theorem 5). Despite this there are in fact “closed graph theorems” for functions
defined on other than Baire spaces. The idea used is to replace “closed graph” by something
stronger. The notion we consider here is that of a separating function, [14]. A function f acting
between topological spaces X and Y is said to be separating if for each pair of distinct points x
and y in Y there exists open neighbourhoods U of x and V of y such that f−1(U) and f−1(V ) are
separated. If f is nearly continuous then this is equivalent to saying that intf−1(U)∩intf−1(V ) = ∅.
It is known that the notion of separation lies strictly between that of closed graph and that of
continuity, [14]. Moreover, by making obvious modifications to the main theorem in [2] or Theorem
8 in [14] or even Theorem 3.2 in [3] we obtain the following.

Theorem 4 Every separating and nearly continuous mapping acting from a topological space X
into a partition complete space Y is continuous.

For a homomorphism acting between topological groups the notions of “closed graph” and “sepa-
ration” coincide. Hence we have that: Every nearly continuous homomorphism with closed graph
acting from a topological group G into a partition complete topological group H is continuous. This
result is not quite as good as it sounds as every partition complete topological group is Čech-
complete. To see this we consider the following. First, if G is partition complete then we can
construct a sequence {Un : n ∈ N} of symmetric neighbourhoods of e - the identity element in
G, such that (i) U2

n+1 ⊆ Un for all n ∈ N, (ii) each sequence {xn : n ∈ N} with xn ∈ Un has a
cluster-point in G and (iii) K :=

⋂
n∈N Un is a compact subgroup of G. Now, as in Theorem 1 of [1]

the coset space G/K endowed with the quotient topology is metrizable and moreover the quotient
mapping g 7→ g ·K is perfect. Since partition completeness is preserved by perfect mappings, [9]
and metrizable spaces that are partition complete are Čech-complete, [9] we see that G/K is com-
pletely metrizable. The result then follows from the fact that the inverse image, under a perfect
mapping, of a Čech-complete space is Čech-complete.

While on the topic of continuity of group homomorphisms, let us recall the following relevant
theorem (Theorem 1) from [12]. Let ϕ : G → H be a Souslin measurable (ie: ϕ−1(U) is a Souslin
set in G for each open set U in H) homomorphism from a paracompact Čech-complete group G
into a topological group H. Then ϕ is continuous.

Note: the paracompactness hypothesis in the previous theorem is redundant as every Čech-complete
group is paracompact ([1], Theorem 1).
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[6] Lubrica Holá, Functional characterization of Baire spaces, Proc. Amer. Math. Soc. 109 (1990), 1121–
1124.

[7] Alexander S. Kechris, Topology and descriptive set theory, Topology Appl. 58 (1994), 195–222.

[8] P. S. Kenderov and W. B. Moors, Fragmentability and sigma-fragmentability of Banach spaces, J.
London Math. Soc. 60 (1999), 203–223.

[9] E. Michael, A note on completely metrizable spaces, Proc. Amer. Math. Soc. 96 (1986), 513–522.

[10] E. Michael, Almost complete spaces, hypercomplete spaces and related mapping theorems, Topology
Appl. 41 (1991), 113–130.

[11] Dominik Noll, Baire spaces and graph theorems, Proc. Amer. Math. Soc. 96 (1986), 141–151.

[12] Dominik Noll, Souslin measurable homomorphisms of topological groups, Arch. Math. 59 (1992), 194–
301.

[13] J. O. Oxtoby, The Banach-Mazur game and Banach Category Theorem, in Contributions to the Theory
of Games, vol 111, Annals of Math. Studies 39, Princeton, N. J. (1957), 159–163.
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