-

MATEMATUKA Y MATEMATUYECKO OBPA30BAHMUE, 1996
 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1996
o Proceedings of Twenty Fifth Spring Conference of -
the Union of Bulgarian Mathematicians
" Kazanlak, April 6-9, 1996

GAME CHARACTERIZATION OF FRAGMENTABILITY
o OF TOPOLOGICAL SPACES o

Petar S. Kenderovl, Warren B. Moors?
In the topological space X we consider a topological game such that the existence of a
winning strategy for one of the players characterizes fragmentability of X'. This is used
to give a direct proof (avoiding any use of renorming techniques) that (X*, weak®) is
fragmentable if the Banach space X is weakly countably determined. We show also -

* that, if on the dual unit sphere the weak and the weak® topologies coincide, then (X,
weak) is fragmentable.. Finally, we prove that (I°°/co, weak) is not fragmentable by
any metric. ‘ . ‘ o

1. Introduction and Game Characterization of Fragmentability
Let X be a topological space. Jayne and Rogers [2] call the space X fragmentable
if there exists a metric d(.,.) in X such that, for every € > 0 and every nonempty .
‘subset A C X, there exists a nonempty subset B C A which is relatively open in A
and diam(B) := sup{d(z,y) : 7,y € B} < e. In such a case the metric d is said to
fragment X. This notion turned out to be useful and convenient in many situations
(see [4-8], [13-15}, [12]): The definition of fragmentability suggests to consider the -
following two players game in an arbitrary topological space X. The player ¥ selects
some nonempty subset Ay of X, then the player Q) answers by selecting some nonempty
subset By C A; which is relatively open in A;. Then again X selects an arbitrary
nonempty subset Az C By and, in-turn, Q picks up some nonempty relatively open
subset By of A;. Repeating this alternative selection of sets the two players generate
a sequence of sets , A o S
AiDB1DA2 DBy D¢,

- which we. call a play and denote by p = (Ai, Bi)i>1- The player Q is said to have
- won the play p if the set Nis1 Ai = Ni>1 Bi ‘contains at most one point. Otherwise
the player X is said to have won the play p. A strategy w for the player € is a “rule
' of selection”, i.e. it is a mapping which assigns to each partial play A; D B; O
Az D - -+ D Ay some nonempty set B = w,(‘Al‘, 'Bi,...,Ax) which is a relatively open

1The author was pértially suj:ported by a grant MM-406/94 from the BulgaﬁanMinisfry of
.Science and Education. - . . . B o R :
~ 2The author was supported by a New anl’and Science and Technology Post-Doctoral Fellowship. .
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subset of Ag. The play p = (A., B ).>1 is called an w-play 1f B =w(A,..., 4) for .
_every i > 1. The strategy w is said to ) be wmnmg strategy for  if every w- play is -

“we may assume that d is bounded (otherw1se we replace 1t by d’ ;=

won by Q In what follows the game described above will be denoted by Gy.

' Theorem ‘1.1 The topologzcal space X is fragmentable zf, and only zf, the player
Q has a winning stmtegy for the game G pe

Proof Suppose X is fragmented by some metric d Wlthout loss of generahty

1+ 7 which also

fragments X ) Because of fragmentablhty, for every non—ernpty subset ACX, there

1. |
,'ex1sts some non-empty relatlvely open subset B C A such that diamB < dlamA :

- Define w(A) to. be such a subset B of A and défine the strategy wfor Q as a mapplng

(or rule of selection) which puts into correspondence to each partial play A; D By D
- D Ag the set By := w(Ax). If Q plays according to this strategy, he/she will win

'all w-plays because the set );5, B; will have diameter zero and so cannot contain

more than one poist. Note that the strategy w defined above depends only on the

last move of the player X."

Conversely, suppose the player Q has a winiing strategy w for the game G;. We
will use w to construct a a—relatlvely ‘open  partitioning of the space X which

‘separates the pomts of X (see [13)).

Put Al := X, Bl = w(Al). H¢>1is an ordinal such that for n < &, the sets

A7, B7, have already been defined, put Ab = X\ U,7 <€ B’7 If Ae # 0, set Bf
(Ae) If As = @, put £1 = £ and stop the process. When the latter case appears,

we arrive at a family (Al, B¢ 1)1<e<e, of partlal w- plays Note that {B hi<ece, is a
disjoint family which covers X and, for every £ < &1, the set wt .= Uy <e BY is open’
in X. Foreach £, 1 < £ < £;, we construct now a family (A%?, B5Y)., of continuations -
(extensions) of the partial play (A%, BS). Put AY' := B and BS! = w(AS, Bf, AEI)
Suppose that, for some ordinal y, 1 < v, all pairs (A B2 ),,<~, have already been
defined. Put Af" = B§\U, <y BS". If ASY # 0, set BE" =w(Af, Bf, AY). If A®" =

@, put Ve 1= 7 and finish the procedure When the latter case occurs, we have a famlly

(48, B, A, BYY )i<~<~, Of partial w-plays which extend the partlal play (4, B}).

- Note that (Bj 7)1<7<’75 is a disjoint family whxch covers B%. Furthermore, each point

r € B6 uniquely identifies some Bh Sz and the correspondmg Ah Bh Moreover,

‘the sets,UnQ B , 1. <9 < 7, are open in BE If the procedure i 1 performed for
every £, 1< €< £1, we get the family. (A$, Bf, A5 BE”’)1<5<51, 1<y<ver Of partial

w-plays wh1ch we may assume, are ordered by the lex1cograph1cal order. The disjoint

, famlly (B%Y )1<€<51’ 1<y<e, is “inscribed” in the d15101nt family (Bl)1<¢<f1 and every

zeX umquely identifies a partial w-play (Ai, B Ag", ‘BE") by z € BE and x € Bf" |
- We will denote by T'; the well ordered set {¢ - 1 < € < £} and will consxder it as a

subset of the well ordered set I'y 1= {(£,7) : 1. < £<6,1<7< Y¢} (which is given
the lexicographical order). Using the strategy w we construct inductively a sequence-
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 of families of partlal w-plays {(4$, BS, AL n)ger }n>1 50 that (Bn+1)£ern+, :

a disjoint cover of X which is 1nscr1bed in (B )geru, Ty is a subset of Tnya (Wlth the

* order inherited from T';41) and each B§, E E In,is2a relatlvely open subset’ of AL

X\ U.7<£’,YEP B}. Note that the set W = Uy<er, B is open in X. Moreover,

. each point z € X identifies a sequence (B’Y")n>1, Yn € Ty, such that z € B, i> 1.

This sequence uniquely determmes by means of the above construction, an w-play

p(z) = (AY, B}*)i>1. Since w is a winning stratégy for the player Q, ﬂ,>1 B"' = {z}.
This means that, if y € X, y#z, theny ¢ BY when i is large enough As shown
by Ribarska. (see [13],theorem 1. 9) this suﬂices to deduce that X is fragmentable.
To make the paper more self-contained we provide here the rest of the proof. Note
that the correspondence z — p(z) defined above is one-to-one. For z/, z” € X, set

p(z') = (A%, B, p(z") ={AY, B!"), where p(z) is the play umquely determlned by

r€eX. Deﬁne

d(:z:' ") = 0 if B’ B" for all i> 1
: —H nl where n= mln{z B! # Bi'}.

It is not difficult to verify that d(.,.) is a metrxc on X. It remains to show that |
d(.,.) fragments X. Let A #0, AC X, and € > 0. Take some ‘positive 1nteger ng

1 |
such that ¢ > — and put ¢ = min{f € Tp, : B§, 1A # 0}. For the open set
0 L. .

W = Uy<¢e, pern, B, we have WA = BE.(A. This shows that B§, N4 is

L S 1 ,
a relatively open subset of A. On the other hand,i d(z', z") < —<e whenever

o, "€ BS.. This completeés the proof.

Remark 1.1 The authors are indebted toJ. Onhuela (University of Murc1a Spaln)

- for the useful dlscusswns and suggestlons with respect to the above theorem and 1ts

proof

2 Some apphcatlons ‘

In what follows we will show how to apply Theorem 1.1 to prove that the weak
(weak*) topology on some Banach (dual Banach) spaces is fragmentable or not frag-
mentable. -In the next two theorems whlch provide sufficient conditions for frag-

“mentability our considerations rely upon an adaptation of a construction used by

Christensen in [1]. In the third theorem we use an idea from a paper. of Bourgain [3].

Theorem 2.1 Let X be a Bandch space with unit ball B = {z € X : ||z|| < 1}.
If the weak and weak* topologies in the dual Banach space X* coincide on the unit
sphere S*={z*eX*: {l=*]l= 1}, then (B; weak) is fragmentable.

Proof We will define a strategy w for the player €2 which will turn out to be
wmnmg In the course of constructing this strategy w we will define not. only the sets

' B, = w(A1, By, ..., A ) correspondmg to the partial play Ay D Bi D -+ D 4n but

also ‘some points zp, € X, ys € X*, and some numbers dp, so that the quadruples
(Bn, Zn, Yn d,,) satlsfy certain requlrements that will allow us to complete the proof.
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| Assurne the set A; C B A1 # (0 is the first choice of the player . Put o = {0}
and d; = inf{t > 0 : tB D Al} Ifd; = 0, then A; = {zo} = {0}. We put
By = Al, Z):=x¢ and y; := 0 in this case. Suppose dy > 0 then there ex1st pomts

dq .
T € A1 \ —B and y; € X*, ||ly]] =1, and a number t; such that (1:1, Y1) > t1 >

di
sup(*2'B Y1) = SUP{( b, y1) bEB} The set Ul ={reX: (z1, y1) > 11}

. is open in (X weak) and contains z3.  Define w(Al) B; to be the set A;[(U;.
- Suppose the strategy w has already been defined for partial plays of length n together -
- with the points (z;)Ls, (%)%, and the numbers (di)-: so that zo = {0} and, for
i=1, 2. ., 1, the following requirements are satisfied (co (:co, yTimy) stands for
- the convex hull of the set {xo,...,2;1}): | -
o a)di=inf{>0:co (zo, .. ,:c,_l) +tB D A; }
- b) z; € Ay vi € X*, '
") llwll=1ifd:>0andy =0ifd; =0,
d) inf(B;, v) > sup(co (zo, .. .,:L',-_l) + (1 - —%) diB, y;);
e) sup |[B; - B} i= diam <2(d +-—_%-i. |
" Let Ay DBy D .- D> A, D B, be an w-partial play for Wthh the sequences‘
(d;)? =1 ()0, (y,), L1, are defined and satisfy a) - e). Suppose Ant1 # 0, Any1 C .-
By, is the next choice of £. Put dn+1 = inf{t > 0 : co(zy,.. :z:,.) +tB D Apy1}-
Ifdyy1 =0, then A,y C co(Zo, ..., z,). The set co(zyg, .. :z:n) is finite dimensional -
and the weak and norm topologles comc1de in it. Therefore we can find some relatively

open subset’ Bn.,_l C An+1, n41 76 0, such that diamB; < +2

take arbltranly some point z,4; € An+1 and put yn+1 = 0. Let d,,+1 > 0.- Then
there exist points Trnil, Yntl such that

In thls case. we

Tn41 E AAn+1\ (CO(.’E(),'.. '7:811) + (1—Tl+ 2)dn+lB) ’ yn+1 €X ] 'llyn-'l-l” = ]-y

and a number #,; with

($ﬁ+1» yﬁ+1> > tn+1 > sup(co‘(zo,'. .. oy :L'n) + (1 — n‘+ 2) dn.HB,‘ yn+1).
The set: Un+1 ={r€X :(z, yn.,.l) > tp41} is open in (X, weak) and contains mn+1
- Put A=Up,yy NAnt:. ‘This is a relatlvely open, nonempty subset of Any1. Let M .

| be a finite set such . that co (mo, ey p) C M + B. Such an M exists because

co(zg,...,z,) is a norm compact set. Then A’ C An+1 Cco(zo, ..., Zp) + dpp B.C |

M -+ (dn+1 + —'—:——2> B = U {m + (dn+1 + "—'_%:—2-) B . m E M} Reducing 4the Aset
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M, if ﬁeqessa;y,, we ma.y}a.s_sume’"t}ié,t, fdr,so’me mo € M, the set S
. ' o . : . L 1 : C - . “, " - . " ,.._ ) .
Bun = A\ (Ut (s 555) Bt e men)) 2o

Note that Bnyy is. i"elatively"obe'r:x. in A’ .'and"‘thereféi'e in Apg1. Also, Bn 41 C
| mo. + (dn+1 + t0)-

—— ) B. Hence the diameter of Bpy1 is smaller (or equal to)

2| dny1+ m) Put w(A1,..., Bn, An41) = Bnt1. Clearly, the requirements
" a) —e) are fulfilled now with i = n +'1 as well. This. completes. the definition of
the strategy w. Together with every w-play p = (4, ‘Bi)i>1 we defined also the se-
quences (di)i>1, (Zi)ix0, (#)ix1, satisfying the requirements a) — €). 'We will show -
“that ﬂ,-'>1 B; contains at most one point. Note that (d;)i>1 1s a nonincreasing. se-
quence of positive numbers. Let doo = ’1_1}1‘1310 d;. 2!, " € V5, Bi, & # 2", we

' = z"|| _ sup||B: = Bill _ ; 1
- — < . —
9 - 92 «Sd' 1+'z7+1'

for every i > 1. Thus d; > d;x, > 0. Let yoo be a Wea‘l'c"'r cluster point of (y;)i>1
in (X*,. weak*). Evidently, ||yo|| < 1. From properties d) and c), we obtain (z' —

have

0<

1 | o |
-p"+ 1 dp, whenever v € 59(30»-. ..., &g) and 1 < ¢ < p. -Therefore

(z' — v, Yoo) > doo forevery ¢ > 1and v € co (zo, ..., Tq)- Since z' € Bq"C‘ Aq,
property a) implies that, for some vg € co (Zg, .-, Tq-1), &' € Y +dB. This yields
dy > ||z’ — vgll > (&’ — v, Yoo) > deo > 0. Having in mind that d = ql_i’rg.) dg, we

v, yp) > (1—

deduce from this that ||yss|| = 1. By the assumptions in the theorem we see that yoo
" is not only weak* cluster point but also weak cluster point of (y;)i>1. Now let o, be
~ some cluster point of (z;);>1 in (B**, weak®), where B** is the unit ball of the second
dual space X**. By property b) we see that z. € B;, where E* is the closure of B;

in (B**, weak). It is also clear that inf(B;, %) = min{B;", ). It follows from c) and
d) that (Teo — v, %) > (1A+ p_}-—l-) d,, whenever v € co (zo, ..., z,) and ¢ < p.
Since Yo, is a weak cluster point of (¥:)i>1, this implies that (zeo —; Yoo) > doo > 0
for every v € co (U;>o{zi})- This however contradicts the fact that zo is a cluster
point of (z;)i>0 in (B**, weak*). This completes the proof. - - .

. Remark 2.1 The only role of the point z” in the above proof was to guarantee =
that do, > 0. What we actually proved concerning any w=play p = (A, Bi)i Was the
following statement: if ;> Bs contains some point z’, then doo must be zero. In view
of property e) this means that, for every w—play p = (Ai, Bi)i, nl_lﬂ}r& (diamB;) = 0
whenever (;5; Bi # §. This property implies that the fragmenting metric d(.,.)
obtained in the proof of Theorem 1.1 generates a topology which is stronger than
(or equal to) the norm topology on 'B. As shown in [9,10], this is equivalent to
sigma-fragmentability of X by its norm (see [5] for the necessary definitions).
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D‘eﬁnitioniz.l The Banach space X is called weakly countably determined -
- (WCD) (see [17]), if there exists a countable family (Fi)iz1 of (not necessarily differ- -
- ent) closed subsets of (B**, ‘weak™) such that for every y € B there is some nested -
infinite subfamily 7y, > F;, 5... withy €45, Fi, CB. -~ = R
" Note that, for such a family, if yx € F;,, k >'1, then the sequence (yk)k>1 has a
~weak cluster point y* € ), Fi, 'C B. In particular, (k>1 Fiy is a weakly compact. -
subset of X. Every reflexive Banach space is WCD (it suffices to take F; = B for. -
every ¢ >'1). More generally, every weakly compactly generated Banach space . is -
WCD. It is also known that the class of WCD spaces is strictly larger than the class
of weakly compactly generated Banach spaces [16]. - - ' - S
| The next theorem is a well known fact. It can be deduced by combining a result

of Mercourakis [11] that the dual of a WCD Banach space admits an equivalent dual
~ rotund norm and the result of Ribarska [14] that every rotund space is fragmentable.
We provide here a direct proof which does not use renorming techniques. - =

‘Theorem 2.2 Let X be a WCD Banach space. Then (X*, weak*) is frag-
mentable. L | o - S

" Proof. If suffices to show that (B*,.weak*) is fragmentable. “We will show that
the player 2 has a winning strategy for G 7 in this space. We can assume that all
. F;, i > 1, from definition 2.1 are convex and balanced sets (Fi = —F;). Otherwise,
one could take a new family (F! )i>1 of sets, where Fy{ is the closed absolutely convex
hull of F; in (B**, weak*). The new system (F})i>1-will also-enjoy the property
~ described in definition 2.1." For technical reasons, which will become obvious later,

we will assure a,lso' that every set F ¢ (Fi)i>1 participates in this system infinitely |

- many times (with different indexes i).

For every n > 1 we consider the semi-norm ¢, : X* —3 R defined by on(z) =
sup{(y, z) : y € F,(}X}. Since Fa1X 5 {0} and F, C B**, this is a well
defined norm continuous function'in X*, The set C, := {teX*: pp(z)<1} =
{z € X* : (y, z) <'1forevery y € F,(X} is weak* closed in X* and contains .
the unit ball B* of X* (since Fn' C-B**). By the bipolar theorem we know that
FaNX ={yeB:(y, «)<1forevery z € Cn}. The construction of the strategy w
~ we are going to undertake now is almost identical with the construction of the strategy -
w from the proof of Theorem 2.1. The main difference being that now we operate in X*
- (and-its elernents will be denoted by z while the elements of X or X** will be denoted
by y) and in the definition of numbers d; we use the seminorms ¢; instead of the norm
in X*. Let A; #0, A; C B* be the first choice of the player . Put zq = {0} € X*

and define d; := sup{pi(a) : a € 4;} = inf{t >0 : z¢ +tCy D A;}. Since C; is a

' ‘norm‘ neighbourhoqd of O in X* and A; is a bounded subset of X * 0< dl < oo. If

~dy >0, there 1s some z; € Aj, a:'l‘ ¢ %17.01- -Since Cl'is_weak*':'zclqsed, we'(-,f‘a;n find
somey; € X .which_strjctly separates z; from %—1—01 : (y;,' z1) > sup{y, —2101) Since -

1 ;60 and C_,’l.abs.o.rbsf X ”‘,',we may assume that sup(y;, C1) =1.Theny; e /N X.
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| The weak* open set U1 = {:c € X* : (y1, z) > sup(y1, f-lCH) = %1-} contains z1.
Put B; = w(A;) := Ai1[\Ur. This | is a nonempty (contalmng a:l) relatwely weak"‘

open subset of A;. Note that
(1) - 1nf<y11 Bl) > _; - *-'up(yl) "—Cl)
~ Also, since B; — B1 C d1(6'1 Cy) = 2d1C1 we have - '

3(2). 901(31 By) -sup{gol(b' b”) b’ b”eBl}<2d1<2(d1+1)

If d; =0, we put. B1 = w(Al) = Ay a.nd pick up arbltranly a point z; € A; and
-y = {0} € N X. Hence inequality (1) is fulfilled. Moreover, since Sup {1 (A —
A1) < 2sup gy (A;) = 0, inequality (2) is also fulfilled.

Suppose the strategy w has already been defined for all partla,l plays A1 D Br D
~«-+D A, D By, together with some points (m,),_o, (y,) =1 and some numbers (di)iey
sothatmo—{O}EX"‘ and, for i =1, 2, n, .
- a)di=inf{t>0: co(mo, ooy T 1)+tC,DA},
'b) a:,eA cXueFRNX,;
c) sup(yi, C)—llfd >0 and yi —{0} 1fd =0;

d) mf(y,, B; ) > sup(y,, co(za, - -, a;._l) + (1 — ;—_1:-1-) d; C,) -

| )SUP‘P:(B B.)<2<d +_1.>

Let A; DBy D -+ D An D By be a partial w- play and An+1 + @ Any1 C Bn, |
be the next' choice of the player . Consider the number dpyy = inf{t > 0 :

co(:co, e a:n) + 1Cnt1 D An41}. Clearly, 0 < dn+1 < co. If dpyr > 0, there ex-
1
. AlStS some :Dn+1 E An+1, Tnil ¢ A = (CO(:BQ, ceay .’Bn) + ( nt 2) dn+1C’n+1)

This 1mphes that some yn41 € X stnctly separates Tne1 from A (yn+1, :cn+1) >

1
sup(yn.H, A) > sup(yn+1, 1= +2) dn4+1Cnt1) > 0. The last 1nequahty in the

.. chain i1s due to the fact that Ynt1 # 0 and Cpq1 is absorbmg set in X*. This
‘means we can assume that sup(yn41, Cn41) = 1. In this case Ynt+1 € FoiiNX.
Put Unt1 1= {z € X* (yn+1, 3) > sup(yn41, 4) = Sup(yn+1,00($o, o Ta))
(1 - _1*_ 2) dnt1} and A= An+1 ﬂUn+1 Al is a weak” relatlvely open ‘subset of
An+1 contalmng Tpy1- Let M be a ﬁmte set in X“' such that co(:co, Sy Tn) C
M +

and Cn+1 contams B*). Then A' - An+1 C co(zo, ...4, a:n) + dn+1C’n+1 C M+
1
,(dn-{-l +

Cn+1 (such a'set M exists because co(:co, .., Tg) is norm compact

+ 1) Cn+1 Reducmg, if necessary, the set M we can assume that A C
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- M+ (dn+1 + -——i——) C’n+1 but for some mo E M the set

: Bn+1 = Al\ (U {m'l' (dn-}-l + = n+ 1) Cn+1 m '-)é mOa m E M})# ﬂ ‘
Note that Bn+1 is relatively open in A’ and hence .in An+1 Also, Bpsy1 C 'mé +

) 1 ,
- (dn+1+ +1) C,,.,.l and hence, Bn+1 Bny1 C 2 (d,,+1+ 1
Bni1 C Upya, all requlrements a) - e) are fulﬁlled for 4 ‘i n + 1. We deﬁne
(A]_, ce ey Bn, n+1) = n+1 in thls case. ' )
If dn+1 =0, put-A' = An1 and find some ﬁmte set M such that CO(.’EQ, iy .'z:',,) C

< 1 1
M+ ( +1)Cn+1 Then A’ ——.An-l—l C co(:z:o, - :cn)+ n +1)C’n+1 C M+

1 1 S .
) Crn+1. Reasoning as aboveWe can ﬁnd some mg €

| n+1 +1 | |

M soﬁ that A’ is not contained in |J {m +. (dn.,_l + i 1) Cnt1: m €M\ {mo}} '

.. Then the set B,,.H = A"\ {(M \ {mo}) ( syl + T) C,,+1} # ﬁ is relatively o

'. weak* open in A’ Let Tn+1 be any point in An+1 and Yntl = {0} € Fn+1 ﬂX It is
easy to check that a) — d) are satisfied.

- Proceeding by induction, we can think that the strategy w is defined. ‘We show
next that this is a winning strategy for the’ player Q, ie. ﬂ,>1 B; has at most one
point. Suppose this is not the case and take z', =" € ();5, B:, #' # z”. For some
y € B, d* == (y, ' —2") > 0. Since X is WCD there is an infinite sequence

F;, D F;, .oy @y < iy < ... for which y € (>1Fi, C X. This, together with

property b), rmphes that the sequence (¥ix)k>1 has a weak cluster point y* € B.
On the other hand, for every k¥ > 1, 0 < d* = (y, o' —2") < ¢;, ('~ z") <

s

. Sup @, (Bi, = Bi,) < (d,,‘ + :) Thus d,k > %— - —1—— > 0 when k is large enough.

In particular, sup(¥i,, Ci;) = 1 when k is big. Let z* be a cluster point of (z;,)x>1

in'(B*, weak*). Property b) 1mphes that z* € B;, ", Where B;, is the closure of By, -
in (B*, weak*) From d) and the fa.ct that sup(y,k, C;,) = 1 we derive, for every

1
+1)d,k Fora:._:z: and‘

pP>q 2 1 we get'from this (y; , z* — 2 )> ( — i )d- Lettmgp—-)ooresults‘
p 1

Cr+1. Since

R4l = M+ (dn+1 + =

T E sz ) (ylk) :l?) > Sup(%k’ CO(:BQ, ekl Lip—1 ))+(1_

&

~ in (¥*, =8 —z;) > 5 > 0, where g > 1 and y* € B. This 1nequa.11ty shows that z*

- is not a- weak* cluster pomt of (:z:, )q>1 which is a contradiction. This completes the
proof : : : ‘

Flnally, we will demonstrate how to use Theorem 1 1in order to prove tha.t a glven
topologlcal space is not fragmentable )

15




Consider the Banach space [*° of all bounded functlons T N —-) R W1th the norm
l|z]| = sup{|z(n)] : n € N} and its closed subspace cq = {a; € I lim z(n ) = 0}.
n—oo

" Bourgam [3] has shown that o0 /ca does not admit equlvalent rotund renorming. The

main 1dea from the paper of Bourgain allows to show that the followmg result has

: place

' Theorem 2.3 (I*° /co, weak) is not fmgmentable

‘Remark 2.2 Having in mind the result of Ribarska [14] that the weak topology of
any rotund Banach space is fragmentable, Theorem 2.3 1mphes the result of Bourgam ‘
that [ /¢y does not admit an equivalent rotund norm.

Let 7 : I — [®° /co be the. canonical mapping. By =z (resp y) we denote the
elements of [* (resp 1% /co). z* and y* will stand for the elements of the respective -
dual spaces (I°°)* and (I /co)”. For z € I, supp (z) denotes the set {n € N : z(n) #

0}. We need the followmg auxiliary result.

Lemma 2.1 [3] Let z* € (I°)" and M an infinite subset of N. Then there

_erists an “infinite subset M’ C M such that {(z, z*)| < 1 whenever Hm“ <2 and

- supp (z) C M".

N Proof of lemma 2. 1. Suppose the lemma is not true Take some pos1t1ve integer
d > 2”3:*“ and find a disjoint family (M; ) =1 of infinite subsets of M. Since each

- M;, =1, , d, falls the property stated in the lemma, there are some elements .

z; €1%°, z'_l 2 , d, such that
) fl=ll <25
i) supp (1) C M;;

iii) (z;, z*) > 1. |
- d
Then, for the vector z = Em we have Hz:ll <2 and (z, z* Z(z‘,, z*) >

d > 2||z*||. Thls is a contradlctlon

Proof of Theorem 2.3 If suffices to show that for every strategy w of the player
Q there is at least one w-play which is won by X.. We will prove more. Namely,

- we will show that there exists a wmmng strategy o for the player & which allows

hlm/her to win all a—plays It is convenient to operate simultaneously in X = [®
and in Y := 1% /cy. The choices of the player ¥ will be sets of the form w(A), where

"~ Ais a subset of X. The choices B-of the player © are subsets of Y. Parallel to the

construction of the strategy o for ¥ we will identify a strictly’ decreasing sequence
(L; ),>1 of infinite subsets of N and a certain sequence (m,),>1 of elements of X which

“will help us prove the theorem.

Define the strategy o’s first choice to be the set 1r(A1) where 4; = {:z: E X :

||z]] < 1}. Let ©’s choice be some nonempty open subset B; of (m(A;), weak). Then

- there exists z; € 4, and Y; €. Y*, j=1,2,..., k, such that n(z;) € B; and

{yeY.: [(y—n(z1), v})l < 1,i=1,2,.. k}ﬂ Al) c 31 Applymg Lemma-

2.T subsequently to-the functlonals T; = y;" ™ =1, 2, ..%, k, we arrive at an
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- consider the point z} € X defined by .

" infinite set Ly which is a proper subset of N and is such that Iz, z%)| '< 1 whenever.

=12 ...k, [lz]l < 2 and supp (2) C Ly. Let A, := {z : lra:HSl,a:(p) =

zy(p) forall p ¢ Li}. For z € A, supp(z —~ 1) C L;",; ||z '-"z'lll, < 2 and, therefore,
: l(’f(m)—"(wl),y}‘)l = |(m(z — 1), .y,;"-)::‘ |{z %1, ‘T;)l< lforj=1,2 ..,k

This means that 7(4;) C B;. Put o(m(41), Bi) 1= m(4z). In general, we define

- inductively the strategy o which, together with the sets (A,-),-Zl,_ also generates the
- sets (Li)i>y and the points (z;);>; so'that for every o play m(A1) D Bi D ... the
following requirements are fulfilled for 3 >1: L S

a) Ly, is an infinite proper subset of Li;
- b)zed; - o

Q) Aiss = {z € X : [l2l| < 1, 2(p) = 2:(p) for p ¢ L}, -

In particular, z;4(p) =zi(p) for p ¢ L;. This allows us to define a point z, as
Zoo(P) = zi(p) for p ¢ L; and zoo(p) = 1 for p € ;5 Li. Evidently, z, € N1 4i.
We will now show that (), m(A;) contains a point different from T(Zoo). Find first
sorne infinite set L C N such that L \ L; is finite for every i > 1. This is possible
because (L;)i>o is a strictly decreasing sequence of sets. Define by

' _f xco(P)forp¢L .

where g, = —1 if Teo(p) > 0 and ep‘" =1if :é‘;,g, (p) < 0. Clearly, el < 1, ‘éﬁpp (Zoo —

Too) = L and z ~ 2/ ¢ co. Hence (o) # m(zl,). Now we will show that
m(2o,) € 7(A;) for every i > 17, For i = 1 .this is so because z{,, € A;. For i > 2

[z @) forpeLi, -
. ?‘1(7)) - { Too(p) for P& Li 1.

Clearly, ||z}|| < 1. Since z, (p) =z;_1(p) forp & L;_;, we have zi(p) = zi_1(p) forp ¢
Li_1. This means that z} € 4; and m(z}) € m(A;). On the other hand, z}(p) =

zo(p) for p ¢ L\ 'L;_;. Indeed, for p € L;_, this is seen from the definition of z!

and, for p ¢ L{JL;_ this is clear from the definitions of z; and z! . This means
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