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1 Introduction

A semitopological group (topological group) is a group endowed with a topology for which multipli-
cation is separately continuous (multiplication is jointly continuous and inversion is continuous).

Recall that a function f : X × Y → Z that maps from a product of topological spaces X and Y
into a topological space Z is said to be jointly continuous at a point (x, y) ∈ X × Y if for each
neighbourhood W of f(x, y) there exists a pair of neighbourhood U of x and V of y such that
f(U × V ) ⊆ W . If f is jointly continuous at each point of X × Y then we say that f is jointly
continuous on X × Y . A related but weaker notion of continuity is the following. A function
g : X × Y → Z that maps from a product of topological spaces X and Y into a topological space
Z is said to be separately continuous on X × Y if for each x0 ∈ X and y0 ∈ Y the functions
y 7→ g(x0, y) and x 7→ g(x, y0) are both continuous on Y and X respectively.

Ever since [24] there has been continued interest in determining topological properties of a semi-
topological group that are sufficient to ensure that it is a topological group. There have been
many significant contributions to this area, see [1–10, 13–15, 19, 20, 22, 24–34] to name but a few.
Just about all of these results require the semitopological group to be regular (i.e., every closed
subset and every point outside of this set, can be separated by disjoint open sets) and Baire, (i.e.,
the intersection of any countable family of dense open sets is dense) and satisfy some additional
completeness properties. This paper is no exception.

However, in this paper we also require some additional notions from topology and game theory.
We shall say that a subset Y of a topological space (X, τ) is bounded in X if for each decreasing
sequence of open sets (Un)n∈N in X,

⋂

n∈N Un 6= ∅, whenever Un ∩ Y 6= ∅ for each n ∈ N.
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The game that we shall consider involves two players which we will call α and β. The “field/court”
that the game is played on is a fixed topological space (X, τ) with a fixed dense subset D. The name
of the game is the GB(D)-game. After naming the game we need to describe how to “play” the
GB(D)-game. The player labeled β starts the game every time (life is not always fair). For his/her
first move the player β must select a pair (B1, b1) consisting of a nonempty open subset B1 ⊆ X and
a point b1 ∈ D. Next, α gets a turn. For α’s first move he/she must select a nonempty open subset
A1 of B1. This ends the first round of the game. In the second round, β goes first again and selects
a pair (B2, b2) consisting of a nonempty open subset B2 ⊆ A1 and a point b2 ∈ A1 ∩D. Player α
then gets to respond by choosing a nonempty open subset A2 of B2. This ends the second round
of the game. In general, after α and β have played the first n-rounds of the GB(D)-game, β will
have selected pairs (B1, b1), (B2, b2), . . . , (Bn, bn) consisting of nonempty open sets B1, B2, . . . , Bn

and points b1, b2, . . . , bn in D and α will have selected nonempty open subsets A1, A2, . . . , An such
that

An ⊆ Bn ⊆ An−1 ⊆ Bn−1 ⊆ · · · ⊆ A2 ⊆ B2 ⊆ A1 ⊆ B1.

and bk+1 ∈ Ak ∩D for all 1 ≤ k < n.

At the start of the (n+ 1)-round of the game, β goes first (again!) and selects a pair (Bn+1, bn+1)
consisting of a nonempty open subset Bn+1 of An and a point bn+1 ∈ An∩D. As with the previous
n-rounds, the player α gets to respond to this move by selecting a nonempty open subset An+1

of Bn+1. Continuing this procedure indefinitely (i.e., continuing on forever) the players α and β
produce an infinite sequence (An, (Bn, bn))n∈N called a play of the GB(D)-game. A partial play
(
(Ak, (Bk, bk)) : 1 ≤ k ≤ n

)
of the GB(D)-game consists of the first n-moves of the GB(D)-game.

As with any game, we need to specify a rule to determine who wins (otherwise, it is a very boring
game). We shall declare that α wins a play (An, (Bn, bn))n∈N of the GB(D)-game if: for each
decreasing sequence (Un)n∈N of open subsets of X,

⋂

n∈N Un 6= ∅, whenever {k ∈ N : bk 6∈ Un} is
finite, for every n ∈ N.

If α does not win a play of the GB(D)-game then we declare that β wins that play of the GB(D)-
game. So every play is won by either α or β and no play is won by both players.

Note that if α wins a play (An, (Bn, bn))n∈N of the GB(D)-game then
⋂

n∈N An 6= ∅.

Continuing further into game theory we need to introduce the notion of a strategy. By a strategy t
for the player β we mean a ‘rule’ that specifies each move of the player β in every possible situation.
More precisely, a strategy t := (tn : n ∈ N) for β is an inductively defined sequence of τ ×D-valued
functions. The domain of t1 is the sequence of length zero, denoted by ∅. That is, Dom(t1) = {∅}
and t1(∅) ∈ (τ \ {∅})×D. If t1, t2, . . . , tk have been defined then the domain of tk+1 is:

{(A1, A2, . . . , Ak) ∈ (τ \ {∅})k : (A1, A2, . . . , Ak−1) ∈ Dom(tk)

and Ak ⊆ Bk, where (Bk, bk) := tk(A1, A2, . . . , Ak−1)}.

For each (A1, A2, . . . , Ak) ∈ Dom(tk+1), tk+1(A1, A2, . . . , Ak) := (Bk+1, bk+1) ∈ (τ \ {∅}) × D is
defined so that Bk+1 ⊆ Ak and bk+1 ∈ Ak ∩D.

A partial t-play is a finite sequence (A1, A2, . . . , An−1) such that (A1, A2, . . . , An−1) ∈ Dom(tn).
A t-play is an infinite sequence (An)n∈N such that for each n ∈ N, (A1, A2, . . . , An−1) is a partial
t-play.

A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if each play of the
form: (An, tn(A1, . . . , An−1))n∈N is won by β. We will call a topological space (X, τ) a Bouziad
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space if it is regular and there exists a dense subset D of X such that the player β does not have
a winning strategy in the GB(D)-game played on X. It follows from [31, Theorem 1] that each
Bouziad space is in fact a Baire space.

In this paper we will also be interested in another closely related game. This game, denoted
GSB(D), is identical to the GB(D)-game, except for the definition of a win. In the GSB(D)-game
we say that α wins a play (An, (Bn, bn))n∈N of the GSB(D)-game if (i) there exists a subspace S of
X and a subsequence (bnk

)k∈N of (bn)n∈N, contained in S, such that for each decreasing sequence

(Un)n∈N of open subsets of S,
⋂

n∈N Un
S
6= ∅, whenever {k ∈ N : bnk

6∈ Un} is finite, for every
n ∈ N and (ii) every subspace of Cp(S), that is bounded in Cp(S), has a compact closure. We will
call a topological space (X, τ) a strong Bouziad space if it is completely regular and there exists a
dense subset D of X such that the player β does not have a winning strategy in the GSB(D)-game
played on X. It is easy to show that every strongly Bouziad space is a Bouziad space, and hence a
Baire space. On the other hand, if X is completely regular and has the property that every subset
of Cp(X), that is bounded in Cp(X), has a compact closure, then X is a Bouziad space if, and only
if, it a strongly Bouziad space.

2 Feeble continuity of multiplication

Lemma 1 Let (G, ·, τ) be a semitopological group. If (G, τ) is a Bouziad space then for each pair
of open neighbourboods U and W of identity element e ∈ G there exists a nonempty open subset V
of U such that V −1 ⊆ W ·W ·W .

Proof: Suppose, in order to obtain a contradiction, that there exists a pair of open neighbourhoods
U and W of e ∈ G such that for each nonempty open subset V of U , V −1 6⊆ W ·W ·W . From this
it follows that for each nonempty open subset V of U and each dense subset D′ of V there exists a
point x ∈ V ∩D′ such that x−1 6∈ W ·W , because otherwise,

V −1 ⊆ (V ∩D′)−1 ⊆ W · (V ∩D′)−1 ⊆ W ·W ·W ⊆ W ·W ·W.

Recall that for any nonempty subset A of a semitopological group (H, ·, τ) and any open neigh-
bourhood W of the identity element e ∈ H, (A)−1 ⊆ W ·A−1.

Now, let D be any dense subset of G such that β does not have a winning strategy in the GB(D)-
game played on G. We will define a (necessarily non-winning) strategy t := (tn : n ∈ N) for β in
the GB(D)-game played on G, but first we set, for notational reasons, A0 := U and b0 := e.

Step 1. Choose b1 ∈ A0 ∩D so that (b−1
0 · b1)

−1 = b−1
1 6∈ W ·W . Then choose U1 to be any open

neighbourhood of e, contained in U ∩W , such that b1 · U1 ⊆ A0. Then define t1(∅) := (b1 · U1, b1).

Now, suppose that bj , Uj and tj(A1, . . . , Aj−1) have been defined for each 1 ≤ j ≤ n so that:

(i) bj ∈ Aj−1 ∩D and (b−1
j−1

· bj)
−1 6∈ W ·W ;

(ii) Uj is an open neighbourhood of e, contained in U ∩W , such that bj · Uj ⊆ Aj−1;

(iii) tj(A1, . . . , Aj−1) := (bj · Uj, bj).
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Step n+1. Suppose that An is a nonempty open subset of bn ·Un. That is, suppose that An is the
nth move of the player α. Choose bn+1 ∈ An ∩D so that (b−1

n · bn+1)
−1 6∈ W ·W . Note that this is

possible since b−1
n · (An ∩D) is a dense subset of b−1

n ·An and

b−1
n · An ⊆ b−1

n · (bn · Un) = Un ⊆ U.

Then choose Un+1 to be any neighbourhood of e, contained in U ∩W , such that bn+1 ·Un+1 ⊆ An.
Finally, define tn+1(A1, . . . , An) := (bn+1 · Un+1, bn+1). Note that:

(i) bn+1 ∈ An ∩D and (b−1
n · bn+1)

−1 6∈ W ·W ;

(ii) Un+1 is an open neighbourhood of e, contained in U ∩W , such that bn+1 · Un+1 ⊆ An;

(iii) tn+1(A1, . . . , An) := (bn+1 · Un+1, bn+1).

This completes the definition of t. Since t is not a winning strategy for β there exists a play
(An, tn(A1, . . . , An−1))n∈N where α wins. Now there exists a k ∈ N such that bk ∈ (

⋂

n∈NBn) ·W ,
because otherwise,

{bn : k + 1 ≤ n} ⊆ [Bk \ (
⋂

n∈NBn) ·W ] for all k ∈ N.

In which case,

∅ 6=
⋂

k∈N[Bk \ (
⋂

n∈NBn) ·W ] ⊆ G \ (
⋂

n∈NBn) ·W,

but on the other hand,

⋂

k∈N[Bk \ (
⋂

n∈NBn) ·W ] ⊆
⋂

n∈NBn =
⋂

n∈NBn ⊆ (
⋂

n∈NBn) ·W,

which is impossible. Therefore, we may indeed choose k ∈ N so that

bk ∈ (
⋂

n∈N Bn) ·W ⊆ Ak+1 ·W ⊆ bk+1 · Uk+1 ·W ⊆ bk+1 ·W ·W = bk+1 ·W ·W.

Therefore, (b−1

k · bk+1)
−1 = b−1

k+1
· bk ∈ W ·W . However, this contradicts the way bk+1 was chosen.

This completes the proof. ✷

If f : (X, τ) → (Y, τ ′) is a surjection acting between topological spaces (X, τ) and (Y, τ ′) then we say
that f is feebly continuous on X if for each nonempty open subset V of Y , int[f−1(V )] 6= ∅, [10,16].

Proposition 1 Let (G, ·, τ) be a semitopological group. If multiplication, (h, g) 7→ h · g, is feebly
continuous on G×G then for each nonempty open subset U of G and n ∈ N there exist a point x
in U and an open neighbourhood V of the identity element e ∈ G such that:

x · V · V · V · · ·V
︸ ︷︷ ︸

n−times

⊆ U and V · V · V · · ·V
︸ ︷︷ ︸

n−times

·x ⊆ U.

Proof: The proof of this follows from a simple induction argument and the fact that for each
g ∈ G, both {g · U : U is a neighbourhood of e} and {U · g : U is a neighbourhood of e} are local
bases for τ at the point g ∈ G. ✷

Lemma 2 Let (G, ·, τ) be a semitopological group. If (G, τ) is a Bouziad space and the multipli-
cation operation (h, g) 7→ h · g is feebly continuous on G × G then the multiplication operation,
(h, g) 7→ h · g, is jointly continuous on G×G.
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Proof: Since (G, ·, τ) is a semitopological group it is sufficient to show that multiplication is jointly
continuous at (e, e). So, in order to obtain a contradiction, we will assume that multiplication
is not jointly continuous at (e, e). Therefore, by the regularity of (G, τ), there exists an open
neighbourhood W of e so that for every neighbourhood U of e, U · U 6⊆ W . Since (G, τ) is a
Bouziad space there exists a dense subset DG of G such that β does not possess a winning strategy
in the GB(DG)-game played on G.

We will now inductively define a (necessarily non-winning) strategy t := (tn : n ∈ N) for the player
β in the GB(DG)-game played on G.
Step 1. We may choose a point x ∈ A0 := G and an open neighbourhood U of e ∈ G such that

x · U ⊆ x · U · U · U ⊆ x · U · U · U ⊆ A0.

Next, we may pick y, z ∈ U such that y · z 6∈ W (i.e., y 6∈ W · z−1 and so U \(W · z−1) 6= ∅). By
Proposition 1 we may select a point y′ ∈ U\(W ·z−1) and an open neighbourhood V of e, contained
in U , such that

V · V · V · V · y′ ⊆ U \(W · z−1).

Then, (V · V · V · x−1) · (x · V ) · y′ · z ∩W = ∅ and so (V · V · V · x−1) · (x · V ) · y′ · z ∩W = ∅. By
Lemma 1 there exists a nonempty open subset B1 of x · V ⊆ x · U ⊆ x · U · U · U ⊆ A0 such that
(B1)

−1 ⊆ V · V · V · x−1. Thus, (B1)
−1 · B1 · y

′ · z ∩W = ∅. Choose

b1 ∈ (B1 · y
′ · z) ∩DG ⊆ B1 · U · U ⊆ x · V · U · U ⊆ x · U · U · U ⊆ A0.

Then define t1(∅) := (B1, b1) and U1 := B1 · y
′ · z. Note that: (B1)

−1 · U1 ∩W = ∅ — (∗1).

Now suppose that (Bj , bj), Uj and tj(A1, . . . , Aj−1) have been defined for each 1 ≤ j ≤ n so that:

(i) Uj is an open subset of Aj−1 and bj ∈ Uj ∩DG;

(ii) Bj ⊆ Aj−1 and (Bj)
−1 · Uj ∩W = ∅ — (∗j);

(iii) tj(A1, . . . , Aj−1) := (Bj , bj).

Step n+1. Suppose that An is a nonempty open subset of Bn. That is, suppose that An is the nth

move of the player α. By Proposition 1 we may choose a point x ∈ An and an open neighbourhood
U of e ∈ G such that

x · U ⊆ x · U · U · U ⊆ x · U · U · U ⊆ An.

Next, we may pick y, z ∈ U such that y · z 6∈ W (i.e., y 6∈ W · z−1 and so U \(W · z−1) 6= ∅).
Again by Proposition 1 we may select a point y′ ∈ U \(W · z−1) and an open neighbourhood V of
e, contained in U , such that

V · V · V · V · y′ ⊆ U \(W · z−1).

Then, (V ·V ·V ·x−1)·(x·V )·y′ ·z∩W = ∅ and so (V · V · V ·x−1)·(x·V )·y′ ·z∩W = ∅. By Lemma 1
there exists a nonempty open subset Bn+1 of x·V ⊆ x·U ⊆ An such that (Bn+1)

−1 ⊆ V · V · V ·x−1.
Thus, (Bn+1)

−1 ·Bn+1 · y
′ · z ∩W = ∅. Choose

bn+1 ∈ (Bn+1 · y
′ · z) ∩DG ⊆ Bn+1 · U · U ⊆ x · V · U · U ⊆ x · U · U · U ⊆ An.

Then define tn+1(A1, . . . , An) := (Bn+1, bn+1) and Un+1 := Bn+1 · y
′ · z.
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Note that: Bn+1 ⊆ An and (Bn+1)
−1 · Un+1 ∩W = ∅ — (∗n+1).

This completes the definition of t. Since t is not a winning strategy for β there exists a play
(An, tn(A1, . . . , An−1))n∈N where α wins. Note that since {bn : n ≥ k} ⊆ (

⋃

n≥k Un) for all k ∈ N,

∅ 6=
⋂

k∈N(
⋃

n≥k Un) ⊆
⋂

k∈NAk−1 =
⋂

k∈NAk =
⋂

k∈NBk =
⋂

n∈NBn.

Let b∞ ∈
⋂

k∈N(
⋃

n≥k Un). Fix n ∈ N, then by equation (∗n), b
−1
∞ · Un ∩ W = ∅, or equivalently,

Un∩ (b∞ ·W ) = ∅. Hence,
⋂

k∈N(
⋃

n≥k Un)∩ (b∞ ·W ) = ∅. However, this contradicts the fact that

b∞ ∈
⋂

k∈N(
⋃

n≥k Un) and W is an open neighbourhood of e. Hence the multiplication operation
on G is jointly continuous. ✷

If f : (X, τ) → (Y, τ ′) is a function acting between topological spaces (X, τ) and (Y, τ ′) and x ∈ X
then we say that f is quasi-continuous at x if for each neighbourhoodW of f(x) and neighbourhood
U of x there exists a nonempty open subset V ⊆ U such that f(V ) ⊆ W , [18].

Theorem 1 If (G, ·, τ) is a semitopological group and (G, τ) is a Bouziad space then (G, ·, τ) is a
topological group if (and only if) the multiplication operation (h, g) 7→ h · g is feebly continuous on
G×G.

Proof: From Lemma 2 we know that the multiplication operation on G is jointly continuous.
Therefore, by Lemma 1, we see that inversion is quasi-continuous at e. The result now follows
from [19, Lemma 4] where it is shown that each semitopological group with jointly continuous
multiplication and inversion that is quasi-continuous at the identity element is a topological group.
✷

Hence in the realm of Bouziad spaces, the problem of determining when a semitopological group is
a topological group reduces to the problem of determining when a semitopological group has feebly
continuous multiplication.

3 Strong quasi-continuity of multiplication

Let X, Y and Z be topological spaces. We will say that a function f : X × Y → Z is strongly
quasi-continuous, with respect to the second variable at (x, y) ∈ X × Y , if for each neighbourhood
W of f(x, y) and each neighbourhood U of x there exists a nonempty open subset U ′ ⊆ U and a
neighbourhood V ′ of y such that f(U ′ × V ′) ⊆ W , [27].

Remarks 1 It follows from Proposition 1 that the multiplication operation on a semitopological
group (G, ·, τ) is feebly continuous on G × G if, and only if, it is strongly quasi-continuous, with
respect to the second variable, at the point (e, e) ∈ G×G.

If (X, τ) is a topological space and a ∈ X then we shall denote by N (a) the family of all neigh-
bourhoods of a.

For any point a in a topological space (X, τ) and any dense subset D of X we can consider the
following two player topological game, called the Gp(a,D)-game. To define this game we must first
specify the “rules” and then also specify the definition of a “win”.
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The moves of the player α are simple. He/she must always select a neighbourhood of the point
a. However, the moves of the player β may depend upon the previous move of α. Specifically, for
his/her first move β may select any point b1 ∈ D. For α’s first move, as mentioned earlier, α must
select a neighbourhood A1 of a. Now, for β’s second move he/she must select a point b2 ∈ A1 ∩D.
For α’s second move he/she is entitled to select any neighbourhood A2 of a. In general, if α
has chosen An ∈ N (a) as his/her nth move of the Gp(a,D)-game then β is obliged to choose a
point bn+1 ∈ An ∩D. The response of α is then simply to choose any neighbourhood An+1 of a.
Continuing in this fashion indefinitely, the players α and β produce a sequence

(
(bn, An)

)

n∈N
of

ordered pairs with bn+1 ∈ An∩D ⊆ An ∈ N (a) for all n ∈ N, called a play of the Gp(a,D)-game. A
partial play

(
(bk, Ak) : 1 ≤ k ≤ n

)
of the Gp(a,D)-game consists of the first n moves of a play of the

Gp(a,D)-game. We shall declare α the winner of a play
(
(bn, An)

)

n∈N
of the Gp(a,D)-game if: for

each decreasing sequence (Un)n∈N of open subsets of X,
⋂

n∈N Un 6= ∅, whenever {k ∈ N : bk 6∈ Un}
is finite, for every n ∈ N, otherwise, β is declared the winner.

Note that if
⋂

n∈N {bk : k ≥ n} 6= ∅ then α wins the corresponding play
(
(bn, An)

)

n∈N
.

A strategy for the player α is a rule that specifies his/her moves in every possible situation that can
occur. More precisely, a strategy for α is an inductively defined sequence of functions t := (tn : n ∈
N). The domain of t1 is D1 and for each (b1) ∈ D1, t1(b1) ∈ N (a), i.e.,

(
(b1, t1(b1))

)
is a partial

play. Inductively, if t1, t2, . . . , tn have been defined then the domain of tn+1 is defined to be

{(b1, b2, . . . , bn+1) ∈ Dn+1 : (b1, b2, . . . , bn) ∈ Dom(tn) and bn+1 ∈ tn(b1, b2, . . . , bn) ∩D}.

For each (b1, b2, . . . , bn+1) ∈ Dom(tn+1), tn+1(b1, b2, . . . , bn+1) ∈ N (a). Equivalently, for each
(b1, b2, . . . , bn+1) ∈ Dom(tn+1),

(
(bk, tk(b1, . . . , bk)) : 1 ≤ k ≤ n+ 1

)
is a partial play.

A partial t-play is a finite sequence (b1, b2, . . . , bn) ∈ Dn such that (b1, b2, . . . , bn) ∈ Dom(tn) or,
equivalently, if bk+1 ∈ tk(b1, b2, . . . , bk) ∩ D for all 1 ≤ k < n. A t-play is an infinite sequence
(bn)n∈N such that for each n ∈ N, (b1, b2, . . . , bn) is a partial t-play.

A strategy t := (tn : n ∈ N) for the player α is said to be a winning strategy if each play of the
form: (bn, tn(b1, b2, . . . , bn))n∈N is won by α.

We shall call a point a a nearly q∗D-point if the player α has a winning strategy in the Gp(a,D)-game
played on X. For more information on topological games, see [11].

Lemma 3 Suppose that D is a dense subset of a topological space (X, τ) and a is a nearly q∗D-point
of X, then the player α possesses a strategy s := (sn : n ∈ N) in the Gp(a,D)-game such that every
s-play is bounded in X.

Proof: Let t := (tn : n ∈ N) be a winning strategy for the player α in the Gp(a,D)-game. We shall
inductively define a new strategy s := (sn : n ∈ N) for the player α.

Step 1. Let (b1) be a partial s-play, i.e., b1 ∈ D, define s1(b1) := t1(b1).

Now, suppose that s1, s2, ..., sk have been defined so that for each 1 ≤ i ≤ k:

(i) if (bn1
, ..., bnm) is a subsequence of (b1, ..., bi) ∈ Dom(si), then (bn1

, ..., bnm) ∈ Dom(tm);

(ii) if (b1, ..., bi) ∈ Dom(si) then

si(b1, ..., bi) =
⋂

{tm(bn1
, ..., bnm) : (bn1

, ..., bnm) is a subsequence of (b1, ..., bi)}.
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Step k + 1. Suppose that (b1, ..., bk+1) is a partial s-play, i.e., (b1, ..., bk) ∈ Dom(sk) and
bk+1 ∈ sk(b1, ..., bk) ∩ D. Let (bn1

, ..., bnm) be any subsequence of (b1, ..., bk+1) and consider the
following three cases:

(i) if nm < k + 1, then (bn1
, ..., bnm) is a subsequence of (b1, ..., bk) and so by the induction

hypothesis (bn1
, ..., bnm) ∈ Dom(tm);

(ii) if nm = k + 1 and m > 1, then (bn1
, ..., bnm−1

) is a subsequence of (b1, ..., bk) and so by the
induction hypothesis (bn1

, ..., bnm−1
) ∈ Dom(tm−1). On the other hand,

bnm = bk+1 ∈ sk(b1, ..., bk) ∩D ⊆ tm−1(bn1
, ..., bnm−1

) ∩D and so (bn1
, ..., bnm) ∈ Dom(tm);

(iii) if nm = k + 1 and m = 1, i.e., if n1 = k + 1 then (bn1
) = (bk+1) ∈ Dom(t1).

In all three cases, (bn1
, ..., bnm) ∈ Dom(tm). Define

sk+1(b1, ..., bk+1) :=
⋂

{tm(bn1
, ..., bnm) : (bn1

, ..., bnm) is a subsequence of (b1, ..., bk+1)}.

This completes the definition of s. Now suppose that (bn)n∈N is an s-play, we need to show that
{bn : n ∈ N} is bounded in X. To this end, let (Un)n∈N be a decreasing sequence of open sets such
that Un ∩ {bk : k ∈ N} 6= ∅ for each n ∈ N. If for some n ∈ N, {k ∈ N : bk ∈ Un} is finite then
⋂

n∈N Un 6= ∅. So we may suppose that for each n ∈ N, {k ∈ N : bk ∈ Un} is infinite. For each
n ∈ N, let Jn := {k ∈ N : bk ∈ Un}. Then (Jn)n∈N is a decreasing sequence of infinite subsets of N.
Hence there exists a strictly increasing sequence (nk)k∈N of the natural numbers such that nk ∈ Jk
for all k ∈ N.

We claim that (bnk
)k∈N is a t-play. To show this we must show that for each m ∈ N, (bn1

, . . . , bnm) ∈
Dom(tm). However, (bn1

, . . . , bnm) is a subsequence of (b1, b2, . . . , bnm) ∈ Dom(snm). Therefore, by
the construction of the strategy s, (bn1

, . . . , bnm) ∈ Dom(tm). Hence (bnk
)k∈N is a t-play. Now,

|{k ∈ N : bnk
6∈ Un}| < n for each n ∈ N, therefore,

⋂

n∈N Un 6= ∅. This shows that {bk : k ∈ N} is
bounded in X. �

Variations of the following result are well-known, see [6, 7, 13,19,22].

Lemma 4 Let X be a strongly Bouziad space, Y be a topological space and Z be a completely
regular space. If f : X × Y → Z is a separately continuous function and D is a dense subset of Y ,
then for each nearly q∗D-point y

∗ ∈ Y the function f is strongly quasi-continuous, with respect to
the second variable, at each point of X × {y∗}.

Proof: Let DX be any dense subset of X such that β does not have a winning strategy in the
GSB(DX)-game played on X. (Note: such a dense subset is guaranteed by the fact that X is a
strong Bouziad space.) We need to show that f is strongly quasi-continuous, with respect to the
second variable, at each point (x∗, y∗) ∈ X × {y∗}. So in order to obtain a contradiction let us
assume that f is not strongly quasi-continuous, with respect to the second variable, at some point
(x∗, y∗) ∈ X × {y∗}. Then there exist open neighbourhoods W of f(x∗, y∗) and U of x∗ so that
f(U ′ × V ′) 6⊆ W for each nonempty open subset U ′ of U and each neighbourhood V ′ of y0. By the
complete regularity of Z there exists a continuous function g : Z → [0, 1] such that g(f(x∗, y∗)) = 1
and g(Z \ W ) = {0}. Let W ′ := {z ∈ Z : g(z) > 3/4} ⊆ W . Note that by possibly making U
smaller we may assume that f(x, y∗) ∈ W ′ for all x ∈ U . We will now inductively define a strategy
t := (tn : n ∈ N) for the player β in the GSB(DX)-game played on X. However, we shall first:
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(a) let s := (sn : n ∈ N) be a strategy for the player α in the Gp(y
∗,D)-game such that every

s-play is bounded in Y . Note that by Lemma 3 such a strategy exists;

(b) set (for notational reasons) x0 := x∗, A0 := U and V0 := Y and let y0 be any element of D.

Step 1. Select (x1, y1) ∈ X × Y and an open set V1 and t1(∅) so that:

(i) y∗ ∈ V1 := {y ∈ V0 ∩ s1(y0) : f(x0, y) ∈ W ′};

(ii) (x1, y1) ∈ (A0 ∩DX)× (V1 ∩D) and f(x1, y1) 6∈ W ;

(iii) t1(∅) := (B1, x1) where, B1 := {x ∈ A0 : f(x, y1) 6∈ W}.

Now suppose that (xj , yj), Vj and tj have been defined for each 1 ≤ j ≤ n so that for each 1 ≤ j ≤ n

(i) y∗ ∈ Vj := {y ∈ Vj−1 ∩ sj(y0, . . . , yj−1) : f(xj−1, y) ∈ W ′};

(ii) (xj , yj) ∈ (Aj−1 ∩DX)× (Vj ∩D) and f(xj, yj) 6∈ W ;

(iii) tj(A1, . . . , Aj−1) := (Bj , xj), where Bj := {x ∈ Aj−1 : f(x, yj) 6∈ W}.

Step n + 1. Suppose that An is a nonempty open subset of Bn. That is, suppose that An is the
nth move of the player α. Select (xn+1, yn+1) ∈ X × Y and open set Vn+1 and tn+1(A1, . . . , An) so
that:

(i) y∗ ∈ Vn+1 := {y ∈ Vn ∩ sn+1(y0, . . . , yn) : f(xn, y) ∈ W ′};

(ii) (xn+1, yn+1) ∈ (An ∩DX)× (Vn+1 ∩D) and f(xn+1, yn+1) 6∈ W ;

(iii) tn+1(A1, . . . , An) := (Bn+1, xn+1), where Bn+1 := {x ∈ An : f(x, yn+1) 6∈ W}.

This completes the definition of t := (tn : n ∈ N). Now since t is not a winning strategy for
the player β in the GSB(DX)-game there exists a play (An, tn(A1, . . . , An−1))n∈N where α wins.
Therefore, there exists a subspace S ⊆ X and a subsequence (xnk

)k∈N of (xn)n∈N, contained in S,

such that for each decreasing sequence (Un)n∈N of open subsets of S,
⋂

n∈N Un
S
6= ∅, whenever

{k ∈ N : xnk
6∈ Un} is finite, for every n ∈ N.

Define ϕ : Y → Cp(S) - [the continuous real-valued functions defined on S, endowed with the
topology of pointwise convergence on S] by,

ϕ(y)(s) := (g ◦ f)(s, y) for all s ∈ S.

Then ϕ is well-defined and continuous on Y . Now, since (yn)n∈N is an s-play, {yn : n ∈ N} is
bounded in Y and so {ϕ(ym) : m ∈ N} is bounded in Cp(S). Thus, by assumption, {ϕ(ym) : m ∈ N}

τp

is a compact subspace of Cp(S). Hence the sequence (ϕ(yn))n∈N has a cluster point h ∈ C(S). Now,
for each fixed k ∈ N,

f(xnk
, yi) ∈ f({xnk

} × Vi) ⊆ f({xnk
} × Vnk+1) ⊆ W ′

for all i > nk, since yi ∈ Vi for all i ∈ N. Therefore, ϕ(yi)(xnk
) ∈ (3/4, 1] for all i > nk and so

h(xnk
) ∈ [3/4, 1] ⊆ (2/3, 1] for all k ∈ N. Since h is continuous, for every k ∈ N there exists a

relatively open subset Uk of S such that xnk
∈ Uk ⊆ Ank−1 and h(Uk) ⊆ (2/3, 1]. Hence the set

⋂

k∈N

⋃

i≥k Ui
S
6= ∅.
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[Here, X
S
denotes the closure of a subset X of S with respect to the relative topology on S].

Let x∞ ∈
⋂

k∈N

⋃

i≥k Ui
S
⊆ S. Then h(x∞) ∈ [2/3, 1].

On the other hand, if we again fix k ∈ N then

f(Ui × {yk}) ⊆ f(Ani−1 × {yk}) ⊆ f(Ai−1 × {yk}) ⊆ f(Ak × {yk}) ⊆ Z \W

for all i > k. Therefore, f(
⋃

i>k Ui
S
× {yk}) ⊆ Z \ W for each k ∈ N and so f(x∞, yk) ∈ Z \W

for each k ∈ N; which implies that h(x∞) = 0. This however, contradicts our earlier conclusion
that h(x∞) ∈ [2/3, 1]. Hence f is strongly quasi-continuous, with respect to the second variable,
at (x∗, y∗). ✷

Corollary 1 Suppose that (G, ·, τ) is a semitopological group such that (G, τ) is a strong Bouziad
space. Then (G, ·, τ) is a topological group, provided (G, τ) has at least one nearly q∗D-point, for
some dense subset D of G.

Proof: Since for each g ∈ G, x 7→ g · x, is a homeomorphism on G, we may assume that the
identity element e ∈ G is a nearly q∗D-point, for some dense subset D of G. Then by Lemma 4 the
multiplication operation on G is strongly quasi-continuous, with repect to the second variable, at
the point (e, e) ∈ G×G. Hence, by Remark 1 the multiplication operation on G is feebly continuous.
The result now follows from Theorem 1 since every strongly Bouziad space is a Bouziad space. ✷

If (X, τ) is a topological space and a ∈ X, then we call the point a, a q-point if there exists a
sequence of neighbourhoods (Un)n∈N of a such that every sequence (xn)n∈N in X, with xn ∈ Un for
all n ∈ N, has a cluster-point in X.

Corollary 2 Suppose that (G, ·, τ) is a semitopological group such that (G, τ) is a Bouziad space.
Then (G, ·, τ) is a topological group, provided (G, τ) has at least one q-point.

Proof: It is well-known that if K is a q-space, then every subset of Cp(K), that is bounded in
Cp(K), has a compact closure. Hence, by the comment at the end of the introduction to this paper,
we see that (G, τ) is a strong Bouziad space. Moreover, it is clear that every q-point of G is a nearly
q∗G-point of G. Hence this result follows from Corollary 1. ✷

Corollary 3 ([30]) Suppose that (G, ·, τ) is a semitopological group such that (G, τ) is pseudo-
compact. Then (G, ·, τ) is a topological group, provided every subset of Cp(G), that is bounded in
Cp(G), has a compact closure.

Proof: From the comment at the end of the introduction to this paper, it follows that (G, τ) is
a strong Bouziad space. Furthermore, since G is pseudo-compact, every point of G is a nearly
q∗G-point of G. So the result follows from Corollary 1. ✷

Corollary 4 ([23]) If (G, ·, τ) is a semitopological group such that (G, τ) is homeomorphic to a
product of Čech-complete spaces, then (G, ·, τ) is a topological group.

Proof: It is easy to see that every nearly strongly Baire space (see, [23] for the definition) is a strong
Bouziad space and that every nearly qD-point (see [23] for the definition) is a nearly q∗D-point. Now,
in [23] it is shown that every space that is homeomorphic to a product of Čech-complete spaces
is a nearly strongly Baire space with at least one nearly qD-point. Hence the result follows from
Corollary 1. ✷
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Corollary 5 ([19]) If (G, ·, τ) is a semitopological group such that (G, τ) is a completely regular
strongly Baire space, then (G, ·, τ) is a topological group.

Proof: It is easy to see that every completely regular, strongly Baire space (see [19] for the
definition) is a strong Bouziad space and possesses at least one nearly q∗D-point. The result then
follows from Corollary 1. ✷
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