Method maxcoeff=2.9, c=[ 0.25 , 0.5, 0.75, 1, 1]

AUBV (scaled)

0.285714 -0 -0 0 0
0.342666 0.285714 -0 0 0
0.444812 -0.149747 0.285714 0 0
-0.0576971 -0.381502 0.278881 0.285714 0
-1.50952 1.2339 2.22131 -1.34199 0.285714
1 -0.0357143 -0.0803571 -0.0379464 -0.0139509
1 -0.12838 -0.207047 -0.153536 -0.101774
1 0.169221 0.0612696 -0.0313598 -0.118664
1 0.874603 0.4206 -0.0308104 -0.419112
1 0.110578 -0.698562 -0.222033 0.954026
-1.50952 1.2339 2.22131 -1.34199 0.285714
0 0 0 0 1
2.15407 -1.41538 -2.92849 1.70108 1.05482
2.2364 -1.21266 -2.84084 1.58701 0.571785
2.9234 -0.701302 -2.02284 0.949272 0.202843
1 0.110578 -0.698562 -0.222033 0.954026
0 0 0 0 0
0 -0.566101 0.21928 0.331776 0.491292
0 -0.341701 0.0381276 -0.192298 0.625293
0 -1.35138 -0.0303716 -0.0649675 -0.0269828

Maximum coefficient scaled is 2.928490 .

irks(0.285714,[0.25,0.5,0.75,1,1], [0.0816,0.232,0.419],[ -0.459002 0.167124 1; 0.539889 1 0; 1 0 0; ])

[alpha,beta,gamma,stageerror]

-0.000338649 0.0495424 -0.0506454 -0.00502776
0 -0 -0 -0.0167004
0.0816 -0.110548 0.0763574 -0.00225608
0.232 -0.123264 0.107656 0.00240694
0.419 0.0221207 0.0343183 -0.000338649

Error estimation

phi=[0.000000 0.000000 0.000000 0.000000 0.000000 ]
phi1=[-1024.000000 1536.000000 -1024.000000 6657.919213 -6401.919213 ] phi0=256.000000 gives y^{p+1}(t_n-theta*h) at theta=0.500000

M(infty)

0 0 0 0 0
-68.9948 -5.61552 1.79631 0.266585 -0.0702156
-194.993 -16.4748 4.60042 0.79786 -0.0572601
-380.894 -30.325 8.39594 1.13166 0.0525001
-831.65 -71.5049 20.6583 2.76525 -0.116552

Method john-24-10-05a, c=[ 0.25 , 0.5, 0.75, 1, 1]

AUBV (scaled)

0.285714 0 -0 0 0
0.546778 0.285714 -0 0 -0
0.580959 -0.049954 0.285714 0 -0
-0.53723 -0.724377 0.710726 0.285714 -0
0.598858 1.22727 1.09563 -0.942304 0.285714
1 -0.0357143 -0.0803571 -0.0379464 -0.0139509
1 -0.332493 -0.309104 -0.191807 -0.114531
1 -0.0667193 -0.106597 -0.131732 -0.17707
1 1.26517 0.355474 -0.41248 -0.946443
1 -1.26517 -0.856962 0.0881574 1.12642
0.598858 1.22727 1.09563 -0.942304 0.285714
0 0 0 0 1
-0.918648 -1.26517 -1.03219 0.957838 0.993001
-0.548116 -1.00336 -1.14261 0.904723 0.524195
1.26517 -0.184502 -1.26517 0.568317 0.185666
1 -1.26517 -0.856962 0.0881574 1.12642
0 0 0 0 0
0 1.26517 0.371098 0.0104253 0.628463
0 1.26517 0.133494 -0.503311 0.748417
0 -0.569481 -0.0582987 -0.225824 0.132212

Maximum coefficient scaled is 1.265166 .

irks(0.285714,[0.25,0.5,0.75,1,1], [0.0970762,0.244027,0.420115],[ -0.143543 0.466178 1; 0.257525 1 0; 1 0 0; ])

[alpha,beta,gamma,stageerror]

-0.000338649 0.061909 -0.063012 -0.00572628
0 -0 0 -0.0253818
0.0970762 -0.117423 0.07664 -0.0153849
0.244027 -0.0972372 0.0917941 -0.0270568
0.420115 0.184402 -0.116872 -0.000338649

Error estimation

phi=[0.000000 0.000000 0.000000 0.000000 0.000000 ]
phi1=[-1024.000000 1536.000000 -1024.000000 -653.306743 909.306743 ] phi0=256.000000 gives y^{p+1}(t_n-theta*h) at theta=0.500000

M(infty)

-0 -0 0 0 0
-66.6807 -7.60092 1.75508 0.586124 0.0633437
-166.389 -19.6393 3.8998 1.52883 0.312568
-313.191 -35.2 6.67707 2.44212 0.761721
-712.956 -82.1213 18.0436 5.49828 1.259

Method john-24-10-05b, c=[ 0.2 , 0.4, 0.6, 0.8, 1]

AUBV (scaled)

0.285714 -0 -0 0 0
0.140345 0.285714 -0 0 0
0.429729 -0.135731 0.285714 0 0
-1.0433 -0.818529 0.727581 0.285714 0
0.479519 1.95193 1.95193 -1.71716 0.285714
1 -0.0857143 -0.0742857 -0.0262857 -0.00754286
1 -0.0260593 -0.124709 -0.0899843 -0.0520339
1 0.020288 -0.0461637 -0.0789879 -0.0962613
1 1.64853 0.381901 -0.30427 -0.561244
1 -1.95193 -0.919634 0.337258 1.17239
0.479519 1.95193 1.95193 -1.71716 0.285714
0 0 0 0 1
-0.974861 -1.70923 -1.95193 1.71045 0.97364
-0.729114 -1.15141 -1.95193 1.50795 0.491135
1.95193 -0.202145 -1.88803 0.863423 0.161868
1 -1.95193 -0.919634 0.337258 1.17239
0 0 0 0 0
0 1.95193 0.415642 -0.159487 0.757665
0 1.83336 0.160092 -0.620423 0.95173
0 -0.887047 -0.0586352 -0.241508 0.204781

Maximum coefficient scaled is 1.951928 .

irks(0.285714,[0.2,0.4,0.6,0.8,1], [0.114196,0.284526,0.472827],[ -0.114162 0.487435 1; 0.295121 1 0; 1 0 0; ])

[alpha,beta,gamma,stageerror]

-0.000338649 0.06659 -0.067693 -0.00565306
0 -0 -0 -0.0126417
0.114196 -0.131133 0.077138 -0.00905673
0.284526 -0.106794 0.0864591 -0.00881187
0.472827 0.205353 -0.144393 -0.000338649

Error estimation

phi=[625.000000 -2500.000000 3750.000000 -2500.000000 625.000000 ]
phi1=[-927.120743 604.241486 645.758514 -947.879257 314.575851 ] phi0=310.424149 gives y^{p+1}(t_n-theta*h) at theta=0.499336

M(infty)

-0 -0 0 0 0
-134.293 -10.1976 2.74735 0.665469 0.0681862
-333.325 -25.9631 6.35719 1.73867 0.334024
-593.492 -44.6475 10.6294 2.69871 0.798217
-1210.17 -92.9385 24.5237 5.27451 1.14171