|
Multistability and nonsmooth bifurcations in
the
|
Hinke Osinga, Jan Wiersig, Paul Glendinning and Ulrike Feudel |
The quasiperiodically forced circle map is a map on the torus with lift
where n and xn modulo 1 give the coordinates on the torus. The parameter is the phase shift, K denotes the strength of the nonlinearity (K > 0), is the forcing amplitude, and the forcing frequency is irrational.
We use | in all our computations. |
We are mainly interested in the bifurcations that happen inside the tongue with zero rotation number. The boundary of this tongue is described by the function the absolute value of which is shown in Figure 1.
Inside the main tongue there are regions where more than one attractor exist simultaneously. We study these regions by looking at sections in the parameter space: in one section we keep K = 0.8 fixed, in the other we take = 0. For large nonlinearity K the bifurcations change from smooth to nonsmooth. We discuss both the saddle-node and pitchfork bifurcations and study codimension-2 points as well.