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Abstract

We study the planar FitzHugh-Nagumo system with an attracting
periodic orbit that surrounds a repelling focus equilibrium. When the
associated oscillation of the system is perturbed, in a given direction
and with a given amplitude, there will generally be a change in phase
of the perturbed oscillation with respect to the unperturbed one. This
is recorded by the phase transition curve (PTC), which relates the old
phase (along the periodic orbit) to the new phase (after perturbation).
We take a geometric point of view and consider the phase-resetting
surface comprising all PTCs as a function of the perturbation am-
plitude. This surface has a singularity when the perturbation maps
a point on the periodic orbit exactly onto the repelling focus, which
is the only point that does not return to stable oscillation. We also
consider the PTC as a function of the direction of the perturbation
and present how the corresponding phase-resetting surface changes
with increasing perturbation amplitude. In this way, we provide a
complete geometric interpretation of how the PTC changes for any
perturbation direction. Unlike what has been reported in the litera-
ture so far, the FitzHugh–Nagumo system is a generic example and,
hence, representative for other planar vector fields.
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1 Introduction

Phase resetting is a technique that is often applied in neuroscience to study
the behaviour and properties of neuronal firing patterns [3, 18]. In essence,
given a stable cyclic oscillation, denoted Γ, a phase reset is the act of ap-
plying a perturbation of a particular strength, in a particular direction, and
recording the resulting phase shift upon return to Γ with respect to the phase
at which the perturbation was applied. Phase resetting is strongly related
to the notion of isochrons, which each comprise all points that converge to Γ
with a given phase: the phase reset maps a point on Γ to a perturbed point
that lies on a particular isochron and, hence, returns to Γ with the phase
associated with this isochron. Winfree [21] devoted most of his career to the
study of isochrons and the properties of so-called phase transition and phase
response curves, which relate the ‘old’ phase ϑo along Γ with the ‘new’ phase
ϑn and phase shift ϑn − ϑo, respectively, that result from a given fixed per-
turbation. Winfree defined the old and new phases as fractions of the total
time needed to complete one oscillation; hence, ϑo, ϑn ∈ [0, 1) are defined on
the circle S1 := R/Z.

Winfree’s classical paper on isochrons [20] defines a latent phase for each
point in the basin of attraction of Γ for a given system of first-order dif-
ferential equations (a vector field). Winfree made a series of conjectures
regarding the properties of isochrons that were later confirmed by Gucken-
heimer [7] who realised that isochrons are, in fact, stable manifolds of fixed
points given by the fixed-time return map associated with the period TΓ of
Γ. Normally hyperbolic invariant manifold theory [10], which at the time
was still being developed, implies that the family of isochrons, parametrised
by the phase ϑo ∈ [0, 1), foliates the basin of attraction of Γ; this means
that any point in the basin lies on exactly one isochron (of a specific phase)
in the family. Since isochrons are global invariant manifolds, they are not
known analytically (except in very special cases) and need to be computed
with advanced numerical tools [12, 16].

In this paper, we study phase resets for the FitzHugh–Nagumo system [5,
15], which is a planar, polynomial system that will be introduced in the next
section; see already system (1). The parameters for the FitzHugh–Nagumo
system are chosen such that it has an attracting periodic orbit Γ, and our
interest lies in the possible behaviour of its phase transition curves (PTCs)
that relate the new phase ϑn to the old phase ϑo before the reset. Note that,
certainly for planar systems, not all points in the phase space converge to
Γ, and phase resets are meant to involve only resets to points in the basin
of attraction of Γ; discontinuities arise when resets occur to points in the
so-called phaseless set, which consists of all points outside of the basin of
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Figure 1: Phase resets for the FitzHugh–Nagumo system (1) in the x-
direction for perturbation amplitudes A = 0.2, A = Ac ≈ 0.4041, and A =
0.6. Panel (a) shows the periodic orbit Γ (black) overlayed on 50 isochrons
uniformly distributed in phase, coloured from phase 0 (cyan) to 1 (dark blue).
Also shown are the shifted perturbation sets Γ0.2 (orange), Γ0.4041 (red), Γ0.6

(purple), with the resulting PTCs shown in matching colours in panel (b) over
an extended ϑn-range, where the fundamental square in the (ϑo, ϑn)-plane is
highlighted (green shading).

attraction. For the FitzHugh–Nagumo system, we encounter a phaseless set
that is quite typical for planar vector fields [12, 14, 16]: it comprises a single
point, denoted x∗, which is a repelling focus equilibrium.

Figure 1 illustrates three phase resets for the FitzHugh–Nagumo system.
Panel (a) shows Γ together with 50 isochrons Iϑ that are uniformly distributed
in phase; the isochrons are shaded in increasingly darker colours for increasing
ϑ ∈ [0, 1). All isochrons are transverse to Γ and accumulate on x∗ sufficiently
slowly in a clockwise spiralling fashion. A perturbation is applied to each
point along Γ, in the horizontal direction (parallel to the x-axis). Hence, Γ
is effectively shifted horizontally by the perturbation amplitude A, chosen as
A = 0.2, A = Ac ≈ 0.4041 and A = 0.6, which gives the shifted perturbation
sets labelled Γ0.2, Γ0.4041 and Γ0.6, respectively. The resulting three PTCs
are shown in panel (b) over an extended range of ϑn; here and in subsequent
figures, the region with (ϑo, ϑn) ∈ [0, 1) × [0, 1) is highlighted, because it is
the ‘fundamental square’ in the (ϑo, ϑn)-plane representing the torus S1 ×
S1 (by identifying the left and right, and top an bottom sides). The local
maxima and minima of the PTCs arise when the perturbation set is tangent
to one of the isochrons in the family; in Fig. 1(a), such tangencies occur, for
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example, near the minimum of the shifted perturbation sets (leading to a
local maximum of the PTCs).

Note that the perturbation set Γ0.4041 in Fig. 1(a) passes exactly through
the repelling focus x∗ around which the isochrons spiral; indeed, A = Ac is
the unique perturbation amplitude with this property, and we refer to it as
the critical amplitude Ac. Its relevance is the following. For the perturba-
tion amplitude A = 0.2 well before Ac, the perturbation set ΓA crosses all
isochrons, meaning that the PTC covers the full range of ϑn ∈ [0, 1). Fig-
ure 1(b) shows that the PTC for A = 0.2 can be viewed as a smooth deforma-
tion of the diagonal, which corresponds to a phase reset with A = 0, that is,
to Γ itself. Note that the PTC for A = 0.2 is a continuous smooth curve on
the torus S1×S1, represented by the fundamental square [0, 1]× [0, 1]. Simi-
larly, when A = 0.6 past Ac, the perturbation set ΓA crosses only a subset of
the isochron family. The resulting PTC in Fig. 1(b) is again a smooth curve
on the torus, but it is now topologically different. Indeed, for 0 ≤ A < Ac,
the PTC is a 1:1 torus knot, while for A > Ac it is a 1 :0 torus knot [13, 17].

Precisely at A = Ac, the PTC is singular: the point on Γ with phase
ϑo ≈ 0.3484 resets to x∗. In Fig. 1(b), ϑn approaches negative infinity in
the covering space R of ϑn as this value of ϑo is approached from either side.
Winfree referred to such an event as oscillator death [22], and he realised that
it separates the above topologically different cases of PTCs; see also [1, 6].
Remarkably, Winfree was able to construct an idealised sketch of a surface
in (ϑo, A, ϑn)-space [19, Fig. 5], based on about 300 experimental data points
resulting from phase reset experiments (on yeast cells) at varying phases
ϑo and perturbation amplitudes A. He observed that his sketch resembles
a ‘spiral staircase rising counterclockwise’ and explained that the rotation
axis points to an isolated singular stimulus in the (ϑo, A)-plane; the singular
stimulus is precisely the perturbation with amplitude A = Ac that leads
to an interaction with x∗. More precisely, Winfree’s surface is a helix with
its axis the vertical line through the point (ϑo, A) with A = Ac and ϑo

the phase of the point on Γ that resets to x∗ for this critical perturbation
amplitude. However, Winfree’s spiralling staircase is not the typical situation
for resets interacting with a single phaseless point. Mathematically speaking,
his helical surface only appears if the isochrons are not spiralling around the
phaseless point. We suspect that the expansion rate near the phaseless point
(relative to the difference in rotation speed) was so strong that the spiralling
behaviour could not be resolved in his experiment.

In this paper, we present the FitzHugh–Nagumo system as the typical
case of phase resetting in a planar system with a phaseless point. Specifi-
cally, the requirement is that the isochrons spiral around this point because
there is (generically) a difference between the period of Γ and the rotational
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speed around the phaseless point. We made this point in previous work [14],
where we studied a family of planar model vector fields, also due to Win-
free, for which the isochrons are known explicitly. However, that example
has rotational symmetry and, hence, is highly non-generic. More generally,
studies to date of changes in the PTC for varying perturbation amplitudes
focused on similar simplified examples [3, 12, 14, 20] that exhibit symmetries
to aid in the analysis, or on very realistic models [1, 6, 13, 16, 17, 18] with a
complexity that obscures the essential underlying mechanisms. In contrast,
the FitzHugh–Nagumo system has no symmetries and the difference in rota-
tion speeds around Γ and x∗ is sufficiently large to observe the details of the
generic changes of the PTC, as the perturbation amplitude A is increased
through Ac. This is in contrast to the example of the Van der Pol system that
was also studied in [14], but for which the difference in rotation speed turned
out to be too small — much like what we suspect was the case in Winfree’s
experiment [19]. Moreover, the Van der Pol system still has a symmetry;
namely, it is invariant under rotation by π around the origin, which is the
phaseless point.

In this paper, we show that, as A increases through Ac, there is an infinite
sequence of twin tangencies, where the phase reset is such that the shifted
periodic orbit Γ has two separate points of tangency with one and the same
isochron. Each such twin tangency changes how many times the unit interval
of ϑn is covered by the PTC, which increases to infinity as A↗ Ac and then
decreases again past A = Ac. We are able to identify and illustrate clearly
such twin tangencies of the FitzHugh–Nagumo system — which is a first for
a generic planar vector field. Moreover, we discuss how these changes of the
PTC (for a given direction of perturbation) are encoded by the geometry of
the phase-resetting surface in (ϑo, A, ϑn)-space. Colloquially speaking, owing
to the spiralling nature of the isochrons near ϑn, this surface rolls up around
a singular vertical line at A = Ac and the corresponding value of ϑo, and this
has the observed consequences for the transition of the PTC. We also present
a discussion of phase resets with perturbations in different directions (given
by an angle ϕd), which are associated with different values of Ac and ϑo.
To this end, we present the phase-resetting surface in (ϑo, ϕd, ϑn)-space, and
show how it changes with the perturbation amplitude A. To obtain these
results we compute isochrons and PTCs with a boundary-value problem setup
that was implemented within the package CoCo [2]; see [9, 13, 16] for more
details.

This paper is organised as follows. In Sec. 2 we introduce the FitzHugh–
Nagumo system and state the specific parameter values we use. Section 3
then introduces its PTC for a perturbation in the positive x-direction, and
how the PTC is defined as the graph of a function PA that depends on the

5



Winfree’s values no time-scale separation off-set from origin
a = 0.7 c = 1 z = −0.8
b = 0.8

Table 1: The values of the parameters of the FitzHugh–Nagumo system (1)
that are used throughout.

perturbation amplitude A. This includes a discussion of the loss of invert-
ibility of the map PA in Sec. 3.1, and its changes due to twin tangencies in
Sec. 3.2; the associated phase-resetting surface in (ϑo, A, ϑn)-space is intro-
duced and presented in Sec. 3.3. In Sec. 4, we discuss the influence of the
direction of the perturbation, as represented by the angle ϕd; the five qualita-
tively different cases of the phase-resetting surface for fixed A are presented
and discussed in Sec. 4.1. We present in Sec. 5 a discussion and brief outlook
on possible future work.

2 The FitzHugh–Nagumo system

Winfree [21] studied the FitzHugh–Nagumo system [5, 15] as a typical planar
example that cannot be analysed explicitly. He wrote the system as{

ẋ = c (y + x− 1
3
x3 + z),

ẏ = −1
c

(x− a+ b y),
(1)

and his interest was in the regime for which this system has an attracting
periodic orbit with a repelling focus equilibrium as the single phaseless point.
His numerical explorations suggested that the isochron structure is extremely
complicated, which was later confirmed with more advanced computational
methods [11]. An immediate consequence of such a complex isochron struc-
ture is that the FitzHugh–Nagumo system may feature complicated PTCs
for phase resets well before the interaction with the phaseless point [13]. One
particular reason for this complexity is a significant difference in time scales
between the evolutions of the x- and y-coordinates, as given by the choice
for the parameter c [12].

We consider system (1) in the same parameter regime as Winfree, but
set c = 1, so that there is effectively no time-scale separation; moreover, we
introduce the off-set z = −0.8 to move the equilibrium away from the origin.
This choice of parameter values is given in Table 1, and it results in the
overall structure of isochrons of the FitzHugh–Nagumo system as illustrated
in Fig. 1(a). More specifically, system (1) has the attracting periodic orbit Γ
of period TΓ ≈ 10.8329, with the zero-phase point γ0 ≈ (0.9660, 0.1345) ∈ Γ,
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defined (by convention in the field) as the point with the maximum value
of the x-coordinate. The motion along Γ is clockwise, and it surrounds the
repelling focus x∗ ≈ (0.2729, 0.5339) with eigenvalues 0.0628±0.5056 i, which
constitutes the phaseless set. Since the rotation period around x∗ is larger
than TΓ, the isochrons of Γ spiral around x∗ in the clockwise direction; see
Fig. 1(a).

3 PTCs for varying perturbation amplitude

The three PTCs illustrated in Fig. 1 for the FitzHugh–Nagumo system (1)
with parameters as in Table 1 are only part of the story of the transition
from a 1 : 1 to a 1 : 0 torus knot. As the perturbation amplitude A increases
towards Ac, the PTC changes dramatically. To aid the discussion, we define
the phase-resetting function

PA : ϑo ∈ [0, 1)→ ϑn ∈ [0, 1) (2)

as the function from the old to the new phase, which has the PTC with given
perturbation amplitude A ≥ 0 as its graph graph(PA). Throughout this sec-
tion, we consider exclusively perturbations in the fixed direction of increasing
x, as was done in Fig. 1; this is natural in terms of the neurophysiological
interpretation of the FitzHugh–Nagumo system because resets are typically
achieved by voltage input [5, 15]. The phase-resetting function P0 (in the
absence of a perturbation) is the identity, meaning that the PTC for A = 0
is the diagonal, labelled Γ in Fig. 1(b) and similar figures. In particular, this
means that PA is invertible when A is sufficiently small. However, when A
becomes too large, invertibility of PA is lost.

3.1 Loss of invertibility

Figure 2 illustrates the loss of invertibility in the style of Fig. 1 with the
perturbation sets and PTCs for A = 0.08, A = 0.1793, and A = 0.28. Pan-
els (a1) and (a2) of Fig. 2 show Γ with the three shifted perturbation sets
together with three highlighted isochrons, and panels (b1) and (b2) show
the corresponding PTCs. The perturbation set ΓA for A = 0.08 intersects
all isochrons transversely and, consequently, PA is invertible and the PTC is
monotonically increasing. At A ≈ 0.1793 the perturbation set has a cubic
tangency with the isochron I0.0820, which means that the PTC has an inflec-
tion point at the value ϑn = 0.0820; see the enlargement panels (a2) and (b2).
For larger values of A the perturbation set ΓA has quadratic tangencies with
two different isochrons; for the case A = 0.28 shown in Fig. 2, these are
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Figure 2: Transition through the cubic tangency at A ≈ 0.1793. Panel (a1)
shows Γ (black), Γ0.08 (orange), Γ0.1793 (magenta), and Γ0.28 (purple), along
with the isochrons I0.0792 (cyan), I0.0820 (olive), and I0.9807 (dark blue), and
panel (b1) shows the corresponding PTCs in matching colors. Panels (a2)
and (b2) are respective enlargements near the cubic tangency.

I0.0792 and I0.9897. As a consequence, the PTC is no longer invertible: for
A = 0.28 it has a local maximum and a local minimum, with ϑn = 0.0792
and ϑn = 0.9897, respectively, for A = 0.28. Indeed, Figure 2 clearly illus-
trates that the loss of invertibility of the PTC is due to the cubic tangency
of the perturbation set with an isochron; see also [13, 17].

3.2 First and last twin tangency

As A is increased further towards Ac, the local maximum of the PTC moves
up in ϑn and its local minimum moves down. When viewed in the covering
space, as in Fig. 2(b1), the two extrema move further and further apart,
and their difference in ϑn becomes an integer for special values of A. When
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Figure 3: The first twin tangency at A ≈ 0.4032 < Ac. Panel (a1) shows Γ
(black) with Γ0.4032 (magenta) and the isochron I0.0881 (olive), and panel (a2)
with its inset show successive enlargements near the twin tangency points.
The corresponding PTC is shown in panel (b) over an extended range of ϑn.

ϑn is taken modulo 1 on the fundamental square, the local maximum and
minimum then have equal values, which marks a transition in terms of how
many times the full range of ϑn ∈ [0, 1) is covered by PA and, hence, the
PTC. Geometrically, this means that there are two (quadratic) tangencies
between the perturbation set and one and the same isochron, given by the
ϑn-value of the simultaneous maximum and minimum. We call this a twin
tangency and Fig. 3 illustrates the first one as A is increased, which occurs
approximately at A ≈ 0.4032. Panel (a1) shows that Γ0.4032 is tangent to the
single isochron I0.0881 at two different points; note from the enlargements in
panel (a2) that one of these tangencies is very close to the phaseless point
x∗. The representation of the PTC over an extended ϑn-range illustrates
that its maximum and minimum have a difference of 1 in the covering space
and, hence, have the same ϑn-value in the fundamental square. Notice that
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Figure 4: The last twin tangency at A ≈ 0.4168 > Ac. Panel (a1) shows
Γ (black) with Γ0.4168 (cyan) and the isochron I0.0892 (olive), and panel (a2)
and its inset are successive enlargements near the twin tangency points. The
corresponding PTC is shown in panel (b) over an extended range of ϑn.

Γ0.4032 intersects every isochron precisely three times; equivalently, the PTC
in Fig. 3(b) covers the ϑn-range [0, 1) of the torus precisely three times;
note that the PTC remains a 1 : 1 torus knot (ϑn still increases by 1 with
ϑo ∈ [0, 1)). As A increases further towards Ac, the minimum of the PTC
moves towards lower and lower values of ϑn in the covering space, such that
there is an infinite sequence of twin tangencies, each increasing the number
of coverings of the unit interval by 2.

At A = Ac, the PTC changes topological type from 1 : 1 to a 1 : 0
torus knot. This happens in the limit of an infinite covering of the ϑn-range
[0, 1). For A past the critical value Ac, there is a sequence of twin tangencies
in reverse that reduces the number of times the ϑn-range [0, 1) is covered;
the difference is that, at each twin tangency, the perturbation set ΓA now
crosses all isochrons exactly an even number of times. Figure 4 illustrates
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the last twin tangency of this reverse sequence in the style of Fig. 3. As
panels (a1) and (a2) of Fig. 4 show, the perturbation set Γ0.4168 has two
points of quadratic tangency with one and the same isochron I0.0892. Note
that, compared to the first twin tangency, the perturbation set and the second
tangency point is now ‘on the other side’ of the phaseless point x∗. The PTC
in Fig. 4(b) is now a 1 : 0 torus knot that covers [0, 1) exactly twice. After
the last twin tangency, for A > 0.4168, the PTC loses surjectivity and no
longer covers the full range of ϑn: the transition through Ac is complete; see
the case for A = 0.6 in Fig. 1(b).

3.3 Phase-resetting surface near its singularity

The entire transition of the PTC through Ac can be represented geomet-
rically by the phase-resetting surface consisting of the PTCs for any A.
More formally, we now consider the function P(ϑo, A) = PA(ϑo) over the
(ϑo, A)-plane, and the phase-resetting surface of system (1) in (ϑo, A, ϑn)-
space is graph(P) = {graph(PA) | A ∈ R≥0}. This surface is shown in
Fig. 5(a). Specifically, we plot the phase-resetting surface over the extended
ϑn-range [−1, 2], so that effectively three copies or sheets are shown. Our
focus here is on a neighbourhood of the singular parameter point S given by
A = Ac ≈ 0.4041 and ϑo ≈ 0.3484, for which the corresponding point on
the periodic orbit Γ maps exactly to x∗. In (ϑo, A, ϑn)-space, this parameter
point S gives rise to a singular vertical line, and the phase-resetting surface
spirals around it.

Figure 5(b) shows a different surface, which is obtained by plotting the
family of isochrons in (x, y, ϑ)-space as a function of their ϑn-values. Here we
focus on a region near the phaseless point x∗, which similarly gives rise to
a singular vertical line, and also show three copies in the extended ϑn-range
[−1, 2]. Observe the striking similarity between the phase-resetting surface
near S in Fig. 5(a) and the isochron surface near x∗ in panel (b). This
is explained by the fact that points (ϑo, A) near S are mapped smoothly
and uniquely to points in the (x, y)-plane near x∗ by the ‘action’ of the
perturbation, given by (ϑo, A) 7→ γ(ϑo)+(A, 0) with γ(ϑo) ∈ Γ. Locally near
the singular point S and the phaseless set x∗, this mapping is a bijection [14].
Hence, the phase-resetting surface in Fig. 5(a) is the diffeomorphic image of
the surface of isochrons in Fig. 5(b) under the local inverse. In particular,
the level set of the phase-resetting surface for any fixed value of ϑn is a spiral
that accumulates on (but never reaches) the respective point on the vertical
line S. In fact, the surface in Fig. 5(a) was rendered from a selection of such
spirals, each of which was computed as a curve for a fixed value of ϑn.

The spiralling nature of the phase-resetting surface around the line S in
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Figure 5: The phase-resetting surface graph(PA) of system (1) in (ϑo, A, ϑn)-
space near its singular vertical line S in panel (a), and the surface of isochrons
in (x, y, ϑ)-space near the phaseless set x∗ in panel (b), both shown over the
extended ϑn-range [−1, 2].

(ϑo, A, ϑn)-space is the ‘geometric encoding’ of the fact that the transition of
the PTC, as A is increased through Ac, necessarily involves infinite sequences
of twin tangencies, as was discussed in Sec. 3.2. In turn, this is a direct
consequence of the spiralling of the isochrons around x∗ in the (x, y)-plane.
The illustration of this insight in Fig. 5 for the FitzHugh–Nagumo system is
for the generic case of a planar vector field; a similar illustration is shown
in [14, Fig. 8] for a constructed example due to Winfree with rotational
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symmetry and analytically known isochrons.

4 Varying the direction of perturbation

The application context of the FitzHugh–Nagumo system led us to consider
only perturbations in the direction of positive x. However, there is actu-
ally no mathematical reason for taking the ‘traditional’ point of view that
the direction of the perturbation is fixed. In fact, varying the direction of
the perturbation is feasible in experiments, such as those with self-pulsing
semiconductor lasers, where a short external input can be applied to the
electrical pump current and/or directly to the optical intensity; and coupled
oscillators of any sort, where a perturbation may enter at different strengths
for different oscillators. This realisation motivates us to extend the earlier
definition (2) of the phase resetting function PA to include the direction of
the perturbation as an additional variable [14]. More precisely, we define the
unit direction vector

d := d(ϕd) =

[
cos (2π ϕd)

sin (2π ϕd)

]
,

for any direction angle ϕd ∈ [0, 1). The definition of PA can then be extended
to the domain

PA : ϑo ∈ [0, 1)× ϕd ∈ [0, 1)→ ϑn ∈ [0, 1),

where the image ϑn is given by the phase of the isochron that contains the
point γ(ϑo) + Ad(ϕd), resulting from a reset at the point γ(ϑo) ∈ Γ.

For ϕd = 0, the unit vector d(ϕd) is exclusively in the direction of positive
x only, which is the case we considered in Sec. 3. The entire transition
scenario of the PTC from 1 : 1 to 1 : 0 torus knot we presented is generated
solely by the fact that perturbation set of the periodic orbit moves through
the phaseless point x∗ as the perturbation amplitude is increased through
the critical amplitude Ac. For ϕd = 0, this happens at A = Ac ≈ 0.4041
and at the unique point γ(ϑo) ∈ Γ of phase ϑo ≈ 0.3484. However, since Γ
surrounds x∗, this will also happen for an increasing perturbation amplitude
in any direction, albeit for a different value of the critical amplitude Ac and
at a different phase ϑo.

Figure 6 illustrates the relationship between Ac, ϑo ∈ [0, 1) and ϕd ∈
[0, 1). Panel (a) shows Γ together with 50 isochrons evenly distributed in
phase. We labelled four points on Γ, which are local extrema of the pointwise
distance between Γ and x∗. Observe that, for any ϑo ∈ [0, 1), the point
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Figure 6: Critical perturbation amplitude Ac in dependence on the pertur-
bation direction d(ϕd), with ϕd ∈ [0, 1), and phase ϑo ∈ [0, 1) at which the
reset is applied. Panel (a) shows Γ (black curve) with 50 isochrons evenly
distributed in phase and the points labelled f1, f ∗

1 (blue), and f2, f ∗
2 (red)

marked on Γ that lie, respectively, at (locally) minimal and maximal dis-
tances from the source x∗. Panels (b) and (c) show the graphs of Ac as a
function of ϑo and ϕd, respectively, with the branches labelled s1, s∗1, s2, and
s∗2 indicating the relation between ϑo and ϕd that achieves the singular phase
reset.

γ(ϑo) ∈ Γ is shifted exactly to x∗ by the vector x∗ − γ(ϑo); in other words,
γ(ϑo) resets to x∗ for the perturbation with amplitude Ac = ||x∗ − γ(ϑo)||
in the unique direction d = (x∗ − γ(ϑo))/||x∗ − γ(ϑo)||. In particular, the
critical perturbation amplitude Ac achieves a local maximum or minimum
when viewed as a function of ϑo or, alternatively, as a function of the angle
ϕd of d as defined above.

The graph of Ac as a function of ϑo ∈ [0, 1) is shown in Fig. 6(b), and
similarly, the graph of Ac as a function of ϕd ∈ [0, 1) is shown in panel (c).
The critical perturbation amplitude has a global minimum of Ac ≈ 0.2805, at
ϑo ≈ 0.2981 and at ϕd ≈ 0.6324, given by the points labelled f1 in panels (a),
(b) and (c). Hence, any phase reset, in any direction, with perturbation
amplitude 0 ≤ A < 0.2805, leads to a PTC that is a 1 : 1 torus knot,
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because the effect is a small shift of Γ that involves no interaction with x∗.
Similarly, Ac has a global maximum of Ac ≈ 1.3051, labelled f2 in Fig. 6,
at ϑo ≈ 0.5971 and at ϕd ≈ 0.3701. Any phase reset, in any direction,
with perturbation amplitude A > 1.3051 leads to a PTC that is a 1 : 0
torus knot, because the perturbed orbit no longer encloses x∗. However, for
any perturbation amplitude A in the range [0.2805, 1.3051], there exists a
direction angle ϕd ∈ [0, 1) such that PTC has a discontinuity; this direction
angle is generically not unique.

The existing pairs (ϑo, ϕd) that lead to a singular phase reset are given
by the intersection points of the graphs in Fig. 6(b) and (c) with a horizontal
line at the selected value of Ac; each such intersection point lies on one of four
branches labelled s1, s2, s∗1 and s∗2. How many there are depends on the level
of Ac relative to the two other extremal points f ∗

1 and f ∗
2 : a local minimum

and a local maximum of the distance from x∗ ofAc ≈ 0.4134 andAc ≈ 0.8519,
respectively. For any phase reset with perturbation amplitude A in the range
(0.4134, 0.8519), the horizontal line with Ac = A intersects all branches;
hence, there are four particular phases along Γ that reset to x∗, provided
the associated specific direction angle ϕd ∈ [0, 1) is selected. However, when
the perturbation amplitude is in the ranges A ∈ (0.2805, 0.4134) or A ∈
(0.8519, 1.3051) then there are only two such intersection points of Ac = A
with the two graphs, namely, on the branches s1 and s2, and on the branches
s2 and s∗1, respectively.

4.1 Phase-resetting surface for fixed A

To illustrate the influence of the direction d of the perturbation, we now con-
sider graph(PA) in (ϑo, ϕd, ϑn)-space for different values of the perturbation
amplitude A. As we discussed above, there are five different generic cases,
corresponding to the five A-ranges generated by the values of Ac at the four
extrema f1, f ∗

1 , f2 and f ∗
2 . They are presented in Figs. 7–9, where we show

three copies or sheets of graph(PA) over the extended ϑn-range [−0.5, 2.5].
Figure 7 shows the phase-resetting surface graph(PA) for A = 0.2 in

panel (a), representing the A-interval [0, 0.2805), and A = 0.35 in panel (b),
representing (0.2805, 0.4134). For A = 0.2 in panel (a), the PTC for any
ϕd is a 1 : 1 torus knot, which means that the three sheets of graph(PA)
are tilted so that the value of ϑn increases by 1 as ϑo varies from 0 to
1. For A = 0.35 in panel (b), however, this is no longer the case: the
three sheets of graph(PA) now all wrap around two singular vertical lines
labelled s1 and s2; these singularities are at (ϑo, ϕd) ≈ (0.2585, 0.2372) and
(ϑo, ϕd) ≈ (0.3346, 0.0258) in Figure 7(b), and they are created, for increas-
ing A, when the global minimum f1 at Ac ≈ 0.2805 is passed in Fig. 6(b)
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(a)

ϕd

ϑo

ϑn

(b)

ϕd

ϑo

ϑn
s2

s1

Figure 7: Three copies of the phase-resetting surface graph(PA) of sys-
tem (1) shown in (ϑo, ϕd, ϑn)-space for ϑn ∈ [−0.5, 2.5], with A = 0.2 in
panel (a) and A = 0.35 in panel (b). The two vertical lines (grey) in panel (b)
are at the singularities s1 and s2.

and (c) and the branches s1 and s2 are intersected. As a result, there is now
the ‘window’ (0.0258, 0.2372) of ϕd-values in between their ‘singular’ values
corresponding to s1 and s2, for which the PTC is already a 1 : 0 torus knot;
for the complement ϕd ∈ [0, 1) \ [0.0258, 0.2372], the PTC is still a 1 :1 torus
knot. Exactly for the ϕd-values of the singularities s1 and s2, the PTC has
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Figure 8: Panel (a) shows three copies of the phase-resetting surface
graph(PA) of system (1) in (ϑo, ϕd, ϑn)-space for ϑn ∈ [−0.5, 2.5] with
A = 0.6, featuring four singularities s1, s2, s∗1, and s∗2 (grey vertical lines); also
shown are the four PTCs for ϕd = 0.2 (orange), ϕd = 0.4 (purple), ϕd = 0.55
(red), and ϕd = 0.8 (blue). Panel (b) is a projection of panel (a) onto the
(ϑo, ϕd)-plane, and panel (c) shows the four PTCs on the fundamental square
(green shading) of the (ϑo, ϑn)-plane.

a discontinuity as the one for A = Ac shown in Fig. 1(b).
Figure 8 shows the phase-resetting surface graph(PA) for A = 0.6, which

is representative for the A-interval (0.4134, 0.8519), where one finds the four
singularities s1, s2, s∗1, and s∗2. Consequently, PTCs without discontinuities
for this A-range are found in four ϕd-ranges. Panel (a) shows three sheets
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(a)

ϕd

ϑo

ϑn

s∗1

s2

(b)

ϕd

ϑo

ϑn

Figure 9: Three copies of the phase-resetting surface graph(PA) of sys-
tem (1) shown in (ϑo, ϕd, ϑn)-space for ϑn ∈ [−0.5, 2.5], with A = 0.95 in
panel (a) and A = 1.4 in panel (b). The two vertical lines (grey) in panel (a)
are at the singularities s∗1 and s2.

of graph(PA) in (ϑo, ϕd, ϑn)-space with the PTCs for the ϕd-values 0.2, 0.4,
0.55 and 0.8, and panel (b) provides a ‘top-down’ view in projection onto
the (ϑo, ϕd)-plane; the four ϕd-ranges of PTCs are shown in panel (c) on
the fundamental square. The singularities s1 and s2 are now at (ϑo, ϕd) ≈
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(0.1857, 0.3188) and (ϑo, ϕd) ≈ (0.3883, 0.9508), respectively. Moreover,
there are two additional singularities s∗1 and s∗2 at (ϑo, ϕd) ≈ (0.7651, 0.8135)
and (ϑo, ϕd) ≈ (0.9368, 0.4768), respectively. The phase-resetting surface
graph(PA) in Fig. 8(a) now wraps around all four singular vertical lines s1,
s2, s∗1, and s∗2. Resets in directions corresponding to the associated singular
ϕd-values lead to discontinuous PTCs. As panel (b) illustrates with a top
view, there are now two ‘windows’ of ϕd-values for which the PTC is already
a 1 : 0 torus knot: the one between s1 and s2 for ϕd ∈ (0.9508 − 1, 0.3188),
which is wider than in Fig. 7, and there is also a second ‘window’ between
s∗1 and s∗2 for ϕd ∈ (0.4768, 0.8135). The PTCs for 0.2 and 0.55 in Fig. 8(c)
are representative examples for these two ϕd-ranges of 1 : 0 torus knots. In
the two complementary ϕd-ranges, on the other hand, the PTC is still a 1 :1
torus knot, such as the PTCs for 0.4 and 0.8 in panel (c).

As A is increased, the singular points s1 and s∗2 move closer together,
and they merge and disappear at the local maximum f ∗

2 at Ac ≈ 0.4134.
Figure 9(a) shows the phase-resetting surface graph(PA) for A = 0.95, which
is representative for the A-interval (0.8519, 1.3051). Again only two singu-
larities remain, namely, s∗1 and s2 at (0.7445, 0.8236) and (0.4559, 0.9126),
respectively. The geometry of the phase-resetting surface graph(PA) looks
again as that in Fig. 7(b), but the difference is that the PTC is now a 1 : 0
torus knot for almost all values of ϕd, except for the ϕd-range (0.8236, 0.9126)
in between s∗1 and s2. As A is increased further through the global maximum
f2 at Ac ≈ 1.3051, also s∗1 and s2 disappear and graph(PA) is as shown in
Fig. 9(b) for the representative value A = 1.4. Here, the three sheets shown
are such that there is no increase of ϑn when ϑo varies from 0 to 1 and, hence,
all PTCs are 1 :1 torus knots. Notice, however, that the three sheets are just
tilted differently: the value of ϑn increases by one as the direction angle ϕd

varies from 0 to 1.

5 Conclusion and outlook

We studied phase resetting in the FitzHugh-Nagumo system (1), with a stable
periodic orbit Γ surrounding a repelling focus x∗, which is the only point
not in the basin of attraction. Perturbations at phase ϑo, with amplitude
A and in the direction d(ϕd), result in a new phase ϑn. We considered
first the perturbations in the direction of increasing x, which is ‘standard’
for the FitzHugh-Nagumo system. The phase transition curve is the graph
of the function PA(ϑo) that ‘records’ the phase ϑn after a perturbation at
the point γ(ϑo) ∈ Γ of strength A. The information of all PTCs can be
represented by the phase-resetting surface, which is the graph of the function
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P(ϑo, A) = PA(ϑo) where A is also viewed as an input. This surface in
(ϑo, A, ϑn)-space effectively provides an atlas of phase resetting: each PTC
is a ‘slice’ through graph(P) for the corresponding amplitude A. The phase-
resetting surface has a singularity S when the perturbation moves a point on
Γ exactly to the phaseless set x∗. As Winfree already pointed out, moving the
PTC across such a singularity changes it from being a 1:1 to a 1:0 torus knot,
or vice versa, while at the critical amplitude Ac, the PTC is discontinuous.
Owing to the spiralling nature of the isochrons near x∗, the phase-resetting
surface graph(P) wraps around a vertical line at the singular point S. This
explains the existence of twin tangencies during the transition through such
a ‘spiralling’ singularity, whereby the number of coverings of the fundamental
ϑn-interval [0, 1) by the PTC first increases and then decreases; we identified
and illustrated several such twin tangencies of the FitzHugh-Nagumo system.

We also considered the influence of the direction angle ϕd on the PTC.
To this end, we computed the phase-resetting surface graph(PA) of the
FitzHugh-Nagumo system (1) as a function of both ϑo and ϕd, which we
showed for five representative values of the perturbation amplitude A. The
transition with increasing A of the phase-resetting surface graph(PA) in
(ϑo, ϕd, ϑn)-space, which we illustrated in Figs. 7–9, is typical for the sit-
uation that a convex periodic orbit Γ of a planar vector field surrounds a
single phaseless point x∗ in the form of a repelling focus equilibrium. The
aspects of what we mean by typical are: (1) the speed of rotation around
Γ and locally around x∗ are different, so that the isochrons spiral into x∗;
(2) there are two minima and two maxima of the distance ||x∗ − γ(ϑo)|| of
x∗ from any point on Γ; and (3) these are in general position (do not have
the same values). The FitzHugh-Nagumo system (1) is also typical in that
its isochrons and PTC are not known analytically and need to be found
numerically. By solving suitably formulated multi-segment boundary value
problems we computed a sufficient number of ‘slices’, from which the respec-
tive phase-resetting surfaces were then rendered; see [13, 14] for more details
on the computational setup.

We remark that the example of the Van der Pol system discussed in [14]
is not typical or generic: due to its invariance under rotation by π, the two
minima and the maxima of the distance from the phaseless set are identical.
Hence, one does not encounter the intermediate cases with just two singular-
ities that we showed in Figs. 7(b) and Fig. 9(a). Moreover, we found that the
rotation of the isochrons near x∗, while nonzero, is not pronounced enough
in the Van der Pol system to observe properly the wrapping of the phase-
resetting surface around vertical lines of singularities. This can be considered
a shortcoming of the Van der Pol example, which the FitzHugh-Nagumo sys-
tem does not have. While we focused on how the PTC changes, we mention
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that one can also consider the directional transition curve (DTC), obtained
by considering ϑn as a function of ϕd for fixed ϑo and A. There is an inter-
esting duality between the PTC and the DTC in terms of its properties near
the singularity, which is discussed in considerable detail in [14].

The results we presented here for the FitzHugh-Nagumo system (1) are
typical, but there are other generic scenarios one may encounter in planar
vector fields. First of all, when the phaseless point x∗ is very close to a con-
vex periodic orbit Γ surrounding it, the distance ||x∗−γ(ϑo)|| may only have
a single minimum and a single maximum. Moreover, Γ might not be convex,
which could lead to the existence of more than two pairs of (local) minima
and maxima of the distance, which are again, generically, in general position.
The transition for increasing A of the phase-resetting surface graph(PA) in
(ϑo, ϕd, ϑn)-space through such different sequences of minima and maxima
follows immediately from the arguments we presented here. A more interest-
ing situation is that the phaseless set inside Γ no longer consists of a single
point. For example, it could be a disk bounded by a repelling periodic orbit,
or be the closure of the stable manifold of a saddle equilibrium; see [8, 9]
for such examples. In either case, the PTC will be discontinuous at more
than just a single point. The associated consequences for the phase-resetting
surface can be investigated in the geometric spirit we adopted here, but this
remains an interesting subject for future research. Finally, a challenging sub-
ject of our ongoing research concerns phase resetting in higher-dimensional
systems. The issue here is that the basin boundary of the attracting pe-
riodic orbit under consideration may be very complicated; in particular, it
will contain the (generally higher-dimensional) stable manifolds of any saddle
equilibria and periodic orbits.
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