
GrowFundCurv1D: computation with Matlab of
one-dimensional manifolds in maps

Dana C’Julio, Bernd Krauskopf and Hinke M. Osinga

1



1 Introduction

The package GrowFundCurv1D is an implementation in Matlab of the algorithm pre-
sented in [1] for the numerical computation of one-dimensional (un)stable manifolds
and intersection points in maps, based on the manifold growth algorithm from [3]. This
manual serves as a practical guide for utilising the package GrowFundCurv1D without
delving into extensive algorithmic details. We refer to [1] for a comprehensive discussion
of the algorithm and its accuracy constraints, as well as more details on its performance.
In case you use GrowFundCurv1D in your own research, please, give credit by citing [1].

The package GrowFundCurv1D has been designed for three-dimensional maps, and uses
an initial short segment of a stable or unstable manifold associated with a fixed or peri-
odic point. This initial segment can be obtained either from the linear approximation,
given by the eigenvector associated with the respective stable or unstable eigenvalue,
or from a previous continuation. The algorithm first identifies the last fundamental
domain on the initial segment, based on which the iterative process of growing the
manifold starts. As a post-processing step, the algorithm computes the intersection
points of the computed manifold with a pre-specified plane as an ordered set.

The package GrowFundCurv1D comprises a series of routines, which are available in
the folder GrowFundCurv1D_code/ that can be downloaded from https://www.math.
auckland.ac.nz/~hinke/preprints/cko_algorithm.html. The folder contains the
Matlab script file GrowFundCurv1D_demo.m that demonstrates the algorithm with a
specific example, the comprehensive step-by-step manual GrowFundCurv1D_manual.pdf
(this file), the data used to obtain the first fundamental domain of the manifold, and
the folder GrowFundCurv1D_functions/ with required functions.

The demo GrowFundCurv1D_demo.m, presented in the next section, was tested using
Matlab [version 9.12 (R2022a)]. This example computes a one-dimensional stable
manifold of a fixed point for a three-dimensional Hénon-like map, as defined in [1]. Note
that, with appropriate changes to the accuracy settings, the algorithm can accurately
compute manifolds not only for the fixed points of the map itself, but also for up to its
fourth iterate, without losing resolution.

2 Demo

We include the demo script GrowFundCurv1D_demo.m with the package GrowFundCurv1D,
which computes and plots the stable manifold of a fixed point with the default accu-
racy parameters defined in Section 6. Specifically, the map is the three-dimensional
Hénon-like map from [1], the parameters are α = 4.2, β = 0.3 and ξ = 1.2, and the
computed manifold is W s(p−) associated with the fixed point p− that has negative x-
and y-coordinates; see Figure 1.

2

https://www.math.auckland.ac.nz/~hinke/preprints/cko_algorithm.html
https://www.math.auckland.ac.nz/~hinke/preprints/cko_algorithm.html


Figure 1: Output of the demo script GrowFundCurv1D_demo.m that computes the one-
dimensional stable manifold of a fixed point for the three-dimensional Hénon-like map
from [1]. Shown are, in compactified (x, y, z)-space, the fixed points (golden dots), the
stable manifold (blue curve) of the top-left fixed point, the half-plane Σ (yellow surface)
and the intersection points with Σ (blue dots). Also shown are the boundary circles of
the compactification.

To run the demo, ensure all files and folders in GrowFundCurv1D/ are in the search path
of the active Matlab directory. The demo is then run by typing GrowFundCurv1D_demo
into the command window of Matlab. The following tasks are then performed:

• the paths to the necessary functions are added;

• the initial segment of the manifold is loaded and saved;

• the map information is specified and stored in the structure opts;

• a comprehensive data structure is generated by the function init_manif to be used
and modified by the core function GrowFundCurv1D;

• GrowFundCurv1D is called to compute the manifold up to the specified number of
steps;

• the function intersect_plane is called to find the intersection points with the pre-
specified plane Σ;

3



• the function manifplot is called to plot the manifold, the plane and its intersection
points, as shown in figure 1.

3 Formulation of the method

We consider a diffeomorphism
f : Rn → Rn

that has a hyperbolic fixed point p = f(p) ∈ Rn with a single real and positive unstable
eigenvalue λu > 1. According to the Stable Manifold Theorem [4], the unstable manifold

W u(p) =
{
x ∈ R2

∣∣ f−k(x)→ p as k →∞
}

is then a one-dimensional smooth curve that is tangent at p to the unstable eigenvector
vu. Similarly, the stable manifold W s(p) of p is an (n − 1)-dimensional manifold, but
we do not consider it here.

As is common in the field, we formulate our algorithm for the computation of W u(p)
for notational convenience. Since f is a diffeomorphism, any one-dimensional stable
manifold can simply be computed as the unstable manifold of the inverse f−1 of f .
We also assume that λu is a positive eigenvalue, which means that f is orientation
preserving on W u(p) and, hence, consists of two branches (on either side of p) that are
each invariant under f .

4 Structure of the algorithm

The algorithm is organised into four steps, each serving a distinct purpose.

Step 1: In this initial step, the user defines the system and its fixed/periodic points.
This is accomplished by creating a class of functions, referred to as StdHenon3D
in this guide. A more detailed explanation of the structure of this class is
provided in Section 5.

Step 2: In the second step, the user provides parameter values, accuracy parame-
ters, the required number of iterations, and sets up the initial segment of the
manifold. This information is organised within a structure named opts, the
formulation of which is explained in Section 6. The structure opts is passed
as an argument to the function init_manif, which generates a comprehensive
data structure called manif. Then manif is subsequently used in Step 3.
Details of the manif data structure are outlined in Section 7.

Step 3: The third step is the core implementation of the algorithm, as described in [1].
It involves the function GrowFundCurv1D, which iterates an initial segment of

4



the manifold of the fixed or periodic point, ultimately producing the com-
plete manifold up to a pre-specified iteration number. The structure manif is
updated with the information from the output given by GrowFundCurv1D.

Step 4: In the final step, the algorithm computes the ordered list of intersection points
on the manifold with a pre-specified plane, and then stores these in the struc-
ture manif. This is done with the function intersect_plane, as discussed in
Section 8. It is important to note that, for our specific example, we use a
half-plane that contains the origin and is perpendicular to the (x, y)-plane.

To get a better grasp of the algorithm, Section 2 provides a walk-through of the com-
putations for the example of the three-dimensional Hénon-like map.

5 Step 1: Defining the system

All the functions that need to be provided by the user to define the system are consoli-
dated into a single class, which we refer to as StdHenon3D in this guide; this class name
can be chosen arbitrarily and StdHenon3D is simply used as an example.

Typically, the user is required to provide a few essential functions within this class,
including the definition of the diffeomorphism f , its inverse f−1, and the fixed point
associated with the manifold to be computed. In addition to the primary fixed point,
the user has the flexibility to include any number of fixed points of the map for future
reference.

A detailed explanation of these functions is provided below. For a guide to the format
and semantics of the following functions within this class, please, also refer to Table 1.

function map_points = ff(points, opts)
function map_points = ff_inv(points, opts)
function fixpinfo = fixpoints(opts)
function comp_points = compactify(points)
function decomp_points = decompactify(points)
function outpoints = mapping(inpoints, stab, opts)

Note that all functions with the structure opts as input entry use the same options;
full details of this structure are explained in Section 6.

Functions ff and ff_inv

The functions ff and ff_inv define the diffeomorphism f and the inverse f−1 used in
the computation. They are called by the function mapping to compute the images
(preimages) of points on the unstable (stable) manifold. These functions have two
arguments:

5



functions
name user-provided content
ff yes diffeomorphism f
ff_inv yes diffeomorphism f−1

fixpoints yes fixed points
compactify yes compactification of the space
decompactify yes inverse of the compactification
mapping no applies f or f−1

Table 1: Summary of the class of functions passed to the algorithm.

• points: a structure containing the fields x, y and z that are the x-, y- and z-
coordinates of the points on which to apply the function f or f−1.

• opts: options; only the field par from opts is passed to ff or ff_inv, which
contains the parameter values needed for the computation.

Each function returns a structure named map_points, which contains the fields x, y
and z representing the x-, y- and z-coordinates of the (pre)images of the input structure
points.

Function fixpoints

This function returns the fixed points of the system and contains their explicit formulas.
It is mandatory to include at least the fixed point associated with the manifold to be
computed, but additional fixed points of the system can be added for reference. This
function has one argument:

• opts: options; the field par from opts is used for computing the fixed points.

This function returns a structure named fixpinfo with the explicit coordinates of the
fixed point for the chosen parameter values.

Functions compactify and decompactify

For our example map StdHenon3D, we use compactified coordinates. Hence, we intro-
duce two functions compactify and decompactify that define the coordinate transforma-
tions of the compactification and its inverse, respectively. They are integrated into the
function mapping and the user needs to change them to the correct transformation, or
set them as the identity if they work in non-compactified coordinates. Each function
has one argument:

• points: a structure containing the fields x, y and z, which are the x-, y- and
z-coordinates of the points to compactify or decompactify.

6



The outputs of functions compactify and decompactify are structures with names comp_points
and decomp_points, respectively.

Function mapping

The function mapping is used by the main routine GrowFundCurv1D to compute the
(pre)images of a set of points. Typically, the user does not need to modify this function.
It contains three arguments:

• inpoints: a structure containing the fields x, y and z, which are the x-, y- and
z-coordinates of the points to which the map is applied.

• stab: a string indicating the type of manifold being computed. It is set to
'Smanifold' for a stable manifold and 'Umanifold' for an unstable man-
ifold. This information is not set by the user; it is an output of the function
init_manif from Section 7.

• opts: options; there are two fields from opts passed to mapping, namely, mapiter,
which contains the number of iterations of the map, and par comprising the
parameter values.

The function mapping applies the following three subfunctions:

• the function decompactify applies the inverse of the compactification to the structure
of points to obtain the original coordinates;

• either ff or ff_inv based on the type of manifold;

• the function compactify to return to compactified coordinates.

The function is iterated a pre-specified number of times, given by the field mapiter in
opts. It returns a structure called outpoints, containing the fields x, y and z repre-
senting the x-, y- and z-coordinates of the (pre)image of the input structure inpoints.

6 Step 2: Set-up of parameters and initial segment

All the information needed for the computation of the manifold is stored by the user
in a structure named opts. Table 2 shows a summary of all the fields of opts.

opts.thesystem=StdHenon3D;
specifies the user-defined class that defines the diffeomorphism and fixed points. This
structure serves the purpose of selecting the appropriate set of functions when the
manifold computation is in progress.

opts.par=struct('a', 4.2, 'b', 0.3, 'xi', 1.2);
sets the names and values of the parameters of the system. The names of the param-

7



opts
field subfields type definition
thesystem class Name of the class where the

system is defined
par { par1, par2, ...} R Values of the parameters
name_fixpoint string Name of the fixed point

associated to the manifold
branch string Name of the branch of the

manifold
init_segment { x, y, z } vector The (x, y, z)-coordinates of

the initial segment
funditer N Number of iterations of the

fundamental domain
mapiter N Number of iterations of the map
angle [−π, π] Angle of the plane when

computing intersection points
accpar (optional) {alphamax, deltalphamax, R Accuracy parameters

deltamin, deltamax}

Table 2: Options defined in the structure opts that initialise the setting needed to
compute the (un)stable manifold.

eters have to be consistent with the ones defined in the system class StdHenon3D from
Section 5.

opts.name_fixpoint='pmin';
identifies the name of the fixed point for which the manifold will be computed. This
information is is passed to the output data and is solely for the user’s reference. If the
user does not need this information, they can leave it as an empty string.

opts.branch='pos';
identifies the particular branch of the computed manifold—here, 'pos' refers to the
branch that lies in the direction to the right of the x-coordinate of the fixed point; it is
again solely for the user’s reference and can be left as an empty string.

opts.init_segment=struct('x', data_x, 'y', data_y, 'z', data_z);
contains a structure that holds the coordinates of the starting segment of the manifold,
from which the fundamental domain will be extracted. Typically, these coordinates
are set as 'x', 'y' and 'z'. It is not recommended to change the names of these
coordinates to ensure consistency with other functions. The entries data_x, data_y
and data_z are vectors containing the (x, y, z)-coordinates of the initial segment of the
manifold, respectively.

8



opts.funditer=6;
means that the fundamental domain is iterated a total of six times.

opts.mapiter=2;
allows the user to specify the iterate of the map that is applied to the fundamen-
tal domain. It is important to note that opts.funditer should be a multiple of
opts.mapiter. In our example, the iteration process involves using the map H2 three
times (3× opts.mapiter = opts.funditer).

opts.angle=−3*pi/4;
this field is only necessary when using the function intersect_plane, which computes
the ordered intersection points of the manifold with a plane. In our example, we use a
half-plane trough the origin that is perpendicular to the (x, y)-plane. It forms an angle
θ ∈ [−π, π] with respect to the plane {y = 0}.

If θ is positive, the half-plane extends counter-clockwise from the positive x-axis. Con-
versely, if θ is negative, it extends clockwise from the positive x-axis. In our specific
example, opts.angle specifies the half-plane Σ = {(x, y, z) ∈ R

∣∣ x = y and x < 0}.

opts.accpar
contains the parameters that control the accuracy of the computations. These param-
eters are:

• The maximum αmax of the angle allowed between triplets of mesh points;

• The curvature parameter (∆α)max;

• The maximum ∆max and minimum ∆min of the permitted distances between mesh
points.

Setting these parameters is optional; their default values are:

alphamax=0.3;
deltalphamax=0.001;
deltamin=0.000001;
deltamax=0.01;

For example, if the user only wants to change ∆max, this must be done before calling
the function init_manif, as follows:

opts.accpar.deltamax=0.05;

Unless accuracy parameter are defined by the user, the function init_manif (see Sec-
tion 7) will use the default settings, which are selected to ensure that the algorithm can
accurately compute manifolds not only for the fixed points of the map H itself but also
for up to its fourth iterate without losing resolution. We refer to [1] for a comprehensive
understanding of these accuracy constraints.

9



manif
field subfields type definition
name string Name of the manifold
orientability string Orientation properties of the manifold
fixp { pmin, eigsys } string The fixed point of the manifold and

its eigensystem
stab string Stability of the manifold (the options

are 'Umanifold' or 'Smanifold')
points { x, y, z, arc } vector, R Coordinates and arclength of the

manifold
inf_sys { par, fixp } R, string Parameter values and the fixed points
growinf { mapiter, funditer, R or N Information extracted from the

alphamax, deltalphamax, structure opts from Section 6
deltamin, deltamax }

runinf see Table 4 Additional subfield added by the core
function GrowFundCurv1D

Table 3: Names and definitions of the fields and subfield in the structure manif.

7 Step 3: the core of the package GrowFundCurv1D

The core of the package GrowFundCurv1D starts from a structure that is constructed
from the user-provided options, as described in Section 6. However, rather than only
passing the structure opts as an argument to the main routine GrowFundCurv1D of the
algorithm, the function init_manif is called instead, which is not typically modified by
the user:

manif = init_manif(opts);

The output of init_manif is a structure called manif that stores the computed manifold
and all necessary information, which is summarised in Table 3. In particular, manif
contains the subfield growinf with the accuracy parameters and number of iterations
employed in the computation.

Rather than modify the input manif, the function GrowFundCurv1D takes manif as
input and returns an updated copy of this structure with additional fields to it:

manif=GrowFundCurv1D(manif, opts);

More precisely, GrowFundCurv1D updates the field manif.points with the computed
manifold. It also adds an extra field called runinf to manif.growinf, which contains
diagnostics related to the computation of the manifold; see Table 4.

10



manif.growinf.runinf
subfield type definition
rem_deltamin N Number of points removed due to being with distance ∆min

rem_nan N Number of points removed due to presence of NaN
rem_inf N Number of points removed from infinity (compactification)
add_alphamax N Number of points added because αmax is too large
add_deltamax N Number of points added because ∆max is too large
add_deltalphamax N Number of points added because (∆α)max is too large
npoints_initial_final N Number of initial and final points
arc_initial_final R Initial arclength and final arclength
time R Time spent on the computation

Table 4: Names and definitions of the subfield manif.growinf.runinf

manif.inter
field type definition
angle [−π, π] the angle of the plane, defined in Section 6
plane string Name of the half-plane Σ

idx N Vector with the indices of the intersection points

Table 5: Names and definitions of the subfield manif.inter.

8 Step 4: post-processing the results

Once the manifold has been computed, the final step is to process the data for analysis
and visualisation purposes. We implemented the function intersect_plane to determine
the (ordered) intersection points of the manifold with a pre-specified plane Σ, as defined
in opts.angle; see Section 6. The function intersect_plane again does not modify
the input manif; rather it takes manif as input and returns an updated copy of this
structure with additional fields to it:

manif=intersect_plane(manif, opts);

The output is stored in the field manif.inter that is added to the structure manif;
its subfields are shown in Table 5. The intersection points are computed by detecting
sign changes with respect to a normal vector of the plane Σ and then finding the corre-
sponding intersection points with cubic spline interpolation from nearby points. Each
intersection point is then inserted at the correct position into the field manif.points,
with a flag identifying it as such. Specifically, the flag is the index of such an inserted
point and is stored in the subfield inter.idx. The ordering of the intersection points
is induced by the the fact that the manifold is parameterised by arclength.

The function manifplot plots the results obtained from GrowFundCurv1D and inter-

11



sect_plane. The simple command

h=manifplot(manif)

extracts the relevant information stored in the structure manif and plots a three-
dimensional image. Here, we make use of the function color_line3 by [5], which trans-
forms a one-dimensional object into a surface that can be assigned a colour scheme
controlled by a colormap. For our specific implementation, we define a colormap based
on the distances to the vertical line (x, y) = (0, 0), generating an illusion of light that
enhances the visual representation of the results.

References
[1] D. C’Julio, B. Krauskopf, and H.M. Osinga. Computing parametrised large

intersection sets of 1D invariant manifolds: a tool for blender detection.
Preprint available from https://www.math.auckland.ac.nz/~hinke/preprints/
cko_algorithm.html, 2023.

[2] D. Hobson. An efficient method for computing invariant manifolds of planar maps.
Journal of Computational Physics, 104(1): 14–22, 1993.

[3] B. Krauskopf and H. M. Osinga. Growing 1D and quasi-2D unstable manifolds of
maps. Journal of Computational Physics, 146(1): 404–419, 1998.

[4] J. Palis and W. de Melo. Geometric Theory of Dynamical Systems. Springer-Verlag,
New York, 1982.

[5] G. Stillfried. 3D colored line plot (https://www.mathworks.com/matlabcentral/
fileexchange/23566-3d-colored-line-plot). MATLAB Central File Exchange.
Retrieved 11 September, 2023.

12

https://www.math.auckland.ac.nz/~hinke/preprints/cko_algorithm.html
https://www.math.auckland.ac.nz/~hinke/preprints/cko_algorithm.html
https://www.mathworks.com/matlabcentral/fileexchange/23566-3d-colored-line-plot
https://www.mathworks.com/matlabcentral/fileexchange/23566-3d-colored-line-plot

	Introduction
	Demo
	Formulation of the method
	Structure of the algorithm
	Step 1: Defining the system
	Step 2: Set-up of parameters and initial segment
	Step 3: the core of the package GrowFundCurv1D
	Step 4: post-processing the results

