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Structure–function relationships occur throughout the sciences. Motivated by optimization of such
systems, we develop a framework for estimating the input modes from the singular value decomposition
from the action of the forward operator alone. These can then be used to determine the input (structure)
changes, which induce the largest output (function) changes. The accuracy of the estimate is determined by
reference to the method of snapshots. The proposed method is demonstrated on several example problems,
and finally used to approximate the optimal airway treatment set for a problem in respiratory physiology.
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1. Introduction

Structure–function relationships are a key concept in biology and physiology. The central idea is that
there is ‘a relationship between the structure of a biological entity, and the function of that entity’
(Michael, 2021). This concept occurs throughout the sciences, and one area in which it is particularly
prominent is in respiratory physiology: e.g. how does the structure of the lung and airways affect lung
function, and in particular, how do changes of that structure in disease lead to dysfunction (Hoffman &
McLennan, 1997; Skloot, 2017)?

In this paper, we outline a framework in which we think of the structure–function relationship as
a mapping between the structure of an entity on the one hand, and the resulting function on the other.
Doing so enables us to bring to bear some mathematical tools, such as the singular value decomposition
(SVD), which can then be used to answer important questions about the biological system at hand.

We motivate this approach with an example from respiratory physiology. Asthma is a widespread
disease in which airway narrowing is driven by contraction of the band of airway smooth muscle (ASM)
surrounding the airways. Although a substantial majority of asthma cases can be controlled with the
available suite of pharmacological therapies, the subset of cases that do not respond to these therapies
suffers from significant mortality and morbidity. One relatively new treatment, bronchial thermoplasty
(BT), targets the ASM layer by directly heating the airways to a level intended to permanently ablate the
ASM, without causing undue damage to other airway structures. This is done directly by bronchoscope
and radiofrequency catheter, which means that the treatment is limited to a relatively small number of
relatively large airways.1

1 Large airways because of the size of the catheter (Hackmann et al., 2022), a small number because of limited treatment time.
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More recently, efforts have been made to personalize BT by selecting an optimal set of airways for
treatment for each patient, e.g. based on pre-treatment imaging of the patient (Donovan et al., 2019;
Hall et al., 2020) rather than using a fixed set. This has the potential to improve patient outcomes by
both increasing efficacy of the treatment, and by reducing side effects. The question, then, is this: given
information about the pre-treatment airway structure of an individual patient, how can we determine
the optimal set of treatment airways? This question motivates the proposed approach to estimating the
singular modes from the forward model.

The paper is organized as follows. In the next section, we outline the mathematical framework and
proposed algorithms. These are then demonstrated on a series of example problems to demonstrate the
strengths and limitations of the method; finally, we apply the proposed method directly to the BT airway
selection problem.

2. Framework

The framework is as follows. Suppose that we have a model,2 which relates the structure and function
of the system at hand

�function = Model
( �structure

)
.

For concreteness, we will think of both structure and function as being finite-dimensional, if only as
a discrete approximation, and write

�y = M(�x)
where

�x ∈ R
n, �y ∈ R

m

represent the structure and function, respectively, and m, n > 1.
We make several important assumptions:

1. We assume that we have only the action of M

x �→ M(x)

and that we do not have access to the action of the adjoint operator y �→ M†(y). That is, the model
is essentially a black box; we can only alter the input (structure) and see how that changes the
output (function).

2. We also assume that the computational cost of the forward model evaluation is the dominant effect.
That is, we don’t care about the linear algebra costs of manipulating the output in comparison.
Moreover, we assume that we cannot afford, in terms of computational cost, O(n), evaluations of
the forward model (the number of input dimensions).

2 One might naturally think of a mathematical model to begin with, but there is nothing to preclude use of a physical model so
long as there is adequate control of the inputs.
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Within this context, consider the linearization of the model operator about a reference configuration
x0

M(x + x0) ≈ Ax + M(x0), (2.1)

where A is an m-by-n matrix. Bear in mind that because we only assume the action of M, we cannot form
A explicitly at this stage. (Note also that the linear approximation is a significant assumption, which we
will discuss on more depth later on.)

Now we seek the SVD, or more specifically the truncated SVD of A given by

A = UrΣrV�
r . (2.2)

Briefly, the ‘full’ SVD (A = UΣV�) consists of the input modes in the matrix V , the singular values
along the diagonal of the square matrix Σ and the output modes in U. The SVD itself makes no
approximation, but a reduced-rank approximation is possible by including only the largest singular values
(and the associated input and output modes). Thus, the truncated SVD is truncated at rank r 	 m, n; the
accuracy of the approximation clearly depends upon the spectrum of the singular values, and how much
of the ‘energy’ of the singular values is captured within the truncation (Brunton et al., 2022).

In particular, motivated by our question about which airways to treat, we want the input modes (Vr)
and the associated singular values. These, in essence, tell us which changes to the input (structure) induce
the largest changes in the output (function), and by how much (the associated singular value).

However, this is not straightforward to achieve, because we do not actually have the matrix A itself;
recall that we assume only access to the forward action3 x �→ M(x).

Of course, one could create a naïve reconstruction of A with sufficient evaluations of the forward
action by sampling the input space, e.g.

M(x0 + δ{In}) ≈ δ{A} + M(x0) (2.3)

and so

{A} ≈ M(x0 + δ{In}) − M(x0)

δ
, (2.4)

where the notation {In} indicates that the action is taken column-by-column. It may be more intuitive to
write this explicitly as

A ≈ 1

δ

[
M(x0 + δe1), M(x0 + δe2), . . . , M(x0 + δen)

] − M(x0)/δ, (2.5)

where ek are the usual orthogonal basis functions (or columns of In). This requires n + 1 evaluations of
the forward action x �→ M(x). Here we have used the standard basis but transformations are possible;
more anon.

3 There are methods that can calculate, or approximate, the SVD from the action of the forward model x �→ M(x) and the action
of the adjoint operator y �→ M†(y), such as Krylov subspace methods (Stoll, 2012) or the randomized SVD (rSVD) (Halko et al.,
2011). However, because we do not assume access to the action of the adjoint, we cannot make use of these methods.
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What if we can’t afford n evaluations? For our lung application, if one thinks of the input (structure)
space as being the ASM content of the conducting airways, then n ∼ 60, 000, but computational costs
mean that the practical limit is much lower. Let us suppose then we have a computational budget of
N 	 n evaluations of the forward action. In general, without the full matrix A, or access to the adjoint
operator, we cannot expect to construct the SVD input modes, but nonetheless we seek a way to make
an informed partial sampling. Thus, we truncate to N input dimensions as

AN ≈ M
(
x0 + δTN(In)

) − M(x0)

δ
, (2.6)

where TN allows a basis transformation informed by the problem at hand. We will revisit the choice of
TN later; for now, one can imagine a fully naïve version where TN(In) = IN . Again, this can be written
out column-by-column as

A ≈ 1

δ

[
M(x0 + δTN(e1)), M(x0 + δTN(e2)), . . . , M(x0 + δTN(eN))

] − M(x0)/δ. (2.7)

However, this leaves us with no information about the accuracy of the truncation. Is N big enough?
Is TN() well-chosen? How can we know the answer to these questions?

Our proposed approach is to use the method of snapshots (Sirovich, 1987) to sample the range of
M and thus estimate the output modes and spectrum.4 Then comparison between the output modes and
spectrum from the naïve method, and from the method of snapshots, gives us an estimator for the quality
of our input mode approximation.

Here we briefly review the method of snapshots, originally due to Sirovich (1987) in the context
of fluid dynamics (but see also Brunton et al., 2022, for a more general presentation). We begin with
random vectors

ω1, ω2, . . . , ωN , (2.8)

where ωj ∈ R
n (i.e. in this context the input/structure space). These are usually drawn from a suitable

Gaussian distribution. We then compute the action of these random samples M(ωi + x0) to assemble the
matrix

Z = [
M(ω1 + x0) − M(x0), M(ω2 + x0) − M(x0), . . . , M(ωN − x0) − M(x0)

]
. (2.9)

Finally, we compute the SVD of ZZ� as

ZZ� = UssΣssV
�
ss (2.10)

where here the subscript ‘ss’ is used to indicate that these are the (s)nap(s)hot singular values and vectors.
The input modes (Vss) are not usable (see above), but the output modes and spectrum (Uss and Σss)
approximate the true output modes and spectrum, and thus can be used as an estimator of the accuracy of
the direct approximation. To do so, we define an error measure E between the direct output modes and

4 The method of snapshots cannot, itself, estimate the input modes; essentially, this is because we lack information about the
adjoint and as such are only estimating the range (Brunton et al., 2022; Sirovich, 1987).
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Algorithm 1 Basic sampling algorithm

set error threshold ε

j ← 1

while E
({

Uss
j , Σ ss

j

}
,
{

Ud
j , Σd

j

})
> ε do

draw snapshot random sample ωj

compute sample M(x0 + ωj):

{Z}j ← M(x0 + ωj)

compute SVD of ZZ�, obtain Uss
j and Σ ss

j

compute sample M
(

x0 + {
T(In)

}
j

)
:

{A}j ← M
(

x0 + {
T(In)

}
j

)
compute SVD of A, obtain Ud

j , Σd
j , and Vd

j

j ← j + 1

end while

return Σd
j , and Vd

j

spectrum, and the method of snapshots output modes and spectrum, i.e. E
({

Uss
j , Σ ss

j

}
,
{

Ud
j , Σd

j

})
. This

allows for generalization (which we will need later), but for now one could imagine a simple projection
of the leading modes as

E
({

Uss
j , Σ ss

j

}
,
{

Ud
j , Σd

j

})
= 1 −

∣∣∣[Uss
j

]
1
·
[
Ud

j

]
1

∣∣∣ . (2.11)

We will return to discussing different choices of convergence criterion after demonstrating the basic
approach.

The basic algorithm, then, is to sequentially increase the sampling space of the forward action both
in the naïve and snapshot directions. The naïve approach provides an estimate of the input modes, but
without any intrinsic ability to estimate the accuracy of the approximation; the method of snapshots more
efficiently samples the output space, and so comparison of the output directions allows estimation of the
error. The algorithm is outlined in Algorithm 1.

Note that the computational cost is two evaluations of the forward action x �→ M(x) per iteration.
One obvious refinement to improve this efficiency is to stop drawing new snapshots once the method
of snapshots estimate of the output modes/spectrum

({
Uss

j , Σ ss
j

})
is stable. One such version is given

in Algorithm 2. For clarity, the two estimates are carried out separately, but of course they can also be
performed in parallel.
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Algorithm 2 Sampling algorithm with limited snapshots

set error thresholds ε, εss

j ← 1

while E
({

Uss
j , Σ ss

j

}
,
{

Uss
j−1, Σ ss

j−1

})
> εss do

draw snapshot random sample ωj

compute sample M(x0 + ωj):

{Z}j ← M(x0 + ωj)

compute SVD of ZZ�, obtain Uss
j and Σ ss

j

end while

J ← j

j ← 1

while E
({

Uss
J , Σ ss

J

}
,
{

Ud
j , Σd

j

})
> ε bold

compute sample M
(

x0 + {
T(In)

}
j

)
:

{A}j ← M
(

x0 + {
T(In)

}
j

)
compute SVD of A, obtain Ud

j , Σd
j , and Vd

j

j ← j + 1

end while

return Σd
j , and Vd

j

2.1 Parallelization

This approach is straightforward to parallelize because the computational cost is dominated by the
sampling (by assumption), and the samples are independent. Thus, a block-parallel version of Algorithm
1 is given as follows in Algorithm 3. Clearly, it is also possible to use both block-parallel and limited
snapshot sampling, though we do not explicitly describe this as it is a straightforward combination of
Algorithms 2 and 3.

3. Applications

We now demonstrate the proposed approach on a series of examples. These begin with toy models,
which are constructed to illustrate some of the strengths and limitations of the method but without any
particular physical significance, before proceeding through two more realistic examples drawn from the
literature, and finally to the problem of airway selection for BT with which we motived the approach in
the introduction.
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Algorithm 3 Block parallel sampling algorithm

set error threshold ε,

N parallel tasks

j ← 1

while E
({

Uss
j , Σ ss

j

}
,
{

Ud
j , Σd

j

})
> ε do

for k = 1 . . . N parallel tasks do

draw snapshot random sample ωj+k

compute sample M(x0 + ωj+k):

{Z}j+k ← M(x0 + ωj+k)

compute sample M
(

x0 + {
T(In)

}
j+k

)
:

{A}j+k ← M
(

x0 + {
T(In)

}
j+k

)
end for

j ← j + N

compute SVD of ZZ�, obtain Uss
j and Σ ss

j

compute SVD of A, obtain Ud
j , Σd

j , and Vd
j

end while

return Σd
j , and Vd

j

3.1 Toy models

The following two examples are constructed to illustrate properties of the proposed method, and have
no particular relevance as models of any real processes.

3.1.1 Oscillating modes. For our first example, we take

M(xi) =
N∑

j=1

cos(jxi)
j

N

N∑
k=1

sin
(
πzk

)
xk + εN (0, 1), (3.1)

where zi = xi = i/N and N (0, 1) is the standard normal random variable. This is designed to have
oscillating output and input modes. Application of the method to this example is shown in Fig. 1. The
bottom panel shows the evolution of the error E with each iteration; the upper panels show the leading
modes and spectrum at various points, as indicated by the annotation arrows. Although the leading output
mode is accurate with only a relatively small number of iterations, the input mode is not well-captured
until the majority of the input directions has been sampled, at least using a naïve sampling. However, this
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298 G. M. DONOVAN

Fig. 1. Example 1: oscillating modes. The sampled modes and spectrum are shown at four evenly spaced points (upper panels), as
indicated by the black circles in the lower panel. At each selected point, the leading direct output mode Ud

1 , leading snapshot output

mode Uss
1 , leading direct input mode Vd

1 and SVD spectra σd (blue) and σss (red) are shown. Here m = n = 100, in the upper
panels the x axes indicate xj for the modes and the ordering of the singular values for σ . Output from the direct approximation are
shown in blue, and from the method of snapshots in red.

is clearly indicated by examination of E with increasing iterations. In this case, complete convergence is
obtained only after sampling the entire input space, but nonetheless examining the error measure gives
and estimate of the convergence for incomplete sampling. Here, and in the following examples, we have
used

E = 1 −
[
Uss

j

]
1
·
[
Ud

j

]
1
/ ||

[
Uss

j

]
1
||2 +

∣∣∣∣∣∣1 − σ
1,j
ss /

∑
σ ss

j

σ
1,j
d /

∑
σ d

j

∣∣∣∣∣∣ (3.2)

where σ = tr (Σ) are the singular values; this accounts for both the leading mode and the energy in the
leading singular value.

Of course, a simple transformation of the input basis (i.e. choice of TN(·)) alters the performance
markedly. By taking Tj = sin(jπx), which maps the leading input mode into the first direction, we can
obtain the expected near-instantaneous convergence, shown in Fig. 2 (the layout is the same as Fig. 1 but
with annotations omitted). Although the input modes are correct after the first iteration, the estimates
of the output mode and spectrum by the method of snapshots (and therefore the error relative to these)
require a few more iterations to stabilize.

3.1.2 Localized modes. For our second example, we take

M(x(s)) =
∫ 1

0
x(s) exp

(
−c(s − 1/3)2

)
ds

[
exp

(
−c(s − 1/3)2

){∫ 1

0
x(s) exp

(
−c(s − 2/3)2

)
ds

}α

+ exp
(
−c(s − 2/3)2

) ∫ 1

0
x(s) exp

(
−c(s − 1/3)2

)
ds

]
,

which, by design, has Gaussian localized modes. The parameter α controls the behaviour in an important
way. When α = 1, mixing of the leading modes occurs, as shown in Fig. 3. The two largest singular
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Fig. 2. Example 1b: Oscillating modes, subject to change of basis. Layout as in Fig. 1, for details see Fig. 1 caption.

Fig. 3. Example 2: mixed localized modes (α = 1). Discretized with 100 input components and 50 output components. Layout
as in Figs 1 and 2, for details see Fig. 1 caption.

values are equal, and the associated modes then appear in arbitrary linear combinations. This obviously
compromises a convergence metric based on the leading mode and singular value alone, which can
clearly be seen in the poor performance of E . Here the continuous operator has been discretized with
100 input components (uniformly on [0, 1]) and 50 output components.

Of course, this is precisely the role of the parameter α; for α �= 1, the leading mode is isolated, see
Fig. 4, and E clearly indicates when the localized input mode is captured.

An alternative approach would be to make a different choice of the error measure E to account for
the mode mixing.

3.2 Laser system

The next example is not biological but drawn from the literature of fibre optic communications systems
(Donovan & Kath, 2011). Briefly, pulse propagation through optical fibre is governed by the nonlinear

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/40/4/291/7286684 by guest on 08 January 2025



300 G. M. DONOVAN

Fig. 4. Example 2B: localized modes, unmixed (α = 2). Layout as in Figs 1,2 and 3, for details see Fig. 1 caption.

Schrödinger equation

∂u

∂z
− i

2
β(z)

∂2u

∂t2
− iγ (z)|u|2u = 0, (3.3)

where u(t, z) is the slowly varying envelope, β(z) is the dispersion coefficient of the fibre and γ (z) is the
nonlinear coefficient of the fibre. We use a soliton initial condition5

u(t, 0) = Asech(A(t − T))eiΩt+iΦ (3.4)

with soliton parameters A = 4, T = Ω = Φ = 0, N = 256 discrete modes and propagation distance
zmax = 6. Eq. 3.3 is solved numerically using the split-step Fourier method (Sinkin et al., 2003).

We take the input mapping in terms of perturbations to the fibre properties as

β(z) = 1 − δxj, wherej =  z

zmax
N�

γ (z) = 1.

Finally, phase detection is used for the output mapping as

M = |u(t, zmax)| atan

(
Re(u(t, zmax))

Im(u(t, zmax))

)
. (3.5)

Thus, the input–output mapping takes perturbations to the fibre structure and returns alterations to
the final pulse shape (at z = zmax). This particular example is selected because the modes can be found
directly via the action of the adjoint operator for comparison (Donovan & Kath, 2011). Application of
the current methodology is shown in Fig. 5.

5 Note that in an optics context, t is retarded time and z propagation distance, thus the usual intuitive role of spatial and temporal
variables is reversed: the initial condition is a function of t at z = 0, and this propagates forward in z.
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STRUCTURE–FUNCTION RELATIONSHIPS AND ESTIMATION OF THE SINGULAR INPUT MODES 301

Fig. 5. Example 3: application to an optical communication system with evolution governed by the nonlinear Schrödinger equation
with δ = 1. Layout as in Figs 1–4, for details see Fig. 1 caption.

The output modes converge quickly, with the limiting step being the number of iterations required for
the method of snapshots. As with examples 1 and 2B, the limiting factor for the input modes is localized
coverage of the input basis.

3.3 Network infection model

The penultimate example is a network infection model in which we seek the optimal treatment locations
on the network (Postlethwaite, 2022). The network itself is a Watts–Strogatz network (Watts & Strogatz,
1998) with mean degree 4 and parameter β = 0.04, which controls the regularity of the structure.6 For
a fixed, discrete timestep the infection and recovery probabilities at the ith node are

Pi
I = λ(1 − 0.9νi)ni

I for uninfected nodes, and

PR = μ for infected nodes,

where ni
I is the number of infected neighbours of the ith node and νi is the vaccination status [0, 1] of

each node. The input (structure) space is vaccination of each node, and the output space is the final
steady-state status of those who have been infected.

The results are shown in Fig. 6, in which it can be seen that approximately 80 iterations are required
to accurately capture the leading modes, which is clearly shown by the stability of the input modes over
time, the similarity of the output and snapshot modes, and perhaps most importantly by E .

In this particular context, one might reasonably imagine that the leading input mode corresponds
to the optimal nodes based on a graph-theoretic measure such as eigenvalue centrality of the adjacency
matrix (e.g. Shakarian et al., 2015). Interestingly, the leading mode does not directly equate to any of
the common centrality measures; however, because we wish to focus on a broader context than network-
based models, we will not dwell overlong on the the precise relationship here.

6 β = 0 is a regular lattice.
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302 G. M. DONOVAN

Fig. 6. Example 4: network infection model. Here the parameter values are λ = 0.8, μ = 0.2 on a graph with N = 200. As
previously the upper panels are a uniformly spaced sampling of the iteration space. Layout as in Figs 1–4, for details see Fig. 1
caption. Note that the colourbar for the network plots is shown only once on the right-hand side for compactness. Additionally,
the graph layout is chosen for visual clarity, and the greyed out nodes in the Vd plots are those not yet sampled. The input modes
are in terms of treatment (vi) and the output modes in terms of infection.

3.4 Optimal airway selection for bronchial thermoplasty

Finally, we apply the method to the original motivating problem: optimal airway selection in BT. The
dynamical model of airway constriction, flow conservation and pressure balance in the airway tree is
based on Donovan (2017) and ideas from Anafi & Wilson (2001); Venegas et al. (2005) and similar
to Stewart & Jensen (2015). A brief summary is given here; for full details, the reader is referred to
Donovan (2017). We write r for the vector of airway lumen radii, and p and q for pressure and flow
vectors, respectively, and for the evolution in time of the ith airway we then have

ṙi = ρ
(
φ(ri; r, p, q) − ri

)
, (3.6)

where ρ controls the airway relaxation time scale. The function φ describes static airway behaviour by
composition as φ = R(Ptm(r)) where R(P) is the so-called Lambert model describing the pressure-radius
relationship using matched rectangular hyperbolae (Lambert et al., 1982). The function P(r) gives airway
transmural pressure as a function of the radius as

Ptm(ri) = pmidi
− κRref

ri
+ 2μi

⎛
⎝(

Rref − ri

Rref

)
+ 1.5

(
Rref − ri

Rref

)2
⎞
⎠ , (3.7)

where the second and third terms are the ASM and parenchymal tethering pressures. In particular, the
parameter κ incorporates both smooth muscle mass and activation, and so is altered by BT treatment of
each airway. The parameter pmidi

is the mid-airway pressure, and Rref is the reference radius (Donovan,
2016).

In the conducting airways, the flow conservation constraints are

qm = qd1
+ qd2

(3.8)
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Fig. 7. Estimating input modes and the optimal airway treatment set for bronchial thermoplasty. Layout as in previous figures.
In this example, 21 airways area treated in both the naïve and optimal treatment sets. As previously the upper panels are a
uniformlyspaced sampling of the iteration space. Note that the colourbar for the network plots is shown only once on the left-
hand side for compactness. The greyed out airways in the Vd plots are those not yet sampled by the direct approach. The input
modes are in terms of treatment (i.e. κ) and the output modes in terms of flow (q).

where the notation indicates the mother and two daughter branches at each junction. In each airway, we
assume Poiseuille flow

Δpi = αir
−4
i qi, (3.9)

where the constants αi absorb all dependencies aside from radius, pressure and flow (Donovan, 2016,
2017). Following Donovan et al. (2018), we assume a 75% reduction in ASM in the BT treated airways
and a concomitant reduction in total wall area, although the precise figure is not without controversy
(Chernyavsky et al., 2018).

In terms of our input–output (structure–function) mapping, the input space is the airways to be
treated directly, and the output is the flow at steady state (periodically averaged for breathing). During
optimization, the input space is treated as continuous on [0, 1] but discretized for determination of the
final treatment set by ranking the optimal mode. The computational geometry is patient-specific and
acquired from a combination of CT imaging and biobank data as previously described (Donovan et al.,
2018) and similar to Leary et al. (2014).

Although the input space (all conducting airways) is in theory as large as 30,000, this is severely
constrained by both computational constraints and (in reality) the size of the bronchoscope relative to
the airways. However, within the smaller set of treatable airways, we still wish to find the optimal set.
To do so, we apply Algorithm 3 with sequential treatment basis starting from the largest airways, with
results given in Fig. 7. The comparative ‘naïve’ treatment set here is a simple ordering of the largest
treatable airways.

Several things are apparent. The first is that, even at the maximum number of iterations computed,
the direct output modes do not fully capture all aspects of the snapshot output modes (at least in this
particular subject). However, there is a degree of stability in both sets of output modes as the number
of iterations increases, suggesting that this behaviour lies outside of the control of the treatable central
airways. It is also important to recall here the assumption of linearity of the operator, which may prevent
convergence of the two set of output modes both in general and in this particular application: airways do
not act only in isolation but exhibit network and cascade effects (Alencar et al., 2002). Thus, the isolated
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sampling of the direct approach will not capture some of these effects. It is possible that this could be
addressed by a transformed sampling basis, but it is not clear a priori what the optimal sampling basis
should be.

The input modes and spectrum also display a degree of stability over time (iterations), which suggest
an optimal treatment set. We then tested this optimal treatment set, compared with a naïve treatment
set consisting of the same number of treated airways. The comparison between the naïve and targeted
treatments are shown in Fig. 8, both in terms of the dose-response curve (panel (a)) showing how airway
resistance (William Thorpe & Bates, 1997) increases with contractile agonist (which stimulates the
ASM to contract) as well as in terms of the flow patterns across the lung at maximal ASM activation
(panels (c)–(e)). By design, the method should have captured the largest change in the flow pattern (the
output/function space); however, it can also be seen that this corresponds to improved lung function
across the agonist dose range. Observe that the naïve treatment response is paradoxical, which is not
uncommon (Donovan, 2018), but recall also that resistance is only an indirect outcome and the flow
distribution is the direct target. Moreover, it is worth noting that the targeted treatment set is not something
so simple as selecting the airways with the greatest ASM content (panel (b)) but rather it is the result of
the complex interplay between interrelated airways. Similarly, no obvious predictor is apparent in terms
of total wall area (data not shown). Here ASM is normalized by the square of the basement membrane
perimeter as the most appropriate index of airway size (Donovan et al., 2023).

4. Discussion

In this manuscript, we have proposed an iterative approach to estimating the SVD input modes from
the action of the forward operator alone. This was motivated by a particular problem in respiratory
physiology (e.g. the optimal airway treatment set in BT) and also applied to several test problems
to demonstrate its strengths and weaknesses. It may be applicable to similar problems in different
application areas.

It is worth reiterating the particular aspects which might favour this approach over alternatives. First
and foremost, this is only relevant to situations in which we have access only to the action of the forward
operator; if either the adjoint operator is available, or the entire matrix can be formed, other methods are
almost certainly preferred.

Moreover, we are envisioning situations in which the input and output spaces are both of relatively
high dimension; otherwise, conventional optimization methods are probably favoured. For the BT
problem in particular, the combinatorial optimization problem is completely infeasible on computational
cost grounds: the search space is enormous (∼ (300

40

) ≈ 1050) and the computational cost of each
forward evaluation is significant (∼ 1 cpu-day), though significant savings may be possible via reduction
techniques (Whitfield et al., 2020).

Moreover, it is also important that one has some idea of how to search the input space efficiently. If
it becomes necessary to sample the entire input space, we have gained little over the naïve approach of
simply reconstructing A by a complete sampling of the input space (e.g. example 3).

There are connections between this approach and uncertainty quantification (e.g. Smith, 2013).
Although we have not explicitly formulated the method as such, perturbations to the input space could
be viewed not as treatment effects but rather as measurement error. In such a case, the input space would
need to be viewed as the full parameter set.

One additional aspect that we have not so far discussed is the choice of reference configuration x0
and the size of the linearizing perturbation δ (see Eq. 2.6). Of course, if M is a linear operator, then
the choice is unimportant, but in the more likely situation that M is nonlinear then these choices are
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Fig. 8. Targeted versus naïve airway treatment sets in the BT model. In (a), resistance (R) is normalized to nominal; similarly in
(c)–(d) flow is normalized to nominal (Donovan, 2017) with a single common colourbar on the right for all panels.

important. In the BT case it is straightforward—the reference configuration is the pre-treatment lung,
and the linearizing perturbation is binary: each airway is either treated or untreated. However, in other
cases, it may be less obvious how to make these choices. Similarly, the method of snapshots requires
the choice of distribution from which to draw the snapshots ωj. The idea here is to efficiently sample
the range of M, so that the choice of distribution of ω is informed by what we know about the input
domain. One might expect that the standard deviation of ω should be comparable to δ, though this could
be applications-specific deviations from this.

There are a few subtle points that have not been previously discussed that bear mention. The first is
that our choice of E (Eq. 2.11) is by no means definitive. Other choices could most certainly be made,
depending on the specifics of the problem at hand. A related problem is the stability of the mode ordering
as the iterations progress: there is no guarantee that the ordering of the modes (by singular value) remains
the same as iterations are added to the truncated approximation. In such a case, it may be necessary to
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apply other methods to disambiguate the modes. The consequences are two-fold: (1) if the error measure
incorporates the leading mode, switching of the leading mode will strongly effect the error measure, and
(2) we have explicitly shown the leading mode in the figures as the iterations proceed. As with the modal
mixing of example 2, modal switching can confuse the interpretation.

It is also worth considering the practicalities of sampling limitations and the utility of E . In the
examples given here, we have used a fixed number of iterations (and tracked E) rather than using a
convergence criterion per se in order to demonstrate the method more fully; however, the algorithms of
Sec. 2 are formulated to stop at a fixed convergence criterion and this is how they would be best used in
practice.

In summary, we have demonstrated the proposed method on a sequence of examples in order to
demonstrate both its strengths and limitations. In all cases, we assume linearity of the underlying
operator, and this can be a significant assumption. Selection of the sampling basis is also key—if the
sampling basis is such that we must sample the entire space in order to achieve an adequate estimate,
then we have gained little. Indeed, the sampling resources used for the method of snapshots in such a case
are in some sense wasted, except perhaps for their utility in demonstrating the need to continue sampling.
There can also be issues with modal mixing and switching, as shown in example 2. However, if these
conditions are met, this approach offers a new avenue for otherwise difficult problems, as demonstrated
by our ability to find a targeted BT treatment set that significantly improves upon the untargeted approach,
in a computationally feasible manner.
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