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Abstract

Commercial aircraft are designed to fly but also need to operate safely and efficiently as vehicles on the
ground. During taxiing, take-off and landing procedures the landing gears of an aircraft must operate reliably
over a wide range of forward velocities and vertical loads. Specifically, they must maintain straight rolling
under a wide variety of operating conditions. It is well known, however, that under certain conditions the
wheels of an aircraft landing gear may display unwanted oscillations — referred to as shimmy oscillations
— during ground manoeuvres. Such oscillations are highly unwanted from a safety and a ride-comfort
perspective.

In this paper we conduct a study into the occurrence of shimmy oscillations in a main landing gear
(MLG) of a typical mid-size passenger aircraft. Such a gear is characterised by a main strut attached to the
wing spar with a side-stay that connects the main strut to an attachment point closer to the fuselage center
line. Nonlinear equations of motion are developed for the specific case of a two-wheeled MLG configuration,
and allow for large angle deflections within the geometrical framework of the system. The dynamics of the
MLG are expressed in terms of three degrees of freedom: torsional motion, in-plane motion and out-of-plane
motion (with respect to the side-stay plane). These are modelled by oscillators that are coupled directly
through the geometric configuration of the system as well as through the tyre/ground interface, which is
modelled here by the von Schlippe stretched string approximation of the tyre dynamics. The mathematical
model is fully parameterised and parameters are chosen to represent a generic (rather than a specific) landing
gear. In particular, the positions of the attachment points are fully parameterised so that any orientation
of the side-stay plane can be considered. The occurrence of shimmy oscillations is studied by means of a
two-parameter bifurcation analysis of the system in terms of the forward velocity of the aircraft and the
vertical force acting on the gear. The effect of a changing side-stay plane orientation angle on the bifurcation
diagram is investigated. We present a consistent picture that captures the transition of the two-parameter
bifurcation diagram as a function of this angle, with a considerable complexity of regions of different types
of shimmy oscillations for intermediate and realistic side-stay plane orientations. In particular, we find a
region of tri-stability in which stable torsional, in-plane and out of plane shimmy oscillations coexist.
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1 Introduction

The technical term shimmy is generally used to describe the self-sustained oscillations of a rolling system, which
represent a relatively well-studied problem in engineering. Typical examples of shimmy with which the reader
may be familiar range from the weaving of a towed trailer at high speeds to the sudden oscillation of a loose trolley
wheel. The phenomenon first began to attract research interest in connection with the undesirable oscillation
of the steering mechanism of early automobiles. These vehicles shared the common design elements of a single
front axle rigidly connected to the front wheels, and the severity of the problem increased further with the
development of balloon tyres and front wheel brakes. The first major contribution towards an understanding
of shimmy dynamics was provided in 1925 by Broulheit [5], who recognised the role of tyre flexibility and
side slip in the shimmy mechanism. Furthermore, he also argued that the energy required to drive shimmy
oscillations was made available through the dynamics of the tyres. This work is particularly significant as such
considerations still form the basis of shimmy research today. Around the same time, de Lavard formulated a
theory of shimmy involving a system with rigid tyres and in 1927 published research showing shimmy oscillations
in such a system [26, 27]. This emphasised the importance of structural flexibility in the shimmy mechanism —
a conclusion supported in the work of Moreland [20]. In de Lavaud’s later work [28] he goes on to highlight the
possible advantages of independent front wheel suspensions. This modification later proved very effective, and
the development of such suspension configurations in the early 1930s almost entirely eliminated the problem of
automotive shimmy. However, around the same time the development of tricycle landing gear configurations
on aircraft resulted in a substantial increase in incidences of nose landing gear shimmy, consequently shifting
research interest from automotive to aircraft applications. In fact aircraft shimmy has largely dominated the
literature ever since, and examples of such shimmy events in aircraft can be seen in references [1, 13, 15, 19, 34].
For further information we direct the reader to the survey papers of Dengler [9] and Pritchard [21] as entry
points to the literature.

Of particular significance to our research is the consideration of relevant system nonlinearities in the shimmy
mechanism. The importance of these effects was realised by Temple in his 1941 paper [30] in which he considers
the problem of large amplitude shimmy. There he points out that such oscillations may be excited by relatively
small perturbations and that the resulting shimmy modes are highly nonlinear, meaning that their stability may
not be predicted with linear methods. Similarly Rotta [25] states that linear analysis techniques can provide
insight into the small amplitude stability of a system but that the determination of quantities such as shimmy
amplitudes requires the consideration of system nonlinearities. Since these early works a multitude of modelling
efforts have taken such nonlinearities into account. References [2, 4, 10, 17, 37] consider a range of effects,
including Coulomb friction, torsional freeplay, spring hardening, nonlinear tyre modelling, oleo damping and
impact dynamics.

One way of studying the effects of such nonlinearities on the dynamics of an aircraft landing gear system
is to perform a bifurcation study of a suitable mathematical model by means of the numerical continuation of
solutions and their bifurcations. This dynamical systems approach has been used in a relatively small number of
aeronautical application contexts, which include the bifurcation study of the flight dynamics of different types
of aircraft [3, 6, 18] and, more recently, aircraft ground dynamics [7, 8, 24, 23, 22, 31, 32, 33]. The usefulness
of continuation methods in an industrial design context is discussed for the prediction of the low-speed ground
turning of a civil aircraft in [7], and for medium-speed aircraft ground manoeuvres in [8] . The stability of
aircraft turning on the ground under constant thrust conditions is considered in [24, 23], and canard orbits in
the loss of lateral turning stability are the subject of [22]. Of particular interest for the study presented here
is the work in [31, 32, 33] on shimmy oscillations in an aircraft nose landing gear (NLG). The papers [31, 32]
present a bifurcation study of shimmy oscillations of an NLG with a single wheel in terms of the velocity of the
aircraft and the loading force on the gear. This work was expanded in [33] to a dual-wheel configuration, which
allowed for the assessment of the effects of gyroscopic forces and axle width on shimmy behaviour of the NLG.

In this paper we perform a bifurcation analysis of shimmy oscillations in a dual-wheel aircraft main landing
gear (MLG). A key new aspect of this study — compared to an NLG as studied in [31, 32, 33] — is that the
side-stay, which fixes the gear in the downlocked position, may be mounted in different orientations. For a
typical NLG the sidestay plane (spanned by the side-stay and the main strut of the gear) does not have a lateral
component (with respect to the direction of travel of the aircraft). The side-stay of a MLG on a typical civil
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Figure 1: Parameterisation of a typical dual-wheel MLG geometry. Global co-ordinates shown are aligned with
X in the forward direction, Y to port and Z pointing vertically upwards. For simplicity the gear is shown here
for the zero-rake angle case and, therefore, the main strut is aligned with the Z axis.

aircraft, on the other hand, is mounted largely laterally, with its attachment point closer to the center of the
fuselage; see figure 1. Furthermore the exact orientation of the side-stay plane differs from aircraft to aircraft
and as a result, the geometric complexity of a MLG is generally greater than that of a NLG.

To study MLG oscillations we introduce a mathematical model that describes the motion of the system
in terms of three degrees of freedom: torsional rotation about the strut axis, in-plane motion in the side-stay
plane, and out-of-plane motion perpendicular to the side-stay plane. We refer to these as the three basic modes
of oscillation of the MLG, and they are modelled as damped oscillators, which are coupled geometrically via
the MLG structure as well as via the forces that arise at the tyre/ground interface. With an appropriate tyre
model of the contact dynamics of the dual wheel, we obtain a seven-dimensional system of first-order ODEs for
the dynamics of the MLG. The model is fully parameterised so that it can represent any given MLG geometry.
In particular, we are able to study the sensitivity of the system to the orientation of the side-stay plane, which
strongly influences the geometric coupling between the three basic modes. More specifically, for suitably chosen
values of the side-stay orientation angle we present bifurcation diagrams in the parameter plane of aircraft
velocity and vertical load on the MLG. Each such two-parameter bifurcation diagram is organised by curves of
Hopf bifurcations, saddle-node bifurcations of periodic orbits and torus bifurcations. They bound parameter
regions in which one finds different types of shimmy oscillations of the system, which are characterised by the
dominance of one or more of the three basic modes of oscillation. We find a greatly increased complexity of
(often coexisting) shimmy oscillations for intermediate and realistic values of the side-stay orientation angle.

The paper is organised as follows. In section 2 we present the model of the MLG, which characterises the
motion of the system in terms of three oscillatory modes and the tyre contact dynamics. In section 3 this model
is used to determine the dynamics for the simplest geometric case of a side-stay that is perpendicular to the
direction of travel and has an attachment point level with that of the main strut. The effect on the bifurcation
diagram of changing the side-stay orientation angle is then studied in section 4. Finally, in section 5 we draw
some conclusions and point to future work.
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Figure 2: The dynamics of the MLG are expressed by the mode δ in the side-stay plane (a), the mode β out of
the side-stay plane (b), and the torsional mode ψ (c). Due to the existence of the side-stay, in-plane bending
of the main strut is approximated as an angular deflection about a point at distance Lδ above the axle. Local
coordinates (x, y, z) are defined with z aligned with the main strut, x perpendicular to the main strut and
side-stay, and y chosen to complete the right-handed coordinate system. For the zero rake angle case shown
here one has z = Z.

2 Vector Model of a main landing gear

For our study we consider a typical MLG dual-wheel geometry, consisting of a main strut, side-stay and axle
assembly characterising the MLG design of a wide array of aircraft. A representation of this geometry is shown
in figure 1. We use Lβ to denote the length of the gear from the wheel axle centre to the top of the main
strut as indicated, r is the radius of the tyres, a their separation from the axle centre, and e the caster length,
expressing the shortest distance between the main strut and wheel axle center line. We allow the MLG to have
a rake angle ϕs, defined as the angle between the main strut and the vertical Z-axis. This angle is shown in
figure 3; for clarity we initially consider the zero rake angle case in figure 1.

An important feature of our model is that the orientation of the attachment points is fully parameterised
by the angles µ and ρ. This parameterisation adds significant flexibility to our model, as in most cases the
difference between aircraft MLG designs can be characterised simply as a change of this side-stay geometry. We
use ρ to describe the inclination of these points (as shown in figure 2) and µ to describe the orientation of their
projection in the (X,Y ) plane, taken from the Y axis (shown in figure 1). The MLG may even approach the
configuration of a NLG as the parameter µ approaches ±90

◦
, with the side-stay becoming the NLG drag-stay;

compare with [31].
The presence of a side-stay in the system suggests a suitable treatment of the dynamics expressed in terms

of three degrees of freedom that are represented by three basic modes of oscillation, two of which are defined
with respect to the side-stay orientation. We refer to them as the torsional mode ψ, the in-plane mode δ in
the side-stay plane (spanned by the main strut and side-stay), and the out-of-plane mode β in the direction
perpendicular to the side-stay plane. In the formulation we consistently first apply ψ, δ and then β. The three
basic modes are shown in figure 2 for the zero rake angle case; for non-zero rake angles the orientation of these
modes is given by the vectors in figure 5. Note that in figure 2 we use the local co-ordinates (x, y, z) to define
the orientation of the modes δ and β. Rotational vectors representing the orientation of these modes are also
given in figure 5.

By considering the dynamics of each of these modes (as well as an appropriate representation of the tyre
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Figure 3: Angles m and p used to parameterise side-stay orientation, which are aligned relative to the main
strut rather than the global coordinate system.

dynamics; see section 2.2) we will build up a model of the MLG system. To facilitate the construction of this
model we adopt a vector notation throughout. In particular, this allows us to resolve any forces affecting the
gear into moments acting on the three basic modes, with the resultant terms expressed in a compact form
without the necessity of providing simplifying assumptions. The vector formulation also casts the system in a
more flexible framework, allowing for an easy incorporation of extra forces as well as changes to the geometry.
This extra flexibility will prove particularly useful when we investigate the effects of changing the side-stay
orientation angle in section 4.

2.1 Equations of Motion

To begin with, we consider the free dynamics of the MLG system, that is, the behaviour of the gear when freely
suspended above the ground by its attachment points. We construct expressions representing the dynamics of
each of the three degrees of freedom of this free system by applying Newton’s second law to each in turn. As
in [31] for a NLG, our starting point is that the corresponding three basic modes couple though the dynamics
of the tyre, where we neglect further effects such as the gyroscopic coupling produced by the spinning wheels.
We are, therefore, able to validate our model against existing results as well as gauge the coupling effects of
the variable side-stay geometry in isolation. Further geometric coupling occurs between the three basic modes
when the attachment point orientation is varied. To express this we introduce the angles p and m, giving
the orientation of the attachment points relative to the (y, z)-plane (shown in figure 3), rather than the global
coordinate system. Note that these angles coincide with ρ and µ for the zero rake angle case (ϕs = 0). From
the angles p and m we can see that independence of the modes ψ and β implies that p = 0 (for p ̸= 0 any β
motion of the system about the attachment points will also result in a twisting of the gear at the wheel axle).
For non-zero p we may write expressions for each of the modes as:
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Figure 4: Panel (a) shows the von Schlippe straight line tangency assumption of the contact patch shape and
resultant slip angle α describing its orientation, and in panel (b) the angle α is used to calculate tyre forces Fkλ
and Mkα acting on the system.

Iψψ̈ + cψ(ψ̇ + β̇ sin p) + kψ(ψ + β sin p)−Mψ(ψ, δ, β, λ) = 0 , (1)

Iδ δ̈ + cδ δ̇ + kδδ −Mδ(ψ, δ, β, λ) = 0 , (2)

Iβ β̈ cos p+
[
(cβ + cψ sin2 p)β̇ + (cψ sin p)ψ̇

]
+
[
(kβ + kψ sin2 p)β + (kψ sin p)ψ

]
−Mβ(ψ, δ, β, λ) = 0 , (3)

where the parameters Iψ,δ,β , cψ,δ,β and kψ,δ,β represent the inertial, damping and stiffness values of their
respective modes, and the terms Mψ,δ,β denote moment forces acting on the system, resolved into the three
modal directions. Furthermore, λ is the lateral deflection of the tyres, calculated from an appropriate tyre
model that is introduced next.

2.2 Tyre Model

Having modelled the behaviour of the free system (1)–(3) we now wish to capture the full dynamics of the MLG
by considering the tyre-ground interface and associated tyre dynamics. These tyre dynamics are necessary for
the appearance of shimmy oscillation, extracting energy from the forward motion of the system and feeding it
into the three structural modes [36]. They also produce additional coupling between the modes. Hence, to fully
model the MLG system we must introduce an appropriate tyre model. For this study we use a stretched string
approximation of the tyre dynamics known as the von Schlippe tyre model [35]. This model is one of several
stretched string tyre variant, and it has been regarded in the literature as generally consistent with experimental
data. For our system this model is adapted to the dual-wheel case and takes the form,

λ̇+
V

L
λ+ V uλ ,X +

1

2
(VLCF +VRCF ) · uλ = 0 , (4)

where λ is the lateral deformation of the tyres, V is the forward velocity of the system (aligned with the X-
direction), and L is the relaxation length of the tyres; here uλX

denotes the X component of the lateral tyre
vector uλ; see section 2.3. The terms VLCF · uλ and VRCF · uλ give the lateral velocity of the left and right
wheels respectively, where

VLCF = uψ × (PLCF −Pψ) ψ̇ + uδ × (PLCF −Pδ) δ̇ + uβ × (PLCF −Pβ) β̇ ,

VRCF = uψ × (PRCF −Pψ) ψ̇ + uδ × (PRCF −Pδ) δ̇ + uβ × (PRCF −Pβ) β̇ .

Again, these vectors are defined later in section 2.3.
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With this tyre model, we may use the lateral deflection λ to approximate the slip angle α of the contact
region, which we assume to have length h. This is based on the assumption that within this region the deflection
of the tyre, given by the red line in figure 4, may be represented by a straight line continuing smoothly from the
front of the contact patch. This allows the orientation of this region to be represented by the angle α, which
may be written as

α = tan−1

(
λ

L

)
.

Knowledge of this angle allows us to model the reaction forces produced at the tyres. They consist of a lateral
reaction force Fkλ and a self aligning moment Mkα; see figure 4. References [29] and [31] provide expressions
that may be used in approximating these terms; they are

Fkλ = kλ tan
−1(7.0 tanα) cos(0.95 tan−1(7.0 tanα))Fz , (5)

Mkα =

{
kα αm/π sin(πα/αm)Fz if|α| ≤ αm
0 if|α| > αm

, (6)

where kλ and kα are the lateral and torsional stiffness of the tyre respectively, Fz is the vertical force acting on
the system, and αm is the maximum slip angle beyond which we take Mkα = 0.

2.3 Derivation of Force Terms

We must now determine expressions for the moments acting in each of the three modal directions, given by the
terms Mψ,δ,β in equations (1)–(3). These forces and moments acting on the system are a consequence of the
weight of the aircraft and the MLG, the forces produced at the tyre-ground interface, and the rolling stiffness
of the dual-wheel configuration. To model their effects on the system we must resolve the moments they create
in each of the modal directions. In general, these moments take the form P×F ·u where F is the applied force,
P the vector of the appropriate moment arm and u the unit vector expressing the orientation of the mode in
question. We therefore define a series of position vectors for the MLG representing important geometric points
as well as the points of force application; they are displayed graphically in figure 5 and are given as:

Pδ = (0, 0, 0) , PLC = PL + r ur ,

Pβ = R(uβ , β)R(−eY , ϕ0)(0, 0, Lβ − Lδ) , PRC = PR + r ur ,

P0 = R(uβ , β)R(uδ0, δ)R(−e
Y
, ϕ0)(0, 0,−Lδ) , PLCF = PL + 1/2huf ,

PL = R(uβ , β)R(uδ0, δ)R(uψ0, ψs)R(−e
Y
, ϕ0)(−e, a,−Lδ) , PRCF = PR + 1/2huf ,

PR = R(uβ , β)R(uδ0, δ)R(uψ0, ψs)R(−eY , ϕ0)(−e,−a,−Lδ) ,

where R(v, θ) denotes the rotation matrix corresponding to a rotation of θ radians about the vector v. Moreover,
e

X
, e

Y
, e

Z
are unit vectors in the X, Y and Z global directions, respectively, ϕs is the (dynamically changing)

rake angle of the MLG, and ϕ0 is its static value for (ψ, δ, β) = 0.
We also define the following vectors describing the orientation of the MLG modes, as well as the orientation

of various constituent parts of the system; these are shown in figure 5 and are written in the global reference
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Figure 5: Points (a) and unit vectors (b) allowing calculation of the moments acting on the system. Note that
for non-zero caster lengths (e ̸= 0) point P0 is not in line with PL and PR.
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Figure 6: Dual-wheel configuration with separation distance 2a (a). Left (FL) and right (FR) reaction forces
acting on the system (b) are calculated using a static force balance for an axle inclined at an angle ε to the
ground plane.

frame as:

uψ0 =

− sinϕ0
0

cosϕ0

 , uβ =

− cos ρ sinµ
− cos ρ cosµ

− sin ρ

 , uδ0 =

cosm cosϕ0
− sinm

cosm sinϕ0

 ,

uψ = R(uβ , β)R(uδ0, δ0)uψ0 , uδ = R(uβ , β)uδ0 ,

uλ =
1

|(ua,X ,ua,Y , 0)|
(ua,X ,ua,Y , 0) , ua = R(uβ , β)R(uδ0, δ)R(uψ0, ψs)eY

,

uf =
1

|(ua,Y ,−ua,X , 0)|
(ua,Y ,−ua,X , 0) , ur = R(uf ,−π/2)ua .

Given these vectors, we are now able to define the moment terms acting on the MLG system, which may be
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written as:

Mψ = [ (PLC −P0) × FL + (PRC −P0)× FR + (PC −P0)× Fλ −Mα ] · uψ , (7)

Mδ = [ (PLC −Pδ) × FL + (PRC −Pδ) × FR + ( 1
2 (PLC +PRC)−Pδ) × Fλ ] · uδ , (8)

M∗
β = [ (PLC −Pβ)× FL + (PRC −Pβ) × FR + ( 1

2 (PLC +PRC)−Pβ) × Fλ ] · uβ ,

Mβ =M∗
β −Mψ(uβ · uψ) . (9)

Here Mβ takes a more complex form due to the coupling between the modes ψ and β. The term Fλ = uλ Fkλ
represents the combined side force produced by both tyres.

We split the vertical force Fz acting on the system into separate reaction forces FL and FR. This is achieved
by considering a static force balance on the wheel assembly, for tyres of vertical stiffness kt and an angle ε
between the wheel axle and ground plane; see figure 6. This allows these reaction forces to be written as

FL,R = (1/2Fz ∓ aεkt) eZ ,

where ε = sin−1(uaZ ) .
Finally, we consider the term Mα in equation (7), which represents the restoring moment exerted by the

tyres onto the landing gear. It is given by

Mα =
(
Mkα + cλψ̇uψ Z

V −1
)
e

Z
,

and is a consequence of both the stiffness and damping properties associated with the warping of the tyre contact
patch regions. Here cλ denotes the rotational damping of the contact patch area, having a decreasing effect on
the system dynamics as the forward velocity of the system increases, andMkα represents the rotational stiffness
and is given by equation (6). We assume that the effect of this restoring force is felt only by the torsional mode
of the system, and so the term only appears in equation (7).

With the addition of these terms we may now represent the full dynamics of the MLG as given by equations
(1)–(4) with the moment terms as defined in equations (7)–(9). To study the behaviour of these equations,
we also require a representative set of parameter values for a main landing gear. We choose the values as
listed in table 1, which are taken in part from [31] with a careful selection of the other parameters to ensure
realistic and sufficiently distinct linear frequencies of 9.81 Hz, 16.05 Hz and 13.63 Hz for the ψ, δ and β modes,
respectively. Although these parameter values do not come from a specific civil aircraft MLG, they serve to
represent a generic landing gear system that may experience shimmy instability. In particular, they allow us to
study the additional effects of a variable side-stay geometry on the shimmy dynamics. Note that the ranges of
the continuation parameters V and Fz are deliberately chosen larger than their operational ranges in order to
ensure that all features of the bifurcation diagrams are captured.

3 Analysis of the Perpendicular Case µ = 0
◦

We now turn our attention to the simplest side-stay orientation of the MLG, in which the line between the
attachment points is horizontal and perpendicular to the direction of travel. We therefore set ρ = 0

◦
throughout

and consider first the case that µ = 0
◦
; in turn this implies that both p = 0 andm = 0; see figure 3. Consequently,

in this case the modes only couple through the tyre forces. Moreover, the in-plane mode δ corresponds to motion
lateral to the direction of travel of the aircraft, while the out-of-plane mode β corresponds to motion in the
longitudinal direction of the aircraft. Hence, based on the observations in [31, 32] for a NLG, one would expect
δ to play a big role in the dynamics, with negligible coupling to β for this special case of µ = 0

◦
. In the following

sections we provide examples of the different types of shimmy oscillations of the MLG and then use a bifurcation
analysis to determine the parameter regions in the (V, Fz)-plane of forward velocity and vertical force, in which
this behaviour may be observed.
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Symbol MLG parameter Value Units

Geometric parameters
ρ attachment point inclination 0 deg
µ horizontal attachment point orientation angle 0 – 90 deg
e caster length 0.12 m
ϕ0 static rake angle 0.05236 rad (3◦)
a half track width 0.25 m
Lδ radius of in-plane deflection 0.75 m
Lβ gear length 2.5 m

Structural parameters
Iψ torsional inertia 100 kg m2

Iδ in-plane inertia 600 kg m2

Iβ out-of-plane inertia 750 kg m2

cψ torsional damping 300 N m s rad-1

cδ in-plane damping 300 N m s rad-1

cβ out-of-plane damping 300 N m s rad-1

kψ torsional stiffness 3.8× 105 N m rad-1

kδ in-plane stiffness 6.1× 106 N m rad-1

kβ out-of-plane stiffness 5.5× 106 N m rad-1

Tyre parameters
r tyre radius 0.362 m
h contact patch length 0.1 m
L relaxation length 0.3 m
kt vertical tyre stiffness 7× 105 N m-1

kα tyre self-aligning coefficient 1.0 m
kλ tyre restoring coefficient 0.002 rad-1

cλ tyre damping coefficient 570 N m2 rad-1

αm maximum slip angle 0.1745 rad (10◦)
Continuation parameters

V forward velocity 0 – 350 m s-1

Fz vertical force 0 – 106 N

Table 1: Parameters and their values as used in the analysis of the MLG.
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Figure 7: Torsional ψ-shimmy oscillations of the MLG with µ = 0 for V = 40 m/s and Fz = 105 N. Shown
are time series and the corresponding frequency spectra (in arbitrary units) of the torsional angle ψ, of the
deflections δ̃ and β̃, and of the tyre deflection λ.

3.1 Examples of Shimmy Oscillations

To illustrate the existence of shimmy oscillations we numerically integrate equations (1)–(4). Figures 7 and 8
give resulting time series for ψ, δ, β and λ, shown along with the corresponding frequency spectra. Throughout,
the magnitude of the torsional mode ψ is given in degrees, while the modes δ and β are represented by the
resulting deflections δ̃ and β̃ at the bottom of the strut (at the point△P0 in figure 5(a)); note that this definition
is slightly different from that used in [31, 32], where the deflections are considered at ground level.

Figure 7 is for V = 40 m/s and Fz = 105 N. We see that for this case all three modes display oscillatory
motion, but that the torsional mode ψ dominates the response with a relatively large amplitude of nearly 10

◦

degrees. In comparison, the modes δ and β produce deflections δ̃ and β̃ at the strut tip in the sub-millimetre
range. Furthermore, we note that both the modes ψ and δ are locked into a frequency of ∼ 10.6 Hz with the
mode β oscillating at a frequency of twice this value. This characteristic frequency lies closest to the linear
torsional frequency of 9.8 Hz, further emphasising the torsional dominance within this response. As a final
clarification we note that the lateral deflection λ of the tyres shows periodic dynamics at the frequency and
phase of the torsional mode. Therefore, based on these results we determine that for this choice of parameters
the MLG displays torsional or ψ-shimmy with the system passively following the torsional mode ψ in-phase.

Figure 8 shows the MLG response for V = 100 m/s and Fz = 4 × 105 N. Again we observe oscillatory
behaviour of the system; however, the in-plane mode δ is now dominating the response. Moreover, this happens
at a frequency of about 15.5 Hz, which now lies closest to the linear frequency of δ of 16.1 Hz. We also note
that the lateral tyre deflection λ now oscillates with the frequency of the mode δ with a phase shift of π/2 rad.
As before, this observation may be used to identify this type of shimmy as in-plane or δ-shimmy. Since the
side-stay orientation angle µ is zero, the mode δ in the side-stay plane is perpendicular to the direction of travel
of the aircraft. Therefore, δ-shimmy is also referred to as lateral shimmy of the MLG in this case, which is still
justified when µ is sufficiently small.
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Figure 8: Lateral δ-shimmy oscillations of the MLG with µ = 0 for V = 100 m/s and Fz = 4 × 105 N. Shown
are time series and the corresponding frequency spectra (in arbitrary units) of the torsional angle ψ, of the
deflections δ̃ and β̃, and of the tyre deflection λ.

Overall, we observe that, depending on the parameter range in question, the system may display different
types of shimmy oscillations, each corresponding to a different characteristic frequency, with the MLG expe-
riencing a different contribution from one of the three basic modes of oscillation. Another point to note is
that we have not yet seen out-of-plane or β-shimmy oscillations, where the mode β is dominant in the MLG
response. In the two cases of shimmy oscillations presented, the magnitude of the mode β remains very small,
while it passively follows the modes ψ or δ through coupling via the tyre. Any larger perturbations to the mode
β simply cause it to perform damped oscillations at its own frequency, thus returning to a small and passive
amplitude response. For a MLG with a perpendicular side-stay with µ = 0

◦
the mode β lies in the direction

of travel of the aircraft. Oscillations in β are, hence, also referred to as longitudinal shimmy of the MLG when
µ is sufficiently small. In other words, we did not find longitudinal shimmy oscillations when µ = 0

◦
, which

can be attributed to the fact that the mode β is not sufficiently coupled with the other modes of the system to
contribute to the shimmy dynamics. This finding agrees with the results in [31] for a NLG model represented
by basic longitudinal, lateral and torsional modes. Therefore, in this section that considers the case µ = 0

◦
, we

restrict ourselves to showing only the torsional mode ψ and the (lateral) in-plane mode δ.

3.2 One-Parameter Continuation

We now identify the parameter regions in which the MLG system may experience shimmy oscillations. We
choose as our bifurcation parameter the forward velocity of the system V , while fixing Fz at a specific value
and setting the other parameters as given in table 1. This is a natural choice of bifurcation parameter as,
in reality, the shimmy oscillations of landing gear systems are often only observed within a specific velocity
range, suggesting an inherent sensitivity to variations in its value. One-parameter bifurcation diagrams are
obtained with the continuation software AUTO [11]; to reflect our previous examples we choose values for the
loading force Fz that match those already considered. Figure 9 (a1) and (a2) shows results for Fz = 2× 105 N,
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Figure 9: One-parameter bifurcation diagrams in V of the MLG with µ = 0 for a vertical force of Fz = 2× 105

N in panels (a) and of Fz = 4×105 N in panels (b); shown are the maxima of the torsional angle ψ (left column)
and of the in-plane deflection δ̃ (right column). Stable solutions are green and unstable solutions are red; Hopf
bifurcation points (H) are shown as red dots, and torus bifurcation points (T) as black dots.

showing oscillatory solutions in terms of the amplitudes of the torsional mode ψ and of the deflection δ̃ of the
in-plane mode δ, respectively. Non-oscillatory straight-line rolling of the MLG is given by the zero-amplitude
solution, which exists over the entire velocity range considered. However, as the forward velocity is increased,
the stability of this straight-rolling solution changes: stability is lost and then regained when two supercritical
Hopf bifurcation points are passed. These two bifurcation points are connected by a branch of stable periodic
orbits, indicating the appearance of shimmy oscillations in the dynamics. Within the velocity range bounded
by the two Hopf points the dynamics of the MLG will move away from the straight-rolling solution, and one
observes the onset of shimmy oscillations, with amplitudes of ψ and δ̃ as shown in the figure (the amplitude
of β̃ remains extremely small throughout and is not shown). We note from figure 9(a) that the (torsional)
ψ-component of this periodic solution is significantly greater than the (lateral) δ̃-component, and indeed the
entire branch of periodic orbits represents torsional ψ-shimmy; compare with figure 7.

Figure 9 (b1) and (b2) show one-parameter bifurcation diagrams for a loading force of Fz = 4 × 105 N.
Apart from the previous branch of periodic orbits representing torsional shimmy, we now note the existence of
a second branch of periodic solutions connecting a second pair of Hopf bifurcation points. The amplitudes of ψ
and δ̃ along this branch show that the oscillations have a strong δ-component, and we conclude that this branch
represents (lateral) in-plane δ-shimmy of the MLG; see figure 8. Regarding the stability of the system, from
figure 9 (b1) and (b2) we note that the straight-rolling solution is again unstable over the entire velocity range
spanned by the periodic orbits. For lower values of the forward velocity we see that this results in torsional
shimmy oscillations, whereas for higher velocity values the MLG experiences lateral shimmy. We also note that
there exists a velocity range (here V ∈ (19.5, 205.7)), bounded by torus bifurcation points, over which both
periodic solutions are stable. Depending on the initial condition of the system and the presence of external
perturbations, one may see either torsional or lateral shimmy in the MLG response for µ = 0

◦
.
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Figure 10: Bifurcation diagram in the (V, Fz)-plane of the MLG for µ = 0 with regions of torsional ψ-shimmy
and with (lateral) in-plane δ-shimmy oscillations. The points labelled HH and DH are codimension-two double
Hopf and degenerate Hopf points, respectively.

3.3 Two-Parameter Bifurcation Diagram

Motivated by the results of the previous section we now explore the system dynamics for a continuous range of
the vertical force Fz rather than for the two discrete values previously considered. We therefore continue the
codimension-one bifurcations identified in the previous section in the two-parameter (V, Fz)-plane of forward
velocity V and loading force Fz. Figure 10 shows the resulting bifurcation diagram. It consists of a closed curve
of super-critical Hopf bifurcations that intersects a second Hopf bifurcation curve (again super-critical) at a
pair of Hopf-Hopf points (HH). These codimension-two points are important in determining the local structure
of the dynamics and, as expected from general bifurcation theory, they lead to the emergence of two curves
of torus (or Neimark-Sacker) bifurcations, the lower of which forms part of the stability boundary where the
in-plane mode δ becomes undamped. We also see curves of saddle-node (or fold) bifurcations of periodic orbits
— emanating from degenerate Hopf points (DH) of the closed Hopf bifurcation curve — that act as further
stability boundaries of the system. In particular, they form the boundaries of torsional shimmy oscillations for
higher values of Fz and are, in fact, parts of a single fold curve connecting the two degenerate Hopf points.

Overall, the bifurcation diagram in the (V, Fz)-plane provides a global view of the dynamics of the MLG.
The non-shaded region at the bottom of figure 10 shows the desirable parameter region in which the non-
oscillatory straight-rolling solution is stable. As the loading force is increased this solution loses stability; this
results in shimmy oscillations, which may be torsional or in-plane (lateral) in nature (depicted by left- and
right-slanted shading, respectively). In agreement with what we saw in the last section, only torsional shimmy
may be observed for low values of Fz. Lateral shimmy, on the other hand, may be found for larger loading
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forces, and it may coexist with torsional shimmy in a large region of bistability. A final point to note is that
the bifurcation diagram in figure 10 also serves to validate our model against existing results. Specifically, we
see that our MLG model for µ = 0

◦
has the same qualitative features as were found in [31] for a study of a

NLG (with similar parameters and modelling assumptions). Indeed, for µ = 0
◦
our model reproduces many of

the dynamical characteristics found in NLG shimmy, including the presence of bi-stability.

4 Effect of Side-Stay Orientation Angle µ

The bifurcation diagram in the (V, Fz)-plane in figure 10, and the associated regions of different types of shimmy
oscillations, depend on the values of other parameters. We focus now on the effect of changing the side-stay
angle µ over the range µ ∈ [0

◦
, 90

◦
]. This parameter is of specific interest, because µ varies greatly from aircraft

to aircraft and, in general, cannot be assumed to be zero or even small. Note that for non-zero values of µ the
orientation of the out-of-plane mode β differs from the orientation of the tyres. Via the tyre dynamics this leads
in turn to an increasing geometric coupling between all three basic modes (which is not present for the special
case µ = 0

◦
). Moreover, for µ ̸= 0

◦
the modes δ and β are no longer perfectly aligned with the lateral and

longitudinal directions with respect to the direction of travel. Rather, δ and β both represent lateral as well as
longitudinal components for intermediate values of µ, until for µ = 90

◦
their roles are exchanged with δ being

a purely longitudinal mode and β being a purely lateral mode with respect to the direction of travel. In order
to study the effect of this geometric coupling between the three basic modes ψ, δ and β, we consider how the
bifurcation diagram in the (V, Fz)-plane changes with the side-stay angle µ; all other parameters remain fixed
as specified in table 1.

4.1 Hopf Frequency Diagrams

The curves of Hopf bifurcations play an important role in the dynamics of the MLG system: they generate
different types of shimmy oscillations and are largely responsible for the overall structure of the bifurcation
diagram in the (V, Fz)-plane. For this reason we first consider how the Hopf bifurcation curves alone change
when the side-stay angle µ is increased from µ = 0. Since types of shimmy oscillations are characterised by
having a frequency close to the linear frequency of the corresponding mode, it is of interest to consider also
the frequencies of the periodic orbits that bifurcate from the Hopf bifurcations. We therefore construct two-
parameter diagrams in the (V, Fz)-plane of Hopf bifurcation curves, where colour represents the frequency of
the bifurcating periodic solutions as determined from the purely imaginary eigenvalues.

Figure 11 shows this type of Hopf frequency diagram for several representative values of µ ranging from 0
◦

to 90
◦
. The corresponding colour map shows the linear frequencies of the modes ψ, δ and β as blue, red and

light green, respectively. Overall, one notices considerable changes in the Hopf bifurcation curves when µ is
increased from µ = 0

◦
to µ = 90

◦
. These two extreme values of µ represent the simplest cases of the MLG

system with effectively only two contributions to shimmy oscillation frequencies present in the dynamics: that
of the modes ψ and δ for µ = 0

◦
, and that of the modes ψ and β for µ = 90

◦
. Recall that δ is defined as

motion in the plane of the side-stay, while β models motion perpendicular to the side-stay plane. Hence, β is
aligned with the direction of aircraft motion only for small values of the side-stay angle µ. For µ near 90

◦
, on

the other hand, the mode δ is aligned with the longitudinal direction; hence, it is geometrically uncoupled from
the other two modes, and β now corresponds to lateral motion with respect to the direction of aircraft motion.
In addition, as with β when µ is small, for µ near 90

◦
the mode δ is geometrically uncoupled from the other two

modes. This explains the degree of similarity of figure 11(a) and (h) for µ = 0
◦
and µ = 90

◦
, respectively, with

the roles of δ and β exchanged. For intermediate µ values, however, the bifurcation diagram is considerably
more complex due to the coupling of all three basic modes.

The transition between µ = 0
◦
and µ = 90

◦
in figure 11 is marked by several qualitative changes of the

Hopf bifurcation curves. Moreover, the colour map shows how this is associated with changes to the frequency
of the bifurcating oscillations. Figure 11(a) shows the two Hopf bifurcation curves for µ = 0; compare with
figure 10. The red curve is clearly associated with oscillations of the mode δ, while the other gives rise to stable
torsional shimmy oscillations in ψ along the (blue) section below the other (red) Hopf bifurcation curve. The
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Figure 11: The Hopf bifurcation curves in the (V, Fz)-plane of the MLG for multiple side-stay orientation angles
in the range µ ∈ [0

◦
, 90

◦
]; colour represents the frequency of the bifurcating periodic solution as given by the

colour map.

first qualitative change occurs for a side-stay angle of µ ≈ 7
◦
, when a loop appears in one of the Hopf curves;

see figure 11(b). Notice further, the associated (green) section of this Hopf bifurcation curves, giving rise to
oscillations with a frequency near the linear frequency of the out-of-plane mode β. This Hopf bifurcation curve
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consequently intersects itself at a double Hopf point (at V ≈ 145 m/s), which has a profound influence on
the structure of the two-parameter bifurcation diagram as we will see in the next section. This loop grows to
considerable size when µ is increased to µ = 20

◦
. Moreover, there emerges a nearly horizontal (green) section

of this Hopf bifurcation curve associated with oscillations in β; see figure 11(c). In effect, the upper boundary
of the stability region of the straight-rolling solution is now formed by one and the same self-intersecting Hopf
bifurcation curve in the region of interest. Between µ = 20

◦
and µ = 22

◦
there is a change in the connectivity

of the two Hopf bifurcation curves at (V, Fz) ≈ (7, 5.1× 105), and another such change occurs between µ = 22
◦

and µ = 24
◦
at (V, Fz) ≈ (9, 2.6× 105); compare panels (c)–(e) of figure 11. These changes are due to the fact

that the slice µ = const moves through a saddle point of the surface of Hopf bifurcations in (V, Fz, µ)-space,
and we refer to this phenomenon as a saddle transition of the Hopf bifurcation curves; for other examples of
this phenomenon see [33] regarding NLG and [12, 14, 16] more generally. As a result of these transitions we
find that for µ = 24

◦
and above a closed (blue) curve of Hopf bifurcations is intersected by a (green) Hopf

bifurcation curve — a structure that is remarkably like what we found for µ = 0
◦
but with the roles of δ and

β exchanged. Additionally, there is a (red) section of the Hopf bifurcation curve associated with oscillations in
δ, but at considerably higher values of Fz; see figure 11(e). This (red) section moves towards higher values of
V with increasing µ. At the same time the (green) curve of Hopf bifurcations that generates oscillations in β
moves towards lower values of Fz; see figure 11(f) and (g). Finally, for µ = 90

◦
the section of Hopf bifurcations

associated with oscillations in δ has left the region of interest in the (V, Fz)-plane shown in the figure. Moreover,
the two remaining curves of Hopf bifurcations no longer intersect each other; see figure 11(h). As a result, the
stability boundary of straight rolling is formed by the (green) Hopf bifurcation curve alone, meaning that as the
vertical load is increased one would expect to first see β-shimmy oscillations. Since µ = 90

◦
, these oscillations

correspond to lateral shimmy.

4.2 Two-Parameter Bifurcation Diagrams

Overall, the changes in the Hopf frequency diagram in figure 11 indicate the sensitivity of the system to variations
in side-stay orientation angle µ, as well as the increasingly prominent role of the out-of-plane mode β as µ is
increased. We now present in figure 12 the associated two-parameter bifurcation diagrams for each of the eight
chosen values of µ over the transition from µ = 0

◦
to µ = 90

◦
. Each bifurcation diagram in figure 12 shows

curves of Hopf bifurcations, saddle-node bifurcations of periodic orbits, and torus bifurcations. The shaded
regions are the stability regions of torsional ψ-shimmy (left slanted), of in-plane δ-shimmy (right slanted), and
of out-of-plane β-shimmy (dotted). Comparison of the respective panels of figures 12 and 11 shows that the Hopf
bifurcation curves alone only hint at the stability regions of the different types of shimmy oscillations. The aim
of figure 12 is to illustrate the overall complexity of regions of stable oscillations in the transition from µ = 0

◦

to µ = 90
◦
; on the other hand, it does not show the details of all transitions of the different bifurcation curves.

The overall structure of the bifurcation diagrams in figure 12 is organised throughout by the codimension-two
double Hopf and degenerate Hopf points as well as the emerging curves of saddle-node and torus bifurcations
of periodic orbits.

Panel (a) of figure 12 for µ = 0
◦
is the starting point; it is repeated from figure 10. Increasing µ to 7

◦

we already find a (dotted) region of β-shimmy oscillations (where the out-of-plane mode β dominates) in the
vicinity of the newly created double Hopf point at V ≈ 145m/s; the region is bounded below by the nearly
horizontal section of the lower Hopf bifurcation curve, and to the sides by torus and saddle-node bifurcation
curves that are associated with double Hopf and degenerate Hopf points; see figure 12(b). Note that for µ = 7

◦

there is no clear upper boundary of the region of β-shimmy. Rather, we see a gradual transition in frequency
and mode shape from β-shimmy to torsional ψ-shimmy as the loading force Fz is increased. Since µ is still very
small, β-shimmy is effectively longitudinal shimmy. In other words, even a small geometric coupling between
the three basic modes may result in the observation of considerable longitudinal oscillations of the MLG.

When µ is increased to µ = 20
◦
, the region of β-shimmy (which is still largely in the longitudinal direction)

increases, both towards larger values of V and towards larger values of Fz; see figure 12(c). In fact, when Fz
is increased for a velocity V above 120 m/s, out-of-plane β-shimmy, rather than in-plane δ-shimmy is typically
observed. We also note a change in the local connectivity of the torus bifurcation curves due to a saddle
transition, that is, a transition through a saddle point in the surface of torus bifurcations in (V, Fz, µ)-space;
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Figure 12: Bifurcation diagram of the MLG in the (V, Fz)-plane for µ = 0
◦
(a), for µ = 7

◦
(b), for µ = 20

◦

(c), for µ = 22
◦
(d). Shown are curves of Hopf bifurcations (red) of saddle-node bifurcations (green) and of

torus bifurcations (black). In the white region the straight-rolling solution is stable; left-slanted shading denotes
stable torsional ψ-shimmy oscillations, right-slanted shading denotes stable in-plane δ-shimmy oscillations, and
dotted shading denotes stable out-of-plane β-shimmy oscillations. Panel (a) is repeated from figure 10.

see [33] for another example of such a transition. The bifurcation diagrams for µ = 22
◦
and µ = 24

◦
are very

similar, differing only in the connectivity of the Hopf bifurcation curves; see figure 12(d) and (e). Here we see
the presence of several regions of multiple stability; in particular, for µ = 24

◦
we find a region of tri-stability in

which solutions of ψ-shimmy, δ-shimmy and β-shimmy co-exist in the dynamics. A further point of interest in
the bifurcation diagrams in figure 12 is the formation of a local structure of bifurcation curves in the parameter
range V ∈ (0, 150), Fz ∈ (0, 4.5 × 105) that is very similar to the one found for µ = 0

◦
. The structure is

characterised by the interaction of two Hopf bifurcation curves (one of which is an isola) at two double Hopf
bifurcation points with associated torus and saddle-node curves that bound regions of different types of shimmy
oscillations; compare panels (e) and (a) of figure 12. The difference is that for µ = 0

◦
this structure involves

the modes ψ and δ, while for µ = 24
◦
it involves the modes ψ and β. This is a clear indication of the exchange

of the roles of δ and β for the dynamics of the MLG. The conclusion is that, even for such relatively small
side-stay angles µ the out-of-plane mode plays a prominent role alongside the in-plane mode in the shaping the
dynamics of the MLG system.

When µ is increased further to µ = 40
◦
and then µ = 60

◦
, the isola of Hopf bifurcations associated with

torsional oscillations shrinks and the intersecting Hopf bifurcation curve leading to β-oscillations moves down
towards smaller values of Fz; see figure 12(f) and (g). At the same time, the remaining bifurcation curves
move further up in Fz. Finally, the two lower Hopf bifurcation curves do not intersect any longer (following
the transition through a codimension-three degenerate double Hopf bifurcation point) and all other bifurcation
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Figure 12: Continued. Bifurcation diagram of the MLG in the (V, Fz)-plane for µ = 24
◦
(e), for µ = 40

◦
(f),

for µ = 60
◦
(g), and for µ = 90

◦
(h).

curves leave the region of interest of the (V, Fz)-plane. The result is the bifurcation diagram shown in figure 12(h)
for µ = 90

◦
. Apart from a small region of torsional ψ-shimmy one only finds stable β-shimmy once the straight-

rolling solution becomes unstable. It is an important observation that for µ = 90
◦
the MLG has a geometry

much like a NLG; indeed, the observation that the (lateral) out-of-plane mode β is dominant in this case, with
no evidence of longitudinal dynamics, agrees well with the results in [31, 32] for a NLG.

We remark that the fixed region in the (V, Fz)-plane shown in figures 11 and 12 was deliberately chosen to
be quite large, so that the qualitative changes of the bifurcation diagram show. A more realistic range of the
velocity would be V ∈ [0, 80] m/s. Notice, however, that qualitative changes of the bifurcation diagram outside
of the MLG operating region do lead to changes of the observed shimmy phenomena over realistic parameter
ranges; for example, we first see the out-of-plane mode appearing for µ = 7

◦
with the creation the new double

Hopf point at V ≈ 145m/s. Therefore it proves necessary in practice to consider an extended parameter range
when exploring the full dynamics of the MLG system. As a final point we note that, as µ increases, the non-
shaded region representing stable straight-rolling motion of the MLG shrinks. Overall this implies that, for this
particular choice of parameters, the system is more likely to experience shimmy as µ→ 90

◦
.

4.3 Tri-stable Behaviour

We observe in figure 12 large regions of multiple stability for intermediate values of µ. We remark that such
behaviour is particularly undesirable from a design viewpoint, as sufficient perturbations to the system even
near such a region may result in the observation of one of several types of shimmy. This makes it considerably
more difficult to design a damper to safeguard against shimmy oscillations as one cannot be sure of the frequency
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Figure 13: One-parameter bifurcation diagram in V of the MLG with µ = 24
◦
and for a vertical force value

of Fz = 5 × 105N, showing the maximum of the torsion angle ψ. Stable solutions are green and unstable
solutions are red; The different branches of periodic solutions are labelled according to the type of shimmy
oscillations they represent. Stable solutions are green and unstable solutions are red; also shown are points of
Hopf bifurcation (red dots), saddle-node bifurcation (green dots), and torus bifurcation (black dots).

range to expect when the desired straight-rolling solution of the MLG becomes unstable.
To illustrate this point we now focus our attention on the most extreme case: the tri-stable region near

(V, Fz) ≈ (30, 5× 105) for µ = 24
◦
in figure 12(e). We begin by considering the horizontal slice for Fz = 5× 105

through the region of interest. Figure 9 shows the one-parameter bifurcation diagram corresponding to this
choice of loading force; shown are the bifurcating periodic solutions in terms of the amplitude of the torsional
mode ψ. We observe the existence of three clearly distinguished periodic solutions in figure 9. They are labelled
according to the type of shimmy oscillation they represent; torsional shimmy oscillations naturally have the
highest magnitude of ψ. There are several regions of bi-stability and, importantly, all three types of shimmy
oscillation coexists and are stable in the velocity range V ∈ (14.6, 44.2); this range is bounded on the left by
a torus bifurcation of in-plane δ-shimmy and on the right by a saddle-node bifurcation of the periodic orbit
representing torsional ψ-shimmy. Notice that the ψ-shimmy oscillations occur along a closed loop, which is
bounded by two saddle-node bifurcations and not connected to the straight-rolling solution. It may, hence, be
missed in a one-parameter continuation that starts from the straight-rolling solution; however, is easily picked
up from knowledge of the two-parameter bifurcation diagram in figure 12(e).

In the region of tri-stability the MLG may experience all three types of shimmy oscillation. The type that
is observe in the dynamics of the landing gear depends on the initial condition, as well as on the nature of any
possible external perturbations. By performing a numerical integration of the system for a choice of parameters
within this region we may verify the co-existence of these three types of shimmy oscillations in the dynamics of
the MLG and the possibility of switching between them by suitable perturbations. Figure 14 shows the results
of a 60 second simulation run for V = 30 m/s and Fz = 5 × 105 N. As in figures 7 and 8, the response of the
system is shown as time series of ψ, δ̃, β̃ and λ. The key feature of this simulation run is that we apply two
perturbations as follows. At t = 20 s an impulse of 10 kNms is applied to the in-plane mode δ, and at t = 40
s an impulse of 4 kNms is applied to the out-of-plane mode β. In each case the perturbing force is applied
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Figure 14: Simulation run within the tri-stable region for parameter values (V, Fz) = (30, 5×105). Perturbations
are applied to the system at t = 20s to the in-plane mode δ and t = 40s to the out-of-plane mode β; as a result,
the system moves between periodic solutions. The dominant frequency of the oscillation in the (shaded) five-
second time windows is provided.

over 0.05 s. These two perturbations are sufficient to drive the system from one periodic solution to another,
thus changing the type of shimmy oscillation experienced by the MLG. In particular, we see that the system
moves from ψ-shimmy to δ-shimmy following the first perturbation, and then from δ-shimmy to β-shimmy as a
consequence of the second perturbation. To emphasise the change in behaviour we also determine the dominant
frequency of the oscillation over the five-second time window prior to each perturbation.

Figure 14 clearly shows that it is possible to switch between the different types of shimmy oscillations by an
external perturbation of the MLG. We remark that such perturbations are not unrealistic from a physical view-
point and may arise from a multitude of sources, including heavy braking of the aircraft, contact of the landing
gear with a physical object, or traversal over an uneven runway surface. MLG systems may also experience
large initial perturbations under heavy or non-symmetric landing conditions. These kinds of perturbations are
largely unpredictable and, therefore, within regions of multiple stability a degree of uncertainty is introduced
into the observable behaviour of the MLG.

5 Discussions and Future Work

We have presented a mathematical model of a dual-wheel MLG system and studied it by means of bifurcation
analysis. Specifically, we constructed the bifurcation diagram in the (V, Fz)-plane of aircraft velocity and loading
force on the gear, both of which are key operational parameters. This two-parameter bifurcation diagram
provides a wealth of information on the observable dynamics of the MLG, telling us not only in which regions
the MLG will oscillate but also which type of shimmy these oscillations represent. From a practical point of
view, during take-off or landing the loading force Fz is a function of the velocity V : a take-off run corresponds
to a path in the (V, Fz)-plane that starts from a given value of Fz (determined by the loading of the aircraft) at
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V = 0 and ends at Fz = 0 at the take-off speed; similarly, a landing corresponds to a path that starts at Fz = 0
at the landing speed and ends at the taxi-speed with a given value of Fz (again determined by the loading of the
aircraft). The bifurcation diagram in the (V, Fz)-plane can, hence, be used to evaluate the shimmy behaviour
of the aircraft for take-off runs and landings under different conditions (loading of the aircraft and/or thrust
settings), by considering how the respective curve (which can be measured in practice) intersects the bifurcation
diagram.

Moreover, we showed that the influence of other parameters of interest can be studied by considering how
the bifurcation diagram in the (V, Fz)-plane changes. In particular, we explored the effect of changing the
orientation of the side-stay as given by the angle µ. From a practical point of view, this constitutes a design
study as the parameter µ is determined at the early stages of the MLG design and cannot be changed during
operations. We observed considerable sensitivity of the bifurcation diagram on µ when it was changed from
µ = 0

◦
(side-stay perpendicular to direction of travel) to µ = 90

◦
(side-stay in line with direction of travel).

Most aircraft feature side-stays with µ in the range of 20
◦
to 40

◦
, and we found quite a complex bifurcation

diagram in this region of side-stay angles. In particular, three different types of shimmy oscillations can be
observed in this range of µ, which are characterised by the dominance of the torsional, in-plane and out-of-plane
modes. Moreover, we found considerable regions of multi-stability, including the coexistence of all three types
of shimmy over a large range of realistic velocities. This is of interest from the design point of view, because
the different shimmy oscillations are associated with different frequency ranges, which needs to be taken into
account, for example, in the design of shimmy dampers.

The study presented here was for a typical landing gear, with parameters adapted from the literature, and
its goal was to demonstrate what type of results can be obtained. Clearly, there are many directions for further
research. First of all, some of the parameters that remained fixed here may also differ considerably from MLG
to MLG. For example, the horizontal inclination ρ of the side-stay attachment relative to the attachment point
of the main strut also influences the geometric coupling between the modes; what is its effect on the dynamics
of the MLG? A second direction would be to consider MLG parameters that are more representative for a
specific aircraft with a view of optimizing operations. For this purpose a study of the dynamics of the MLG in
dependence on additional operational parameters, such as runway conditions or tyre pressure, would be suitable.
Finally, we mention that there are a number of physical effects that are currently not included in the MLG
model presented here, such as the dynamics of the shock absorber or freeplay in bearings. Given the versatility
of the modelling approach employed here, it would be relatively straight forward to incorporate such effects into
the MLG formulation, while still ensuring that it remains amenable to bifurcation analysis.
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