
Maths 260 Lecture 17

I Topics for today:
Linear systems

I Reading for this lecture: BDH Section 3.1, 3.2

I Suggested exercises:
BDH Section 3.1 #5, 7, 9, 24, 27, 29
BDH Section 3.2 #1, 5, 11, 13, 25

I Reading for next lecture:
BDH Section 3.3

I Today’s handouts: Exercises using complex numbers
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Linear Systems

I Linear systems are an important class of systems of DEs,
because some important physical models are linear but also
because we can use linear systems to help understand
nonlinear systems.

I A linear system is a system of DEs where the dependent
variables only appear to the first power.
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Matrix form

I Linear systems can be written as

dY

dt
= AY

where Y is a vector and A is a matrix of constants:

Y =


x1

x2
...

xm

 A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

am1 am2 . . . amm



I A is called the coefficient matrix. The number of dependent
variables is called the dimension of the system.
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Example 1: Rewrite the system

dx

dt
= 2x − z

dy

dt
= −x − z

dz

dt
= x + y

in matrix form.
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Example from the last lecture

Example 2:
ẋ = x , ẏ = 2x − y

I The direction field and some solutions from pplane:

x ’ = x      
y ’ = 2 x − y

−3 −2 −1 0 1 2 3
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Example from the last lecture

Example 2:
ẋ = x , ẏ = 2x − y

I We can write this system as

dY

dt
= AY

where

Y =

(
x
y

)
, A =

(
1 0
2 −1

)
.
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Example from the last lecture

I This system decoupled and we could find the analytic
solution. We found that

Y1(t) =

(
et

et

)
, Y2(t) =

(
0

e−t

)
are the (straight-line) solutions of this system and that all
solutions can be written as

Y(t) =

(
c1e

t

c1e
t + c2e

−t

)
= c1Y1 + c2Y2,

i.e., as a linear combination of the straight-line solutions Y1

and Y2.
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Some properties of linear systems

I Equilibrium solutions of

dY

dt
= AY

are values of Y0 such that AY0 = 0.

I From linear algebra, know that if det(A) 6= 0, then the only
solution of AY0 = 0 is Y0 = 0 (called the trivial solution).

I Thus, if det(A) 6= 0, then Y(t) = 0 is the only equilibrium
solution to

dY

dt
= AY
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Finding straight-line solutions

I At a point (x , y) on a straight-line solution, the vector field
must point in the same (or opposite) direction as the vector
from the origin to (x , y).

I This means
Av = λv (1)

where v = (x , y) and λ is a real number.

I If λ > 0, the vector field points in same direction as v,
i.e., away from the origin.

I If λ < 0, the vector field points in opposite direction to v,
i.e., towards the origin.

I A number λ that satisifies Equation (1) (for non-zero v) is
called an eigenvalue of A. The vector v is called an
eigenvector with corresponding eigenvalue λ.
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Finding straight-line solutions

I We can show that if v is an eigenvector of A with
corresponding eigenvalue λ, then

Y(t) = eλtv

is a straight-line solution to

dY

dt
= AY.

I As t varies, eλt just increases or decreases or remains constant
(depending on λ) and v is constant, so the solution curve for
Y(t) is a straight line.
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Example 2 again: Find any straight-line solutions to

dY

dt
= AY

where

A =

(
1 0
2 −1

)
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Linearity Principle

I If Y1(t) and Y2(t) are both solutions to

dY

dt
= AY

then so is
k1Y1(t) + k2Y2(t)

for any constants k1 and k2.

I The function
k1Y1(t) + k2Y2(t)

is called a linear combination of Y1 and Y2.
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Linear independence of vectors in the plane

I Two vectors in the plane are linearly independent if neither
vector is a multiple of the other, i.e., if they do not both lie on
the same line through the origin.

I e.g. v1 = (1, 1) , v2 = (2,−1) are linearly independent.

I e.g. v1 = (1, 1) and v3 = (−2,−2) are linearly dependent.
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Linear independence of vectors in the plane

I If two vectors (x1, y1) and (x2, y2) are linearly independent,
then for any other planar vector (x0, y0) there are constants k1

and k2 such that

k1

(
x1

y1

)
+ k2

(
x2

y2

)
=

(
x0

y0

)
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Linear independence of solutions to a 2D system

I Consider the DE
dY

dt
= AY

where A is a 2× 2 matrix.

I If Y1(t) and Y2(t) are solutions with Y1(0) and Y2(0) linearly
independent vectors, then Y1(t) and Y2(t) are linearly
independent vectors for all t.

I We say that Y1(t) and Y2(t) are linearly independent
solutions.

I If Y(0) is some initial condition, then every solution to the IVP

dY

dt
= AY, Y(0) =

(
x0

y0

)
can be expressed as a linear combination of Y1(t) and Y2(t).
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Linear independence of solutions to a 2D system

I That is, we can write the solution to

dY

dt
= AY, Y(0) =

(
x0

y0

)
as

Y(t) = c1Y1(t) + c2Y2(t)

for appropriately chosen c1 and c2.

I We can find linearly independent solutions by finding the
eigenvectors of A.
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The general solution

I Let λ1 and λ2 be two real and distinct eigenvalues for the
matrix A, with corresponding eigenvectors v1 and v2. Then v1

and v2 are linearly independent.

I Hence, the two straight-line solutions

Y1(t) = eλ1tv1 and Y2(t) = eλ2tv2

are linearly independent at t = 0 and thus are linearly
independent solutions for all t.

I And we can write the general solution as

Y(t) = c1Y1(t) + c2Y2(t)
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Linear independence of vectors in higher dimensions

I These results can be generalised to higher dimensions.

I A set of vectors {v1, v2, . . . , vm} is linearly dependent if there
are constants c1, c2, . . . , cm (not all zero) such that

c1v1 + c2v2 + . . .+ cmvm = 0 (2)

I If all the constants ci are zero whenever equation (2) is
satisfied, the set of vectors is linearly independent.
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Main result

I If Y1(t), Y2(t),..., Ym(t), are linearly independent solution
vectors to the system

dY

dt
= AY

where A is an m ×m matrix, then the general solution to the
system is

Y(t) = c1Y1(t) + c2Y2(t) + · · ·+ cmYm(t)

where c1, c2,..., cm are arbitrary constants. That is, every
solution to the system can be written in this form by
appropriate choice of c1, c2,..., cm.
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Finding linearly independent solutions

I If a matrix A has distinct eigenvalues λj then the eigenvectors
vj are linearly independent.

Example 3: Find three linearly independent solutions to

dY

dt
= AY

where

A =

 2 0 0
3 −4 0
0 1 −2

 .

Hence find the solution to the IVP

dY

dt
= AY, Y(0) =

 0
2
0

 .
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Grand summary

If A is an m ×m matrix with real eigenvalues λ1, ..., λk , with
corresponding eigenvectors v1, ..., vk , then

Y1 = eλ1tv1, . . . ,Yk = eλk tvk

are straight-line solutions of the system

dY

dt
= AY.

Furthermore, if all the λi are distinct and k = m (i.e., there are m
real and distinct eigenvalues of A), then the set {Y1, ...,Yk} is
linearly independent and the general solution to the system is

Y(t) = c1Y1 + ...+ cmYm.
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Important ideas from today’s lecture:

I Straight line solutions
I How to write linear systems in matrix form
I If Y1(t) and Y2(t) are both solutions to dY

dt = AY,

then so is k1Y1(t) + k2Y2(t) for any constants k1 and k2.
I If λ1, . . . , λm are distinct real eigenvalues of A with

corresponding eigenvectors v1, . . . , vm, then

Y1(t) = eλ1tv1, . . . ,Ym(t) = eλmtvm

are straight-line solutions of the system

dY

dt
= AY

and the general solution is

Y(t) = c1Y1(t) + c2Y2(t) + . . .+ cmYm(t)

for constants c1, c2, . . . , cm.
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