
Maths 260 Lecture 15

I Topics for today:
Numerical methods for systems
Existence and Uniqueness Theorem for systems

I Reading for this lecture: BDH Section 2.4

I Suggested exercises: BDH Section 2.4, #7,8,9,10

I Reading for next lecture: BDH Section 2.3

I Today’s handouts: none
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Numerical Methods for Systems

I Numerical methods used for first order equations can be
generalised to systems of first order equations.

Example: Euler’s Method for systems

I Given the IVP dx

dt
= f (t, x , y),

dy

dt
= g(t, x , y),

with x(t0) = x0 and y(t0) = y0, then Euler’s Method
calculates the approximate solution at t1 = t0 + h to be

x(t1) ≈ x0 + hf (t0, x0, y0),

y(t1) ≈ y0 + hg(t0, x0, y0).

I The process can be repeated to find an approximation after n
steps.
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Example 1: Use Euler’s method with h = 0.1 to calculate an
approximate solution at t = 0.2 to the IVP

dx

dt
= t + y ,

dy

dt
= x − y2

where x(0) = 1, y(0) = 0.
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The results in tabular form are:

n tn xn yn f (tn, xn, yn) g(tn, xn, yn)

0 0 1 0 0 1
1 0.1 1 0.1 0.2 0.99
2 0.2 1.02 0.199
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Vector Form of Euler’s Method

I Write

Y(t) =


y1(t)
y2(t)

...
yn(t)

 , Y0 =


y1(t0)
y2(t0)

...
yn(t0)

 ,

and

F(t,Y) =


f1(t, y1, y2, . . . , yn)
f2(t, y1, y2, . . . , yn)

...
fn(t, y1, y2, . . . , yn)

 .

I Then the Euler approximation to the solution of the IVP

dY

dt
= F(t,Y), Y(t0) = Y0

at t1 = t0 + h is

Y(t1) ≈ Y0 + hF(t0,Y0)
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Errors in numerical methods

I It can be proved that Euler’s method for systems is first order,
i.e., the error in the ith component of Y is

|Ei (h)| ≈ kih

in the limit of small h, where ki is a constant.

I Thus, halving the step size will approximately halve the error
in the estimated value of each component of Y.

I Improved Euler and the 4th order Runge-Kutta methods also
generalise to systems, and are of order 2 and 4 respectively.
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Practical issues in using numerical methods for systems

I As for single DEs, RK4 is the most commonly used fixed
stepsize numerical method. It is easy to implement and of
high order.

I With this method, it is important to check whether any given
stepsize is small enough to give good accuracy. An easy way
to do this is to halve the stepsize and repeat the computation
to see if it makes a difference to the answer.

Example 2: In pplane, using RK4 with default settings on the
default system gives inaccurate results, as can be seen by

comparing the phase portrait with that obtained with 1/10th of
the stepsize.
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I Fixed stepsize methods such as RK4 may be unsuitable for

I so-called stiff systems (in which there are two or more very
different time scales in the problem);

I Hamiltonian systems (in which energy is conserved);
I very long computations, or those in which high accuracy is

required.

I Another option with pplane is to use a Dormand-Prince
method suitable for systems. This method is variable stepsize,
order 5, and uses splines for fitting.

I Be careful with all numerical methods, as all methods can give
misleading results under some circumstances. Always think
critically about numerical results – ask yourself if the
numerical results fit in with your intuition or with results you
have from other methods. If not, work out why not instead of
blindly trusting the numerical results.
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Existence and Uniqueness Theorem for systems

I Consider the IVP

dY

dt
= F(t,Y), Y(t0) = Y0.

I If F is continuous and has continuous first partial derivatives
with respect to all the dependent variables, then there is a
constant ε > 0 and a function Y(t) defined for
t0 − ε < t < t0 + ε such that Y(t) is a solution to the IVP.

I For t in this interval, the solution is unique.
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Interpretation of the E & U Theorem

I If a system of equations is ‘nice’ enough, an IVP is guaranteed
to have a unique solution.

I As a consequence, two different solutions cannot start at the
same time, t, at the same point in phase space.

I For autonomous systems, two different solutions that start at
the same place in phase space but at different times will
correspond to the same solution curve (because the direction
field at each point will be the same, regardless of time).
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Interpretation of the E & U Theorem

I This means that, for an autonomous system, solution curves
cannot meet or cross in phase space.

I No such guarantee exists for solution curves of
non-autonomous systems; solution curves for non-autonomous
systems frequently cross in phase space.
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Example 3: The phase portrait for the following differential
equation is given below.

dx

dt
= y

dy

dt
= −2.5 + y + x2 + xy
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Important ideas from today’s lecture:

I Numerical methods can be generalised to work for systems of
DEs similarly to the way they work for single equations.

I ‘Nice’ IVPs have unique solutions.

I Solution curves for autonomous systems do not cross or meet
in phase space.
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