
Maths 260 Lecture 23

◮ Topics for today: Linear systems with repeated eigenvalues
Linear systems with zero eigenvalues

◮ Reading for this lecture: BDH Section 3.5

◮ Suggested exercises: BDH Section 3.5; 1, 3, 5, 7, 11, 21

◮ Reading for next lecture: BDH Section 3.7

◮ Today’s handouts: None
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Linear systems with repeated eigenvalues

Example 1: Find the general solution for the system

dY

dt
=

(

2 0
0 2

)

Y
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Phase portrait

x ’ = 2 x
y ’ = 2 y
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◮ Every non-zero solution is a straight-line solution.
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Repeated eigenvalues with two eigenvectors

◮ Example 1 illustrates a general situation:

◮ If matrix A has a repeated eigenvalue λ with two linearly

independent eigenvectors v1 and v2, then

Y1 = e
λtv1 and Y2 = e

λtv2

are linearly independent straight line solutions.

◮ We construct a general solution from a linear combination of
these two solutions as usual:

Y(t) = c1e
λtv1 + c2e

λtv2

◮ Furthermore, if A is a 2 by 2 matrix, then every solution
except the equilibrium at the origin is a straight line solution.
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◮ If λ > 0 then every non-zero solution tends to ∞ as t → ∞,
and the origin is a source.

◮ If λ < 0 then every non-zero solution tends to the origin as
t → ∞, and the origin is a sink.
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What happens if we cannot find two linearly independent

eigenvectors?

Example 2: Investigate solutions to the system

dY

dt
=

(

−5 0
8 −5

)

Y
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Phase portrait:
x ’ = − 5 x    
y ’ = 8 x − 5 y
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◮ We see that the system has only one straight line solution.

◮ We cannot write the general solution as a linear combination
of solutions of the form e

λtv because we do not have enough
such solutions.
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Finding a second solution

◮ To find a second solution, we use the following result.

Theorem: Consider the system

dY

dt
= AY

where A has a repeated eigenvalue λ with just one linearly
independent eigenvector. Pick a specific eigenvector v1 for λ.
Then

Y1 = e
λtv1

is a straight-line solution and

Y2 = e
λt(tv1 + v2)

is a second, linearly independent solution of the system, where v2

is a vector satisfying
(A − λI)v2 = v1

v2 is called a generalised eigenvector.
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Proof:
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◮ We can use this second solution Y2(t) to construct the
general solution for the previous example.

Example 2 again: Find the general solution to

dY

dt
=

(

−5 0
8 −5

)

Y
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◮ In the phase portrait shown earlier, we see that all solutions
are tangent at the origin to the direction of the straight-line
solution.

◮ This is always the case in a 2 by 2 system: when there is a
non-zero repeated eigenvalue with only one corresponding
linearly independent eigenvector, all solution curves in the
phase plane are tangent (from one side) to the straight-line
solution.

Exercise: prove this.
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Important note:

◮ There is some freedom when choosing a generalised
eigenvector. For example, in Example 2

v2 =

(

1
8
y

)

is a generalised eigenvector for any choice of y .

◮ However, a multiple of a generalised eigenvector is not usually
a generalised eigenvector. For example, in Example 2

v2 = k

(

1
8
y

)

is not a generalised eigenvector unless k = 1.

◮ Different choices of the generalised eigenvector all lead to the
same general solution.
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Example 3

Sketch the phase portrait for the system

dY

dt
=

(

2 −1
1 0

)

Y
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Phase portrait:

x ’ = 2 x − y
y ’ = x      
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Linear systems with zero eigenvalues

Example 4: Find the general solution to the system

dY

dt
=

(

−1 2
2 −4

)

Y
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◮ The general solution is

Y(t) = c1e
−5t

(

1
−2

)

+ c2

(

2
1

)

◮ If c1 = 0, then

Y(t) = c2

(

2
1

)

which is constant, so this is an equilibrium solution for all
choices of c2.

◮ This is a general result: all points on a line of eigenvectors
corresponding to a zero eigenvalue are equilibrium solutions.
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◮ If c1 6= 0, the first term in the general solution tends to zero
as t → ∞, i.e., the solution tends to the equilibrium

Y(t) = c2

(

2
1

)

as t → ∞, along a line parallel to the vector

(

1
−2

)

.

x ’ = − x + 2 y
y ’ = 2 x − 4 y
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We get similar behaviour in other linear systems with a zero
eigenvalue, but details of the general solution and the phase
portrait may vary depending on the specific example.

Example 5: Sketch the phase portrait for the system

dY

dt
=

(

0 1
0 4

)

Y
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Important ideas from today

In linear systems with repeated non-zero eigenvalues, the behaviour
of solutions depends on the number of linearly independent
eigenvectors corresponding to the repeated eigenvalue.

For a 2 by 2 system, there are two possibilities:

◮ If there are two linearly independent eigenvectors, then every
solution except the equilibrium is a straight line solution.

◮ If there is only one independent eigenvector, then there is only
one straight line solution, and all non-equilibrium solutions are
tangent to that solution.

In both cases the equilibrium is a sink if the eigenvalue is negative
and is a source if the eigenvalue is positive.
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In a linear system with a zero eigenvalue, all points on the line(s)
of eigenvectors corresponding to the zero eigenvalue are
equilibrium solutions. Other details of the phase portrait depend
on the specific system.
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