
Maths 260 Lecture 4

I Topics for today:
More on Euler’s method
Improved Euler’s method
4th-order Runge-Kutta method

I Reading for this lecture: BDH Sections 1.4, 7.1

I Suggested exercises: BDH Sect. 1.4, #1, Sect. 7.1, #6

I Reading for next lecture: BDH Sections 7.2-7.4

I Today’s handout:
Pictures from Lecture 4
Tutorial 2
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More on Euler’s Method

The main idea for Euler’s method is as follows.

To approximate the solution to the IVP

dy

dt
= f (t, y), y(t0) = y0

start at (t0, y0) and take small steps, with the direction of each
step being the direction of the slope field at the start of that step.

2 / 19



The following picture illustrates the relationship between the slope
field and the numerical solution obtained from Euler’s method.
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In the next example we can solve the IVP exactly and hence check
the accuracy of Euler’s method for various choices of step size.

Example 1: For the IVP

dy

dt
= yt, y(0) = 1

calculate an approximation to y(0.4) using Euler’s method with

(i) h = 0.2, and

(ii) h = 0.1.

Calculate the error in each approximation.
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For h = 0.2:

n tn yn f (tn, yn) yn + hf (tn, yn)

0 0.0 1.0 0.0 1.0
1 0.2 1.0 0.2 1.04
2 0.4 1.04

For h = 0.1:

n tn yn f (tn, yn) yn + hf (tn, yn)

0 0.0 1.0 0.0 1.0
1 0.1 1.0 0.1 1.01
2 0.2 1.01 0.202 1.0302
3 0.3 1.0302 0.30906 1.061106
4 0.4 1.0611
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To calculate the error in the approximation, we need to compare
with the actual solution.

Exercise: Show that y(t) = exp(t2/2) solves the IVP.

Using the explicit solution from the exercise, we get
y(0.4) = exp(0.08) ≈ 1.0833.

Error in the first approximation (with h = 0.2) is:

Error in the second approximation (with h = 0.1) is:
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The error was approximately halved by halving the step size, but
twice as many steps/calculations were done to obtain this
improvement in accuracy.

When using Euler’s method, picking a smaller step size will usually
give a more accurate approximation - but will involve more work.
We return to this idea in the next lecture.
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Improving Euler’s Method

For small h we have

y(tn+1)− y(tn)

h
≈ dy

dt
= f (t, y)

So
y(tn+1) = y(tn) + hf (tn, y(tn)) + εn

where εn is the error made in the approximation.

Euler’s Method approximates this formula by dropping εn from the
equation, so that the Euler estimate at tn+1 is

y(tn+1) = y(tn) + hf (tn, y(tn))
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Geometrically, Euler’s method amounts to following a tangent line,
instead of the (unknown) solution curve, from yn to the value we
accept for yn+1.

The direction of each step is determined by the slope at the
beginning of the step.

Since the slope of the actual solution curve varies throughout the
interval from tn to tn+1, the value of yn+1 calculated by Euler’s
method generally does not agree with the value on the solution
curve.

We can obtain a more accurate method by adjusting the direction
of the step according to the slope field seen along an Euler step.
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Improved Euler’s method (IE)

To take one step of length h with Improved Euler’s method:

(a) Take an ordinary Euler step of length h. Calculate the slope at
the end of this step.

(b) Go back to the beginning of the step, take a step of length h
with slope being the average of the slope at the beginning of
the step and the slope calculated in (a).
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The formulas for this method are

tn+1 = tn + h

yn+1 = yn + h
2 (m1 + m2)

where

m1 = f (tn, yn)

m2 = f (tn+1, yn + hf (tn, yn))
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The following picture illustrates the relationship between the slope
field and the numerical solution obtained with the IE method.
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Example 2: Use h = 0.5 in the IE method to calculate an
approximation to the solution of the IVP

dy

dt
= −2ty2, y(0) = 1

at t = 1.0.
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Using the routine numerical from MATLAB, we can see how
changing the step size in the IE method improves the solution:

Output from numerical for the above IVP, finding the y value at
t=1.0, is:

No. of Steps Stepsize (h) approx. y (1)

1 1.0 0.0000000

2 0.5 0.4995117

4 0.25 0.5048106

8 0.125 0.5014094

16 0.0625 0.5003669

Using separation of variables, we can calculate the true solution at
t = 1, i.e., y(1.0) = 0.5.

Notice that accuracy of the numerical solution is improved when a
smaller step size is used.

15 / 19



4th-order Runge-Kutta method (RK4)

RK4 is the most commonly used fixed step size numerical method
for IVPs.

This method evaluates the slope f (t, y) four times within each
step. Starting at (tn, yn) we calculate (tn+1, yn+1) as follows:

tn+1 = tn + h

m1 = f (tn, yn)

m2 = f (tn + h
2 , yn + h

2m1)

m3 = f (tn + h
2 , yn + h

2m2)

m4 = f (tn + h, yn + hm3)

yn+1 = yn + h
6 (m1 + 2m2 + 2m3 + m4)
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The following picture illustrates the relationship between the slope
field and the numerical solution obtained with RK4.
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Example 3: Use h = 0.5 and one step of RK4-method to calculate
an approximation to the solution of the IVP

dy

dt
= −2ty2, y(0) = 1

at t = 0.5.

18 / 19



Important ideas from today:

I Numerical methods approximate solutions to IVPs.

I Euler’s method uses the slope at the beginning of each step.
Better methods adjust the direction of each step according to
the slope field seen along an Euler step.

I The error in a numerical approximation generally reduces if
the step size is decreased - but using smaller steps means
more work.
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