DEPARTMENT OF MATHEMATICS

MATHS 260

1. Consider the linear system

$$\frac{dY}{dt} = AY,$$

Tutorial 9

where A is as given below. For each choice of A:

- Sketch the phase portrait.
- Use pplane to draw the phase portrait and compare with your sketch.
- Describe the long term behaviour of the solutions.
- Write down the general solution of the system in terms of real-valued functions.
- (a) $A = \begin{pmatrix} -2 & -1 \\ 1 & -4 \end{pmatrix}$. Eigenvalues are -3, -3. Eigenvector is $(1, 1)^T$.
- (b) $A = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$. Eigenvalues are 0 and -3. Eigenvectors are $(2, -1)^T$ and $(-1, 2)^T$ respectively.
- 2. Consider the following nonlinear system of equations:

$$\frac{dx}{dt} = x - y$$
$$\frac{dy}{dt} = x(y^2 - 1)$$

Work out your answers by hand for parts (a) and (b).

- (a) Find all equilibria and determine their types.
- (b) For each equilibria, sketch a phase portrait showing the behaviour of solutions in the associated linearised system.
- (c) Check your answers using pplane.

[Final question over page]

3. Challenge question:

Use **pplane** to investigate the following nonlinear system as the parameter α changes.

$$\frac{dx}{dt} = \alpha x + y + \sin(x)$$
$$\frac{dy}{dt} = x - y$$

- (a) For what range of α is there more than one equilibrium? **Hint:** The behaviour of the system is more interesting for $\alpha < 0$ than $\alpha > 0$! Try starting with the range $-4 < \alpha < 1$.
- (b) Once you have seen how the system behaves, you may find it useful to consider what happens to $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} = 0$ as α is varied. Can you describe what is happening?