
Maths 260 Lecture 30

◮ Topic for today:

Higher order differential equations

◮ Reading for this lecture:

BDH Section 3.6

◮ Suggested exercises:

BDH Section 3.6; 1, 3, 5, 7, 9, 11

◮ Reading for next lecture:

BDH Section 3.6

◮ Today’s handout: Tutorial 11
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Example 1: Modelling a mass/spring system

We wish to model the motion of an object that is attached to a
spring and slides in a straight line on a table.

Let y(t) be the position of the object at time t, with y = 0
corresponding to the spring being neither stretched nor compressed.

Main idea from physics: Newton’s second law says

mass × acceleration = sum of forces acting on the object.
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Typical forces on the object that we might consider are

◮ r(y), the restoring force (the spring does not like to be
compressed or stretched);

◮ f (v), frictional forces, where v = dy
dt

;

◮ g(t, y), external forcing.

Substituting into Newton’s law, we get

m
d2y

dt2
= r(y) + f (v) + g(t, y)

where m is the mass of the object attached to the spring.
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A common case assumes

◮ linear restoring force, i.e. r(y) = −ky for some constant
k > 0;

◮ linear damping, i.e. f (v) = −bv for some constant b > 0;

◮ no spatial dependence in the forcing, i.e. g is a function of t

but not of y .

The first two assumptions are often valid if y and v = dy
dt

remain
small.

We can write this case as

d2y

dt2
+

b

m

dy

dt
+

k

m
y =

1

m
g(t)

This is an example of a higher order differential equation, i.e. a DE
involving derivatives of second or higher order.

4 / 19



Other examples of higher order DEs:

◮
d2θ

dt2
+ c1

dθ

dt
+ c2 sin θ = 0

◮
d3y

dt3
− 2y

(

d2y

dt2

)2

+
dy

dt
= sin t

◮ A higher order system of DEs:

dx

dt
= 2x + y

d2y

dt2
+

dx

dt

dy

dt
+ 3x = 0
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We can usually convert a higher order DE into an equivalent
system of first order DEs. To do so, define new dependent
variables as in the following examples.

Example 2: Rewrite the following equation as an equivalent
system of first order equations:

d2y

dt2
+

k

m
y = 0
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Example 3: Rewrite the following equation as an equivalent
system of first order equations:

d3x

dt3
+ 2

(

dx

dt

)2

= sin t

7 / 19



Saying that a system of DEs is equivalent to a higher order DE
means that if we know a solution to the system we can find a
solution to the higher order equation, and vice versa.

Example 4: The function

y1(t) = sin

√

k

m
t

is a solution to
d2y

dt2
+

k

m
y = 0
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The pair of functions

y1(t) = sin

√

k

m
t, v1(t) ≡

dy1

dt
=

√

k

m
cos

√

k

m
t

is a solution to the equivalent system

dy

dt
= v

dv

dt
= −

k

m
y
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To determine the behaviour of solutions of a higher order DE we
can rewrite the DE as the equivalent first order system.

Then we can study the system using the numerical methods and
qualitative techniques already learnt (e.g. sketching solutions via
phase plane methods). We can also use results like the Existence
and Uniqueness Theorem.

However, in some special cases, it is convenient to study the
original higher order equation directly.

For example, convenient analytic techniques exist for solving linear
higher order equations – we will see these techniques in the next
few lectures.
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Linear, Constant Coefficient, Higher Order DEs

A differential equation of the form

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

where all ai are constant, and an 6= 0, is called an nth order, linear,
constant coefficient DE.

Example 5: The differential equation

d2y

dt2
+ 5

dy

dt
+ 6y = 0

is a second order, linear, constant coefficient DE.

We could solve this by converting to a system, then finding
eigenvalues and eigenvectors etc, but there is a short cut for
solving equations of this form.
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Idea behind the shortcut:
For Example 5, the equivalent system is:

dY

dt
=

(

0 1
−6 −5

)

Y, Y =

(

y

z

)

We expect solutions of the form

Y(t) = e
λtv.

The first component of such a Y is

y(t) = ce
λt

where c is a constant (the first entry in v).

Hence, guess a solution to the higher order DE of the form

y(t) = e
λt

where λ is to be determined.
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Substitute this candidate solution into our DE:

d2y

dt2
+ 5

dy

dt
+ 6y = 0
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This is exactly what we would have got by using eigenvalues and
eigenvectors to solve the equivalent system directly.

The equivalent system is

dY

dt
=

(

0 1
−6 −5

)

Y, Y =

(

y

z

)

which has eigenvalues -3 and -2 with associated eigenvectors
(

1
−3

)

, and

(

1
−2

)

,

respectively. The general solution is
(

y(t)
z(t)

)

= c1e
−3t

(

1
−3

)

+ c2e
−2t

(

1
−2

)

,

which gives y(t) = c1e
−3t + c2e

−2t .

This “guessing” method is often quicker than converting to a
system and solving.
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Example 6: Find some linearly independent solutions of

d2y

dt2
+ 3

dy

dt
+ 2y = 0
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Example 7: Find some linearly independent solutions of

d3y

dt3
+

d2y

dt2
− 6

dy

dt
= 0
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General result:

Consider the differential equation

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

Let y1(t), y2(t), . . . , yn(t) be n linearly independent solutions of
the DE. Then for arbitrary constants ci ,

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t)

is the general solution to the DE. Every solution to the DE can
be written in this form by picking the ci appropriately.
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Example 8: Find the general solution of

d2y

dt2
− 5y = 0
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Important ideas from today:

◮ A higher order differential equation can usually be rewritten as
an equivalent system of first order differential equations.

◮ Solutions can then be investigated using the methods
(qualitative, analytic, numerical) already studied for systems.

◮ However, in the case of linear, constant coefficient higher
order equations it is usually possible and quicker to find
analytic solutions directly. The ‘guessing’ method we use will
be formalised in the next lecture.
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