
Maths 260 Lecture 25

◮ Topics for today:
◮ Non-linear systems: linearisation near equilibria
◮ Classification of equilibria in nonlinear systems

◮ Reading for this lecture: BDH Section 5.1

◮ Suggested exercises: BDH Section 5.1; 1, 3, 7, 9, 11

◮ Reading for next lecture: BDH Section 5.2

◮ Today’s handouts: None
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Example 1:

Consider the system

dx

dt
= y

dy

dt
= x − x3 −

1

2
y

Equilibrium solutions:
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Slope field and some solutions:

 dx/dt = y              
 dy/dt = x − x3 − 0.5 y
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The equilibrium at the origin looks like a saddle in a linear system,
and the other equilibria look like spiral sinks.
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We can understand the saddle-like nature of (0, 0) if we
approximate the nonlinear system by a linear system.

For x , y very close to zero, x3 is much smaller than x or y . So we
can ignore the x3 term in the nonlinear system, and approximate
the nonlinear system near (0, 0) by the linear system

dx

dt
= y

dy

dt
= x −

1

2
y

i.e.
dY

dt
= AY =

(

0 1
1 −1

2

)

Y, Y =

(

x

y

)
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The eigenvalues of matrix A are 0.78 and −1.28, so the
equilibrium at the origin of the linear system is a saddle.

The following pictures show the slope field and solutions for the
linear system (on left) and an enlargement of the nonlinear system
near the origin (on right).

 dx/dt = y        
 dy/dt = x − 0.5 y
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 dx/dt = y              
 dy/dt = x − 0.5 y − x3
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Note that the linear system is a good approximation to the
nonlinear system near the equilibrium, but is hopeless away from
the equilibrium (see the earlier phase portrait).

The procedure used above is called linearisation:

◮ Near an equilibrium, approximate the nonlinear system by an
appropriate linear system.

◮ For initial conditions near the equilibrium, solutions of the
nonlinear system stay close to solutions of the approximate
linear system, at least for some interval of time.

◮ Thus, the type of equilibrium at the origin in the linearised
system gives information about the type of the corresponding
equilibrium in the nonlinear system.
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Returning to the original system in Example 1, we now consider
the equilibria at (1, 0) and (−1, 0).

 dx/dt = y              
 dy/dt = x − x3 − 0.5 y
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◮ To approximate the behaviour near (1, 0) by a linear system,
we must first shift the equilibrium to the origin - because
linear systems usually only have an equilibrium at the origin.

◮ We change the coordinates as follows:
Write u = x − 1, v = y , so the equilibrium (x , y) = (1, 0) is
now at (u, v) = (0, 0).

◮ Then the system becomes:

du

dt
=

dv

dt
=
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For u and v small, −3u2 and u3 are very, very small. We ignore
these nonlinear terms and approximate the system by:

(

du
dt
dv
dt

)

=

(

0 1

−2 −1
2

)(

u

v

)

Eigenvalues are −
1

4
±

1

4

√
31i . So the origin is a spiral sink in the

linear approximation.
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The following pictures illustrate the similarity between the phase
portrait for the linearised system (on the left) and the phase
portrait near the equilibrium at (1, 0) in the nonlinear system (on
the right).

x ’ = y            
y ’ = − 2 x − 0.5 y
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x ’ = y              
y ’ = x − x3 − 0.5 y
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Similar calculations give similar results for the equilibrium at
(−1, 0).
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More generally...
If the system

dx

dt
= f (x , y)

dy

dt
= g(x , y)

has an equilibrium at (x0, y0), we can construct a linear
approximation to the system, valid for x and y values near (x0, y0),
as follows.

◮ First move the equilibrium to the origin: write u = x − x0 and
v = y − y0. The nonlinear equations in the new coordinates
are:

du

dt
=

dx

dt
= f (x , y) = f (x0 + u, y0 + v)

dv

dt
=

dy

dt
= g(x , y) = g(x0 + u, y0 + v)
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◮ Now we use a Taylor expansion to rewrite f and g , because u

and v are small:

f (x0+u, y0+v) = f (x0, y0)+

[

∂f

∂x
(x0, y0)

]

u+

[

∂f

∂y
(x0, y0)

]

v+h.o.t

g(x0+u, y0+v) = g(x0, y0)+

[

∂g

∂x
(x0, y0)

]

u+

[

∂g

∂y
(x0, y0)

]

v+h.o.t

◮ Recall that f (x0, y0) = g(x0, y0) = 0, so if we ignore the
higher order terms then we get an approximate linear system:

(

du
dt
dv
dt

)

=

(

∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)
∂g
∂x

(x0, y0)
∂g
∂y

(x0, y0)

)

(

u

v

)
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Thus, the behaviour of solutions to the nonlinear system near the
equilibrium (x0, y0) can be approximated by the behaviour of
solutions in the linearised system given above.

The matrix of partial derivatives

(

∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)
∂g
∂x

(x0, y0)
∂g
∂y

(x0, y0)

)

is called the Jacobian matrix, evaluated at (x0, y0).
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Example 1 again

dx

dt
= y

dy

dt
= x − x3 −

1

2
y

J(x , y) =
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For an equilibrium solution in a nonlinear system:

◮ The equilibrium is a (nonlinear) sink if all solutions that start
close to the equilibrium stay close to the equilibrium for all
time and tend to the equilibrium as t increases.

◮ The equilibrium is a (nonlinear) source if all solutions that
start close to the equilibrium move away from the equilibrium
as t increases.

◮ The equilibrium is a (nonlinear) saddle if there are curves of
solutions that tend towards the equilibrium as t increases and
curves of solutions that tend towards the equilibrium solution
as t decreases. All other solutions started near the equilibrium
move away from the equilibrium as t increases and decreases.

These are different definitions than those used for equilibria in
linear systems, but are consistent with those.
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Example 2
Consider the system

dx

dt
= x(1 + x2)

dy

dt
= 3y(1 − y − x)

Find the equilibria and determine their types. For each equilibrium,
sketch a phase portrait showing the behaviour of solutions in the
associated linearised system.
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J(x , y) =

(

1 + 3x2 0
−3y 3 − 6y − 3x

)

J(0, 0) =

J(0, 1) =
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At (0, 0), associated linear system is dY
dt

=

(

1 0
0 3

)

Y.

At (0, 1), associated linear system is dY
dt

=

(

1 0
−3 −3

)

Y.
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The phase portrait for this system, drawn with pplane, is given
below. Note the source at (0, 0) and the saddle at (0, 1) as
predicted by our calculations.

 dx/dt = x (1 + x2)    
 dy/dt = 3 y (1 − x − y)
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Example 3

Consider the system

dx

dt
= −x + y

dy

dt
= x − y2

Find the equilibria and determine their types. For each equilibrium,
sketch a phase portrait showing the behaviour of solutions in the
associated linearised system.
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At (0, 0), associated linear system is dY
dt

=

(

−1 1
1 0

)

Y.

At (1, 1), associated linear system is dY
dt

=

(

−1 1
1 −2

)

Y.
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Important ideas from today

If a system of nonlinear equations

dx

dt
= f (x , y)

dy

dt
= g(x , y)

has an equilibrium at (x0, y0), then the behaviour of solutions near
that equilibrium can be approximated by the behaviour of solutions
near the origin for the linearised system

(

du
dt
dv
dt

)

=

(

∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)
∂g
∂x

(x0, y0)
∂g
∂y

(x0, y0)

)

(

u

v

)

We make this idea more rigorous in the next lecture.
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