Maths 260 Lecture 21

► Topics for today:

Complex numbers:

- De Moivre's formula
- Derivatives of complex-valued functions
- ► Euler's formula
- The exponential of a complex number

Reading for this lecture:

Some notes on complex numbers BDH Appendix C

Suggested exercises:

Problems at the back of "Some notes on complex numbers"

Multiplication using polar form

▶ Let

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1), z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

be any two complex numbers. Then

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

Proof:

Hence, multiplying complex number in polar form corresponds to taking the product of the moduli and the sum of the arguments.

Example 1

▶ Evaluate 2i(1+i) using both polar and rectangular forms. Compare your answers.

Example 2: Calculate $(\cos \theta + i \sin \theta)^2$

Example 3: Calculate $(\cos \theta + i \sin \theta)^3$

de Moivre's formula

Examples 2 and 3 give particular cases of de Moivre's formula:

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

Example 4: Use de Moivre's formula to express $\cos 2\theta, \sin 2\theta$ in terms of $\cos \theta, \sin \theta$.

Polar form and solving equations

- **Example 5:** Find all solutions to the equation $z^3 = 1$.
- ightharpoonup z=1 is obviously a solution. Any others? We expect three solutions from the Fundamental Theorem of Algebra.
- Write

$$z = r(\cos\theta + i\sin\theta),$$

where r = |z| > 0.

► Then

$$z^3 = r^3(\cos 3\theta + i\sin 3\theta)$$

and therefore

$$r^3(\cos 3\theta + i\sin 3\theta) = 1$$

▶ So...

- ▶ Note that we get only three distinct solutions because of the periodicity of cosine and sine.
- ▶ Plot the solutions in the Argand plane:

Example 6

Find all solutions to the equation $z^3 = 1 + i$.

Derivatives of complex valued functions

Suppose t is real and f(t) is a complex-valued function of t, i.e.

$$f(t) = u(t) + iv(t)$$

for some real-valued functions u and v.

▶ Then, if u and v are differentiable with respect to t, we define the derivative of f(t) to be

$$\frac{df}{dt} = \frac{du}{dt} + i\frac{dv}{dt}$$

Example 7:

Find the derivative of the function $f(t) = \cos(t) + i\sin(t)$.

Properties of the function $f(t) = \cos(t) + i\sin(t)$:

- f'(t) = if(t),
- f(0) = 1,
- $f(t_1)f(t_2) = f(t_1 + t_2).$

Compare this to the function $g(t) = e^{at}$, where a is real: Properties of g(t):

- ightharpoonup g'(t) =
- g(0) =
- $ightharpoonup g(t_1)g(t_2) =$

Euler's formula

The similarities between the properties of f and g prompted Euler to make the definition:

Euler's Formula:

$$e^{it}=\cos t+i\sin t$$

Euler's Formula and Polar form

Example 8: Rewrite z = 1 + i using the complex exponential.

▶ In general, complex number z = a + ib can be written in polar form as

$$z = re^{i\theta}$$

where $r = \sqrt{a^2 + b^2}$ and $\theta = \tan^{-1}(b/a)$.

Arithmetic in exponential form

Now multiplication and division are easy.

Example 9: If
$$z_1=2e^{i\pi/6}$$
 and $z_2=-e^{i\pi/4}$, compute z_1z_2 and z_1/z_2

Arithmetic in exponential form

▶ We can easily calculate **powers** using complex exponentials.

Example 10: If $z = 3e^{i\pi/5}$, find z^2 and z^5 .

Other properties of complex exponentials

• We have: $e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$

Example 11: Calculate $e^{(2+3i)t}$ and find the real and imaginary parts

Example 12: Calculate $e^{(-1-4i)t}$ and find the real and imaginary parts

Derivatives in exponential form

▶ If λ is a complex number then

$$\frac{d}{dt}\left(e^{\lambda t}\right) = \lambda e^{\lambda t}.$$

► Proof:

Important ideas from today's lecture:

de Moivre's formula

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

▶ Euler's formula

$$e^{it} = \cos t + i \sin t$$

- Derivatives of complex-valued functions
- The complex exponential