
Maths 260 Lecture 31

◮ Topics for today:

Linear, constant coefficient, higher order DEs
Initial value problems for higher order DEs
The harmonic oscillator

◮ Reading for this lecture: BDH Section 3.6

◮ Suggested exercises: BDH Section 3.6; 13,15,17,21,23,25

◮ Reading for next lecture: BDH Sections 4.1, 4.2

◮ Today’s handouts: None
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General result from last lecture:

Consider the differential equation

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

Let y1(t), y2(t), . . . , yn(t) be n linearly independent solutions of
the DE. Then for arbitrary constants ci ,

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t)

is the general solution to the DE. Every solution to the DE can
be written in this form by picking the ci appropriately.
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Example 1: Find the general solution to the differential equation

2
d2y

dt2
+ 5

dy

dt
+ 3y = 0

3 / 22



Example 2: Find the general solution to the differential equation

d2y

dt2
+ 4

dy

dt
+ 5y = 0
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Example 3: Find the general solution to the differential equation

d2y

dt2
+ 4

dy

dt
+ 4y = 0

5 / 22



Convert to a system

dy

dt
= v

dv

dt
=

d2y

dt2
= −4

dy

dt
− 4y = −4v − 4y

So the equivalent system is:

dY

dt
=

(

0 1
−4 −4

)

Y
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General Method

To find the general solution to

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

◮ Write down the characteristic polynomial:

anλ
n + an−1λ

n−1 + · · · + a1λ + a0 = 0

and find n roots, λ1, λ2, . . . , λn (some may be repeated or
complex).

◮ For each λi , the function e
λi t will be a solution to the DE.

◮ If all the roots are distinct, construct the general solution by
taking a linear combination:

y(t) = c1e
λ1t + c2e

λ2t + · · · + cne
λnt

(converting to real form if necessary).
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◮ If a root (say λi) is repeated k times, then the k functions

e
λi t , teλi t , t2

e
λi t , . . . , tk−1

e
λi t ,

are linearly independent solutions and we can use a linear
combination of these in the general solution.

Remember that the general solution to an nth order linear,
constant coefficient DE contains n arbitrary constants and n

linearly independent solutions.
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Example 4: Find the general solution to the differential equation

d3y

dt3
+ 3

d2y

dt2
+ 2

dy

dt
= 0
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Example 5: Find the general solution to the differential equation

d3y

dt3
+

dy

dt
= 0
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Initial value problems for higher order DEs
Consider a higher order DE such as

d2y

dt2
+ 3

dy

dt
+ 2y = 0

with associated system

dY

dt
=

(

0 1
−2 −3

)

Y, Y =

(

y

v

)

and v = dy
dt

. To define an IVP for the system we specify an initial
condition

Y(t0) = Y0 =

(

y0

v0

)

,

i.e., y(t0) = y0 and v(t0) = dy
dt

(t0) = v0.

The equivalent IVP for the original higher order DE therefore has
two initial conditions: y(t0) = y0 and v(t0) = dy

dt
(t0) = v0.
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More generally, an nth order IVP is an nth order DE

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

together with n initial conditions

y(t0) = y0

dy

dt
(t0) = y1

...

dn−1

dtn−1
(t0) = yn−1
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Example 6: Find a solution to the IVP y ′′ − 2y ′ + 10y = 0, where
y(0) = 0, y ′(0) = −2.

Note: here (and elsewhere), y ′ = dy
dt

, y ′′ = d2y

dt2 .
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The Harmonic Oscillator

Consider the second order, linear, constant coefficient DE

m
d2x

dt2
+ b

dx

dt
+ kx = 0

where m, k > 0, b ≥ 0.

Any physical system modelled by this equation is called a
harmonic oscillator.

For instance, the mass/spring system considered in the last lecture
is a harmonic oscillator if we assume linear damping and restoring
forces, and no external forcing.

We can now completely classify the different types of solution to
this problem.
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The characteristic polynomial for the harmonic oscillator is

mλ2 + bλ + k = 0

which has roots

λ1 =
−b +

√
b2 − 4mk

2m
, λ2 =

−b −
√

b2 − 4mk

2m

and the general solution is

x(t) = c1e
λ1t + c2e

λ2t

There are four different cases, depending on the size of b, the
damping coefficient.
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Case 1: b = 0 (no damping)

16 / 22



Case 2: 0 < b <
√

4km (underdamped)
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Case 3: b >
√

4km (overdamped)
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Case 4: b =
√

4km (critically damped)
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Summary

For the harmonic oscillator, modelled by the DE

m
d2x

dt2
+ b

dx

dt
+ kx = 0

with constants m, k > 0, b ≥ 0:

◮ if b = 0 all solutions are periodic except the equilibrium at
x = 0

◮ if b > 0 all solutions tend to zero as t tends to ∞.
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Important ideas from today

To find the general solution to

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

◮ Write down the characteristic polynomial:

anλ
n + an−1λ

n−1 + · · · + a1λ + a0 = 0

and find n roots,λ1, λ2, . . . , λn. The function e
λi t will be a

solution to the DE.

◮ If all the roots are distinct, construct the general solution by
taking a linear combination:

y(t) = c1e
λ1t + c2e

λ2t + · · · + cne
λnt

(converting to real form if necessary).
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◮ If a root (say λi) is repeated k times, then the k functions

e
λi t , teλi t , t2

e
λi t , . . . , tn

e
λi t ,

are linearly independent solutions and we can use a linear
combination of these in the general solution.

An nth order IVP is formed from an nth order DE together with n

initial conditions.

A harmonic oscillator is any physical system modelled by the DE

m
d2x

dt2
+ b

dx

dt
+ kx = 0

with constants m, k > 0, b ≥ 0:

If b = 0 all solutions are periodic except the equilibrium at x = 0.
If b > 0 all solutions tend to zero as t tends to ∞.
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