
Maths 260 Lecture 22

◮ Topic for today: Linear systems with complex eigenvalues

◮ Reading for this lecture: BDH Section 3.4

◮ Suggested exercises: BDH Section 3.4; 1, 3, 5, 7, 9, 11, 23

◮ Reading for next lecture: BDH Section 3.5
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Example 1

◮ Here is the slope field and some solutions for the system

dY

dt
=

(

1 −2
2 1

)

Y

x ’ = x − 2 y
y ’ = 2 x + y
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◮ Why does the phase portrait have no straight-line solutions?
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◮ Calculate the eigenvalues:
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◮ In this example the eigenvalues are complex.

◮ We saw in earlier lectures that straight-line solutions result
from real eigenvalues.

◮ We found that
Y(t) = e

λtv

is always a solution to

dY

dt
= AY

if λ is an eigenvalue of A with eigenvector v.

◮ However, the corresponding solution curve will not be a
straight line if λ is not real.
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Example 1 again:

◮ Find two linearly independent solutions of the system:

dY

dt
=

(

1 −2
2 1

)

Y

◮ How do we interpret a complex-valued solution? We would
like a real-valued solution.
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Theorem:

◮ Consider the system
dY

dt
= AY

◮ If Y(t) is a complex-valued solution to the system, write

Y(t) = YR(t) + iYI(t)

where YR(t) and YI(t) are real-valued functions.

◮ Then YR(t) and YI(t) are solutions to the system and are
linearly independent.

Proof:
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Example 1 again:

◮ Find two linearly independent real-valued solutions of the
system:

dY

dt
=

(

1 −2
2 1

)

Y

and hence write down the general solution in terms of
real-valued functions.
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Phase portrait

◮ We see from the general solution that each component of
Y(t) oscillates between positive and negative values and that
the amplitude of each component grows exponentially.

◮ Phase portrait and components of solution with x(0) = 1,
y(0) = 0.

x ’ = x − 2 y
y ’ = 2 x + y

 
 

 
 

 
 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

−4 −3 −2 −1 0 1 2 3
−15

−10

−5

0

5

10

15

20

t

x,
y

 

 

8 / 24



◮ In Example 1, we found two linearly independent real-valued
solutions by taking the real and imaginary parts of the
complex-valued solution

e
(1+2i)t

(

i

1

)

◮ What if we instead used the real and imaginary parts of the
other complex-valued solution we found, i.e.

e
(1−2i)t

(

−i

1

)

?
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◮ The other complex-valued solution also gives us two
real-valued solutions.

◮ These solutions are just multiples of the real-valued solutions
already found.

◮ Thus, using the other complex-valued solution gives no new
information

◮ We can form the general solution using the real and imaginary
parts of just one of the complex conjugate pair of solutions.
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In general...

◮ Suppose A has complex eigenvalues λ1 = α + iβ and
λ2 = α − iβ.

◮ Then the system
dY

dt
= AY

has a solution of the form

Y(t) = e
(α+iβ)tY1

where Y1 is the eigenvector corresponding to eigenvalue λ1.

◮ Expanding the exponential yields

Y(t) = e
(α+iβ)tY1 = eαt(cos(βt) + i sin(βt))Y1

◮ So the general solution is a combination of exponential and
trigonometrical terms. The qualitative behaviour of solutions
depends on α and β.
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◮ Notice that the 2 by 2 matrix

A =

(

α −β

β α

)

has eigenvalues α ± iβ. (Exercise: check this!)

◮ Using pplane we can see how varying α and β in the equation

ẋ = αx − βy

ẏ = βx + αy

changes the phase portrait.
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Spiral Source

◮ Case 1: If α > 0, then exp(αt) → ∞ as t → ∞ so solution
curves spiral away from the origin, and the equilibrium at the
origin is called a spiral source.

Typical phase portraits for a spiral source:
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Sprial Sink

◮ Case 2: If α < 0, then exp(αt) → 0 as t → ∞ so solution
curves spiral into the origin, and the equilibrium at the origin
is called a spiral sink.

Typical phase portraits for a spiral sink:

14 / 24



Centre

◮ Case 3: If α = 0, then exp(αt) = 1 for all t and solutions are
periodic; solution curves return to their initial point in the
phase plane and retrace the same curve over and over again.
In this case, the equilibrium at the origin is called a centre.

Typical phase portraits for a centre:
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Example 1 again:

◮ Sketch the phase portrait for the system

dY

dt
=

(

1 −2
2 1

)

Y

◮ The eigenvalues are 1 ± 2i , i.e. α = 1, β = 2, and so the
origin is a spiral source.
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Which direction?

◮ To determine whether spiral is clockwise or anticlockwise,
evaluate the vector field at a point.

◮ For example, at (x , y) = (0, 1) on the y -axis, the direction of
the solution through this point is given by

(

ẋ

ẏ

)

= A

(

0
1

)

=

(

−2
1

)

which is a vector pointing up and left.

◮ This is not consistent with a clockwise spiral so solutions
must spiral around the origin in an anticlockwise direction.
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Example 2

◮ Sketch the phase portrait for the system

dY

dt
=

(

−2 3
−1 0

)

Y
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◮ Direction field and some solutions:
x ’ = − 2 x + 3 y
y ’ = − x        
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Exercise: Show that the general solution to the system, written in
terms of real-valued functions, is

Y(t) = c1e
−t

(

cos
√

2t +
√

2 sin
√

2t

cos
√

2t

)

+c2e
−t

(

sin
√

2t −
√

2 cos
√

2t

sin
√

2t

)
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Example 3

◮ Sketch the phase portrait for the system

dY

dt
=

(

0 −3
1 0

)

Y
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◮ Direction field and some solutions:
x ’ = − 3 y
y ’ = x    
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Exercise: Show that the general solution to the system, written in
terms of real-valued functions, is

Y(t) = c1

(

3 cos
√

3t√
3 sin

√
3t

)

+ c2

(

3 sin
√

2t

−
√

3 cos
√

3t

)
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Example 4

◮ Find the general solution, expressed in terms of real-valued
functions, for the system

dY

dt
=





1 0 0
0 2 −3
1 3 2



Y

◮ Determine the long term behaviour of solutions.
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Important ideas from today

◮ If A is a matrix with an eigenvalue λ = α + iβ and
corresponding eigenvector v, then

Y(t) = e
λtv

is a solution to
dY

dt
= AY

regardless of whether λ is real or complex.

◮ However, the corresponding solution curve will not be a
straight line if λ is complex.
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If A is a 2 by 2 matrix with eigenvalue λ = α + iβ with β 6= 0,
there are three possibilities:

1. If α > 0, the origin is a spiral source and solutions spiral away
from the origin as t increases.

2. If α < 0, the origin is a spiral sink and solutions spiral towards
the origin as t increases.

3. If α = 0, the origin is a centre and solutions are periodic,
forming closed curves around the origin.

We determine the direction in which solutions spiral (i.e. clockwise
or anticlockwise) by examining the direction of the solution
through one point near the origin.
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