1. (a) (3 marks) Since $x * y = y \in X$ for any $x, y \in X$, it follows that $*$ is a binary operation of X.
The following is its Cayley table. T_{max} following is the Cayley table.

Since 18 is not divisible by 22, it follows that $946x + 374y = 18$ has no integer solution.

(b) (3 marks) For all $x, y, z \in X$,

$$
x * (y * z) = y * z = z = (x * y) * z,
$$

so that $*$ is associative. Since $a * b = b \neq a = b * a$, it follows that $*$ is non-commutative.

- (c) (2 marks) Suppose $(X, *)$ has the identity $e \in X$. For any $x \in X$ and $y \in X$ with $y \neq x$. Then $x * y = y \neq x$, so $e \neq x$, a contradiction.
- (d) (2 marks) Since $(X, *)$ has no identity, so it is not a group.
- 2. (a) (3 marks) Since $hd = \varphi$ and $dh = \phi \neq \varphi$, it follows that $dh \neq hd$ and D_4 is non-Abelian.
	- (b) (4 marks) If $x \in D_4$ such that $x^{-1} = x$, then $x^2 = x \cdot x^{-1} = e$. Thus

$$
x \in \{e, \pi, h, v, d, d'\}.
$$

(c) (4 marks) Let $H = \{e, \pi\}$ and $K = \{e, h\}$. Then

$$
\begin{array}{c|cc}\n\ast & e & \pi \\
\hline\ne & e & \pi \\
\pi & \pi & e\n\end{array}
$$

Thus $x * y \in H$ for any $x, y \in H$. Since $x^{-1} = x \in H$, it follows by Two-step test that H is a subgroup of G. Similarly, $K \leq G$ and H and K are two distinct subgroups of order 2. OR use finite subgroup test $H \leq G \iff (H \neq \emptyset) \land (\forall x, y \in H)(x * y \in H)$.

(d) (5 marks) Let $L = \{e, \varphi, \pi, \phi\}$. By the Cayley Table,

 $x * y \in L$ for any $x, y \in L$. Since $e^{-1} = e, \varphi^{-1} = \varphi, \varphi^{-1} = \varphi$ and $\pi^{-1} = \pi$, it follows that $x^{-1} \in L$ for any $x \in L$, so that by Two-step test L is a subgroup of G.

Let $M = \{e, \pi, h, v\}$. By the Cayley Table,

 $x * y \in M$ for any $x, y \in M$. Since $x^{-1} = x$ for any $x \in M$, it follows that M is a subgroup of G.

 $\frac{6}{\pi}$

- Thus L and M are two distinct subgroups of order 4. (e) (4 marks) Suppose G has a subgroup of order 5. Then by Lagrange's theorem, $5 | |G| = 8$, which is impossible. which is impossible.
- **3.** (a) (i) (3 marks) Suppose a is a lower bound and b is an upper bound of A. Then $a \le x \le b$ for any $x \in A$. If $y \in B$, then $y = -v$ for some $v \in A$, so that $a \le v \le b$ and

$$
-b \le y = -v \le -a.
$$

Thus B is bounded below by $-b$ and above by $-a$.

- (ii) (5 marks) Let U_A be the set of upper bounds of A. Then L is the least element of U_A .
Let L_B be the set of lower bounds of B. Let L_B be the set of lower bounds of B.
Then $a \in U$, \longleftrightarrow $(\forall x \in A)(x \le a) \ne$ Then $a \in U_A \iff (\forall x \in A)(x \leq a) \iff (\forall x \in A)(-a \leq -x) \iff (\forall y \in B)(-a \leq a)$
 $a \iff a \in I_B$ In particular $-I \in I_B$ and $-I \leq a = a \text{th } B$ $y) \iff -a \in L_B$. In particular, $-L \in L_B$ and $-L \leq g := \text{glb } B$. But $-g \in U_A$, so $L \le -g$, $g \le -L$ and $g = -L$.
- (iii) (5 marks) Since $M \in L_B$, it follows that $M \leq y$ for any $y \in B$. If $x \in A$, then $y = -x \in B$, so that $M \leq -x$ and $x \leq -M$. Thus $-M \in U_A$. For $\epsilon > 0$, there exists $y \in B$ such that $M \leq y \leq M + \epsilon$. Thus $y = -x$ for some $x \in A$ and

$$
-M - \epsilon \le x \le -M.
$$

So $-M =$ lub A and by (ii) above, $M = -(-M) =$ glb B.

(b) Let $a = \text{glb } A$. For each $y \in Y$, there exists $x \in X$ such that $y = sx$. Thus $a \leq x$ and $sa \leq sx = y$ as $s > 0$, so sa is a lower bound of Y.

If $\epsilon > 0$, then $\frac{\epsilon}{s} > 0$, so there exists $x \in X$ such that $a \le x \le a + \frac{\epsilon}{s}$. Thus

$$
sa \le sx \le s(a + \frac{\epsilon}{s}) = sa + \epsilon,
$$

that is, $sa \leq y \leq sa + \epsilon$ for some $y = sx \in Y$. By (a) (iii) above,

$$
sa = \text{glb } B.
$$

4. (a) (4 marks) For each $n \in \mathbb{N}$, $n1_F \in F$. Since F is finite, there exist distinct integers $n, u \in \mathbb{N}$ such that

$$
n1_F = u1_F.
$$

If $n > u$, then $n1_F = (n - u)1_F + u1_F = u1_F + 0_F$ and by Cancellation low

$$
m1_F=0_F
$$

with $m = n - u$. Similarly, if $n < u$, then $m1_F = 0_F$ with $m = u - n$. Thus there exists $m \in N$ such that $m1_F = 0_F$.

(b) (4 marks) Suppose p is the smallest $p \in N$ such that $p1_F = 0_F$, such p exists by (i) above. Suppose p is not a prime. Then $p = ab$ for some $a, b \in \mathbb{N}$ with $a \neq 1$ and $b \neq 1$. Then

$$
(a1_F)(b1_F) = (ab)1_F = p1_F = 0_F,
$$

so that $(a1_F) = 0_F$ or $(b1_F) = 0_F$, which is impossible since $a < p$ and $b < p$. It follows that p is a prime.

is a prime. (c) (3 marks) For any $x \in F$,

$$
px = x + x + \dots + x = 1_Fx + 1_Fx + \dots + 1_Fx = (p1_F)x = 0_Fx = 0_F.
$$

5. (7 marks) For $\epsilon > 0$, let $N \in \mathbb{N}$ with $N > \frac{19+10\epsilon}{25\epsilon}$. If $n > N$, then

$$
\left|\frac{2n+3}{5n-2} - \frac{2}{5}\right| = \left|\frac{19}{25n-10}\right| < \left|\frac{19}{25N-10}\right| \le \frac{19}{25\frac{19+10\epsilon}{25\epsilon} - 10} = \epsilon.
$$

Thus $\lim_{n \to \infty} \frac{2n+3}{5n-2} = \frac{2}{5}$.

6. (15 marks) Since $\lim_{n\to\infty} a_n = a$, it follows that for $\epsilon > 0$, there exists $N_1 > 0$ such that for all $n > N_1$,

$$
|a_n - a| < \epsilon.
$$

Similarly, since $\lim_{n\to\infty} b_n = a$, there exists $N_2 > 0$ such that for all $n > N_2$,

$$
|b_n - a| < \epsilon.
$$

Let $N = \max\{N_1, N_2\}$ and suppose $n > N$. If $b_n \leq a_n$, then $c_n = a_n$, so that

$$
|c_n - a| = |a_n - a| < \epsilon.
$$

If $a_n < b_n$, then $c_n = b_n$, so that

$$
|c_n - a| = |b_n - a| < \epsilon.
$$

It follows that for all $n > N$,

$$
|c_n - a| < \epsilon,
$$

so that $\lim_{n\to\infty} c_n = a$.