1. (2 marks each)

- (a) (i) $-7 = 5(-2) + 3$, and $7 = 5 + 2$, so $f(-7) = 3$ and $f(7) = 2$.
	- (ii) f is not one-to-one because $f(3) = f(8) = 3$ with $3, 8 \in A$.
	- (iii) f is not onto because $f(x) \neq -1$ for all $x \in A$.
- (b) (i) $g({-1, 0, 1}) = {a \in A : (f(a) = 0) \vee (f(a) = 1)} = {-5, 0, 5, -4, 1, 6}.$
	- (ii) g is not one-to-one because $g({-3}) = g({-7}) = \emptyset$ with ${-3}$, ${-7} \in \mathcal{P}(A)$.
	- (iii) g is not onto because $g(X) \neq \{-1\}$ for all $X \in \mathcal{P}(A)$.
- (c) (i) ∼ is reflexive since $f(a) = f(a)$ for all $a \in A$, symmetric since $a \sim b \iff f(a) = f(a)$ $f(b) \iff f(b) = f(a) \iff b \sim a$, and transitive since $(a \sim b) \land (b \sim c) \iff f(a) =$ $f(b) = f(c) \implies f(a) = f(c) \iff a \sim c.$
	- (ii) For $a \in A$, $a \in S \iff a \sim 7 \iff f(a) = f(7) = 2 \iff a = 5q + 2$ for some $q \in \mathbb{Z} \iff a - 2 = 5q$ for some $q \in \mathbb{Z}$. Thus

$$
S = \{-8, -3, 2, 7\}.
$$

- (iii) $[0] = \{-5, 0, 5\}, [1] = \{-9, -4, 1, 6\}, [2] = \{-8, -3, 2, 7\}, [3] = \{-7, -2, 3, 8\}$ and $[4] = \{-6, -1, 4, 9\}.$
- **2.** (a) (6 marks) Suppose $a, a' \in A$, Then

$$
f(a) = f(a') \iff \frac{5a}{a-3} = \frac{5a'}{a'-3}
$$

\n
$$
\iff \frac{5(a-3)+15}{a-3} = \frac{5(a'-3)+15}{a'-3}
$$

\n
$$
\iff 5 + \frac{15}{a-3} = 5 + \frac{15}{a'-3}
$$

\n
$$
\iff \frac{15}{a-3} = \frac{15}{a'-3}
$$

\n
$$
\iff a'-3 = a-3
$$

\n
$$
\iff a' = a,
$$

so f is one-one.
Now we show that f is onto.

For any $b \in B$, let $a = \frac{3b}{b-5}$. Since $b \neq 5$, it follows that $a \in \mathbb{R}$. If $a \notin A$, then $a = 3$, i.e. $b = b - 5$ or $0 = -5$, which is impossible. Thus $a \in A$ and

$$
f(a) = \frac{5\frac{3b}{b-5}}{\frac{3b}{b-5} - 3} = \frac{15b}{3b - (3b - 15)} = b,
$$

so f is onto.

(b) (2 marks) As shown above $f^{-1}: B \to A$ is given by $f^{-1}(x) = \frac{3x}{x-5}$

3. (a) (6 marks) Let $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$, $\mathbb{Z}_- = \{-1, -2, -3, \ldots\}$, $E = \{2, 4, 6, \ldots\}$ and $O =$ $\{1,3,5,\ldots\}.$ Then $\mathbb{Z}_+\cap\mathbb{Z}_-=E\cap O=\emptyset,$ $\mathbb{Z}=\mathbb{Z}_+\cup\mathbb{Z}_-$ and $\mathbb{N}=E\cup O.$ If $x \in \mathbb{Z}_+$, then $f(x) = 2x + 2 \ge 2$, so that $f(x) \in E$. If $x \in \mathbb{Z}_-$, then $f(x) = -2x - 1 \ge 1$, so that $f(x) \in O$. Thus f can be viewed as a function from \mathbb{Z}_+ to E and from \mathbb{Z}_- to O. Let $a, a' \in \mathbb{Z}$ such that $f(a) = f(a')$. If $f(a)$ is even, then so is $f(a')$ and so $a, a' \in \mathbb{Z}_+$ as $f(x)$ is odd for $x \in \mathbb{Z}$. Thus $2a + 2 = 2a' + 2$ and $a = a'$ is odd for $x \in \mathbb{Z}_-$. Thus $2a + 2 = 2a' + 2$ and $a = a'$. . If $f(a)$ is odd, then so is $f(a')$ and so $a, a' \in \mathbb{Z}_-$ as $f(x)$ is even for $x \in \mathbb{Z}_+$. Thus $-2a - 1 =$
 $-2a' - 1$ and $a = a'$. So f is one-one. $-2a'-1$ and $a=a'$. So f is one-one. Let $b \in \mathbb{N}$. If $b = 2m \in E$ for some $m \in \mathbb{N}$, then $a = m - 1 \ge 0$ and so $a \in \mathbb{Z}_+$ with $f(a) = 2a + 2 = 2(m - 1) + 2 = 2m - b$. If $b = 2m - 1 \in O$ for some $m \in \mathbb{N}$ then $f(a) = 2a + 2 = 2(m - 1) + 2 = 2m = b$. If $b = 2m - 1 \in O$ for some $m \in \mathbb{N}$, then $a = -m \in \mathbb{Z}$ and $f(a) = -2a - 1 = 2m - 1 = b$. So f is onto.

(b) (3 marks) For $x \in \mathbb{Z}$, define a function g by

$$
g(x) = 2x + 2 \text{ if } x \ge 0
$$

= -2x + 1 if $x < 0$.

Then g is a one-to-one function from Z to N. Claim that g is not onto. Take $b = 1 \in \mathbb{N}$. If $g(x) = b$ for some $x \in \mathbb{Z}$, then $x \in \mathbb{Z}_-$ as b is odd. Thus $-2x + 1 = 1$ and $x = 0 \in \mathbb{Z}_+$, which is impossible.

is impossible. (c) (3 marks) For $x \in \mathbb{Z}$, define a function h by

$$
h(x) = x + 1 \quad \text{if} \quad x \ge 0
$$

$$
= -x \quad \text{if} \quad x < 0.
$$

Then h is a function from Z to N. Since $h(-1) = h(0) = 1$, it is not one-one.

(d) (2 marks) For $x \in \mathbb{Z}$, define a function $k : \mathbb{Z} \to \mathbb{N}$ by $k(x) = 1$. Then k is neither one-one nor onto.

4. (5 marks each)

(a) Define $f: A \to \mathbb{N}$ by $f(-\frac{1}{n}) = n$. Then f is a function.

before f is onto. For any $b \in \mathbb{N}$, set $a = -\frac{1}{b}$. Then $a \in A$ and $f(a) = b$.

f is strictly order preserving. Let $a = -\frac{1}{n}$ and $a' = -\frac{1}{n'}$ be two elements of A for some $n, n' \in \mathbb{N}$. Then $n, n' \in \mathbb{N}$. Then

$$
a \le a' \iff \frac{-\frac{1}{n} \le -\frac{1}{n'}}{\frac{1}{n'} \le \frac{1}{n}} \iff \frac{\frac{1}{n'} \le \frac{1}{n}}{\frac{n}{n} \iff n \le n'} \iff f(a) \le f(a').
$$

Thus f is an order isomorphism and so $A \simeq \mathbb{N}$.

(b) Note that $B = \{-\frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\} = \{\ldots, -\frac{1}{4}, -\frac{1}{3}, -\frac{1}{2}, -1, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ and

$$
1 > \frac{1}{2} > \frac{1}{3} > \ldots > -\frac{1}{4} > -\frac{1}{3} > -\frac{1}{2} > -1.
$$

In particular, -1 is the least element of B.

Suppose $B \simeq \mathbb{Z} \setminus \{0\}$ and f is an order isomorphism from B onto $\mathbb{Z} \setminus \{0\}$. Then $f(-1) = m \in$ $\mathbb{Z}\setminus\{0\}$ is also the least element. Since $-1 \in \mathbb{Z}\setminus\{0\}$ and m is the least element, it follows that $m \leq -1$ and so $m - 1 \in \mathbb{Z} \setminus \{0\}$. But $m - 1 < m$, so m is not a least element. Contradiction.

5. (5 marks each)

(a) Since $d = \gcd(a, b)$, there exist $x, y \in \mathbb{Z}$ such that

$$
ax + by = d.
$$

Since $a = da_1$ and $b = db_1$, it follows that $d = da_1x + db_1y$, so that $1 = a_1x + b_1y \iff$ $gcd(a_1, b_1) = 1.$

- (b) Suppose $d = \gcd(p, a)$. Then $d|p$ and so $d = p$ or $d = 1$. If $d \neq 1$, then $d = p$ and hence $p|a$.
- (c) Let $w = 2m + 1$ for some $m \in \mathbb{Z}$. Then

$$
\gcd(w, w + 2) = \gcd(w, 2) = \gcd(2m + 1, 2) = \gcd(1, 2) = 1.
$$

Let $d = \gcd(w, w + 2)$, so that $d|w$ and $d|(w + 2)$. Thus $d|2 = (w + 2) - w$, and $d = 1$ or 2. If $d = 2$ then $2|w|$ and w is even. A contradiction. So $d = 1$ and w $w + 2$ are continue $d = 2$, then $2|w$ and w is even. A contradiction. So $d = 1$ and $w, w + 2$ are coprime.

(d) Let $d = \gcd(a, b)$, so that $d = ax + by$ for some $x, y \in \mathbb{Z}$. Now

$$
d = ax + by = ax + aky + by - aky = a(x + kb) + b(y - ka)
$$

for any $k \in \mathbb{Z}$. It follows that there are infinitely many $s, t \in \mathbb{Z}$ such that $d = as + bt$.

\ddots (3 married each)

(a) The algorithm gives us

n	x	y	
288	1	0	r_1
51	0	1	r_2
33	1	-5	$r_3 = r_1 - 5r_2$
18	-1	6	$r_4 = r_2 - r_3$
15	2	-11	$r_5 = r_3 - r_4$
3	-3	17	$r_6 = r_4 - r_5$
0	*	*	$r_7 = r_5 - 5r_6$

From which we see that $gcd(288, 51) = 3$ and $3 = 288 \cdot (-3) + 51 \cdot 17$.

(b) The algorithm gives us

From this we see that $gcd(629, 357) = 17 = 629 \cdot (4) + 357 \cdot (-7)$.

(c) The algorithm gives us

from which we see that $gcd(252, 180) = 36 = 252 \cdot (-2) + 180 \cdot (3)$.