1. (2 marks each)

(a) (i)
$$-7 = 5(-2) + 3$$
, and $7 = 5 + 2$, so $f(-7) = 3$ and $f(7) = 2$.

- (ii) f is not one-to-one because f(3) = f(8) = 3 with $3, 8 \in A$.
- (iii) f is not onto because $f(x) \neq -1$ for all $x \in A$.

(b) (i)
$$g(\{-1,0,1\}) = \{a \in A : (f(a) = 0) \lor (f(a) = 1)\} = \{-5,0,5,-4,1,6\}.$$

- (ii) g is not one-to-one because $g(\{-3\}) = g(\{-7\}) = \emptyset$ with $\{-3\}, \{-7\} \in \mathcal{P}(A)$.
- (iii) g is not onto because $g(X) \neq \{-1\}$ for all $X \in \mathcal{P}(A)$.
- (c) (i) ~ is reflexive since f(a) = f(a) for all $a \in A$, symmetric since $a \sim b \iff f(a) = f(b) \iff f(b) = f(a) \iff b \sim a$, and transitive since $(a \sim b) \land (b \sim c) \iff f(a) = f(b) = f(c) \implies f(a) = f(c) \iff a \sim c$.
 - (ii) For $a \in A$, $a \in S \iff a \sim 7 \iff f(a) = f(7) = 2 \iff a = 5q + 2$ for some $q \in \mathbb{Z} \iff a 2 = 5q$ for some $q \in \mathbb{Z}$. Thus

$$S = \{-8, -3, 2, 7\}.$$

- (iii) $[0] = \{-5, 0, 5\}, [1] = \{-9, -4, 1, 6\}, [2] = \{-8, -3, 2, 7\}, [3] = \{-7, -2, 3, 8\}$ and $[4] = \{-6, -1, 4, 9\}.$
- **2.** (a) (6 marks) Suppose $a, a' \in A$, Then

$$f(a) = f(a') \quad \Longleftrightarrow \quad \frac{5a}{a-3} = \frac{5a'}{a'-3}$$
$$\Leftrightarrow \quad \frac{5(a-3)+15}{a-3} = \frac{5(a'-3)+15}{a'-3}$$
$$\Leftrightarrow \quad 5 + \frac{15}{a-3} = 5 + \frac{15}{a'-3}$$
$$\Leftrightarrow \quad \frac{15}{a-3} = \frac{15}{a'-3}$$
$$\Leftrightarrow \quad a'-3 = a-3$$
$$\Leftrightarrow \quad a' = a,$$

so f is one-one.

Now we show that f is onto.

For any $b \in B$, let $a = \frac{3b}{b-5}$. Since $b \neq 5$, it follows that $a \in \mathbb{R}$. If $a \notin A$, then a = 3, i.e. b = b - 5 or 0 = -5, which is impossible. Thus $a \in A$ and

$$f(a) = \frac{5\frac{3b}{b-5}}{\frac{3b}{b-5} - 3} = \frac{15b}{3b - (3b - 15)} = b$$

so f is onto.

(b) (2 marks) As shown above $f^{-1}: B \to A$ is given by $f^{-1}(x) = \frac{3x}{x-5}$

3. (a) (6 marks) Let Z₊ = {0,1,2,...}, Z₋ = {-1,-2,-3,...}, E = {2,4,6,...} and O = {1,3,5,...}. Then Z₊ ∩ Z₋ = E ∩ O = Ø, Z = Z₊ ∪ Z₋ and N = E ∪ O. If x ∈ Z₊, then f(x) = 2x + 2 ≥ 2, so that f(x) ∈ E. If x ∈ Z₋, then f(x) = -2x - 1 ≥ 1, so that f(x) ∈ O. Thus f can be viewed as a function from Z₊ to E and from Z₋ to O. Let a, a' ∈ Z such that f(a) = f(a'). If f(a) is even, then so is f(a') and so a, a' ∈ Z₊ as f(x) is odd for x ∈ Z₋. Thus 2a + 2 = 2a' + 2 and a = a'. If f(a) is odd, then so is f(a') and so a, a' ∈ Z₋ as f(x) is even for x ∈ Z₊. Thus -2a - 1 = -2a' - 1 and a = a'. So f is one-one. Let b ∈ N. If b = 2m ∈ E for some m ∈ N, then a = m - 1 ≥ 0 and so a ∈ Z₊ with f(a) = 2a + 2 = 2(m - 1) + 2 = 2m = b. If b = 2m - 1 ∈ O for some m ∈ N, then a = -m ∈ Z₋ and f(a) = -2a - 1 = 2m - 1 = b. So f is onto.
(b) (3 marks) For x ∈ Z, define a function g by

$$g(x) = 2x + 2$$
 if $x \ge 0$
= $-2x + 1$ if $x < 0$.

Then g is a one-to-one function from \mathbb{Z} to \mathbb{N} . Claim that g is not onto. Take $b = 1 \in \mathbb{N}$. If g(x) = b for some $x \in \mathbb{Z}$, then $x \in \mathbb{Z}_{-}$ as b is odd. Thus -2x + 1 = 1 and $x = 0 \in \mathbb{Z}_{+}$, which is impossible.

(c) (3 marks) For $x \in \mathbb{Z}$, define a function h by

$$h(x) = x+1 \quad \text{if} \quad x \ge 0$$

= $-x \quad \text{if} \quad x < 0.$

Then h is a function from \mathbb{Z} to \mathbb{N} . Since h(-1) = h(0) = 1, it is not one-one.

(d) (2 marks) For $x \in \mathbb{Z}$, define a function $k : \mathbb{Z} \to \mathbb{N}$ by k(x) = 1. Then k is neither one-one nor onto.

4. (5 marks each)

- (a) Define $f: A \to \mathbb{N}$ by $f(-\frac{1}{n}) = n$. Then f is a function.
 - f is onto. For any $b \in \mathbb{N}$, set $a = -\frac{1}{b}$. Then $a \in A$ and f(a) = b.

f is strictly order preserving. Let $a = -\frac{1}{n}$ and $a' = -\frac{1}{n'}$ be two elements of A for some $n, n' \in \mathbb{N}$. Then

$$a \le a' \quad \Longleftrightarrow \quad -\frac{1}{n} \le -\frac{1}{n'}$$
$$\iff \quad \frac{1}{n'} \le \frac{1}{n}$$
$$\iff \quad n \le n'$$
$$\iff \quad f(a) \le f(a')$$

Thus f is an order isomorphism and so $A \simeq \mathbb{N}$.

(b) Note that $B = \{-\frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\} = \{\dots, -\frac{1}{4}, -\frac{1}{3}, -\frac{1}{2}, -1, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ and

$$1 > \frac{1}{2} > \frac{1}{3} > \ldots > -\frac{1}{4} > -\frac{1}{3} > -\frac{1}{2} > -1.$$

In particular, -1 is the least element of B.

Suppose $B \simeq \mathbb{Z} \setminus \{0\}$ and f is an order isomorphism from B onto $\mathbb{Z} \setminus \{0\}$. Then $f(-1) = m \in \mathbb{Z} \setminus \{0\}$ is also the least element. Since $-1 \in \mathbb{Z} \setminus \{0\}$ and m is the least element, it follows that $m \leq -1$ and so $m - 1 \in \mathbb{Z} \setminus \{0\}$. But m - 1 < m, so m is not a least element. Contradiction.

5. (5 marks each)

(a) Since $d = \gcd(a, b)$, there exist $x, y \in \mathbb{Z}$ such that

$$ax + by = d.$$

Since $a = da_1$ and $b = db_1$, it follows that $d = da_1x + db_1y$, so that $1 = a_1x + b_1y \iff gcd(a_1, b_1) = 1$.

- (b) Suppose $d = \gcd(p, a)$. Then d|p and so d = p or d = 1. If $d \neq 1$, then d = p and hence p|a.
- (c) Let w = 2m + 1 for some $m \in \mathbb{Z}$. Then

$$gcd(w, w + 2) = gcd(w, 2) = gcd(2m + 1, 2) = gcd(1, 2) = 1.$$

OR

Let $d = \gcd(w, w + 2)$, so that d|w and d|(w + 2). Thus d|2 = (w + 2) - w, and d = 1 or 2. If d = 2, then 2|w and w is even. A contradiction. So d = 1 and w, w + 2 are coprime.

(d) Let d = gcd(a, b), so that d = ax + by for some $x, y \in \mathbb{Z}$. Now

$$d = ax + by = ax + aky + by - aky = a(x + kb) + b(y - ka)$$

for any $k \in \mathbb{Z}$. It follows that there are infinitely many $s, t \in \mathbb{Z}$ such that d = as + bt.

6. (**3 marks each**)

(a) The algorithm gives us

n	x	y	
288	1	0	r_1
51	0	1	r_2
33	1	-5	$r_3 = r_1 - 5r_2$
18	-1	6	$r_4 = r_2 - r_3$
15	2	-11	$r_5 = r_3 - r_4$
3	-3	17	$r_6 = r_4 - r_5$
0	*	*	$r_7 = r_5 - 5r_6$

From which we see that gcd(288, 51) = 3 and $3 = 288 \cdot (-3) + 51 \cdot 17$.

(b) The algorithm gives us

n	x	y	
629	1	0	r_1
357	0	1	r_2
272	1	-1	$r_3 = r_1 - r_2$
85	-1	2	$r_3 = r_1 - r_2$ $r_4 = r_2 - r_3$
17	4	-7	$r_5 = r_3 - 3r_4$
0	*	*	$r_6 = r_4 - 5r_5$

From this we see that $gcd(629, 357) = 17 = 629 \cdot (4) + 357 \cdot (-7)$. (c) The algorithm gives us

n	x	y	
252	1	0	r_1
180	0	1	r_2
72	1	-1	$r_3 = r_1 - r_2$
36	-2	3	$r_4 = r_2 - 2r_3$
0	*	*	$r_{3} = r_{1} - r_{2}$ $r_{4} = r_{2} - 2r_{3}$ $r_{5} = r_{3} - 2r_{4}$

from which we see that $gcd(252, 180) = 36 = 252 \cdot (-2) + 180 \cdot (3)$.