1. (a) (3 marks) Let $E(x) := x$ is even. Then

$$
(a) \iff (\forall a, b, c \in \mathbb{Z})(E(ac) \land E(ab) \land E(bc) \implies E(a) \land E(b) \land E(c)).
$$

$$
\neg(a) \iff (\exists a, b, c \in \mathbb{Z})(E(ac) \land E(ab) \land E(bc) \land (O(a) \lor O(b) \lor O(c))).
$$

(1) Take $a = 2 = b$ and $c = 1$.

(2) Then $ac = 2 = bc$ and $ab = 4$ are even but c is odd.

Thus $a = 2, b = 2$ and $c = 1$ is a counterexample to the statement (a).

(b) (3 marks) Let $O(x) := x$ is odd. Then

$$
(b) \iff (\exists xy \in \mathbb{Z})(E(xy) \land O(x) \land O(y)).
$$

$$
\neg(b) \iff (\forall x, y \in \mathbb{Z})(E(xy) \implies (E(x) \lor E(y))).
$$

Suppose, for a contradiction that x and y are both odd but xy is even for some $x, y \in \mathbb{Z}$. Then $x = 2k + 1$ and $y = 2t + 1$ for some $k, t \in \mathbb{Z}$. Thus

 $xy = (2k+1)(2t+1) = 4kt + 2k + 2t + 1 = 2(2kt + k + t) + 1.$

Since $2kt + k + t$ is an integer, it follows that xy is odd, which is impossible.

2. (1 mark) For $n \in \mathbb{N}$, let P_n be the statement that $7 | (4^{2n} - 2^n)$.
(2 mark)

 $\frac{1}{2}$ Base case: When $n = 1$, we have $4^{2n} - 2^n = 16 - 2 = 14 = 7 \times 2$, so $7 | (4^{2n} - 2^n)$.

 $\begin{array}{c} \sqrt{2} \\ \sqrt{2} \end{array}$ Inductive step: Let $k \in \mathbb{N}$ and suppose P_k is true, that is, $4^{2k} - 2^k = 7m$, for some integer m. Then $A^{2k} - 7m + 2^k$ and $4^{2k} = 7m + 2^{k}$ and

$$
4^{2(k+1)} - 2^{k+1} = 4^{2k+2} - 2^{k+1}
$$

= 16 × 4^{2k} - 2 × 2^k
= 16 × (7m + 2^k) - 2 × 2^k
= 16 × 7m + 14 × 2^k
= 7(16m + 2 × 2^k),

so it is divisible by 7. It follows that P_{k+1} is true and by mathematical induction, P_n is true for all $n \in \mathbb{N}$.

3. (1 mark) For $n \in \mathbb{N}$ with $n \geq 4$, let P_n be the statement that $n! > 2^n$.
(2 mark)

 $\frac{1}{2}$ *Base case*: When $n = 4$, we have $4! = 24$ and $2^n = 16$, so $n! > 2^n$, that is P_4 is true.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array}$ Inductive step: Let $k \in \mathbb{N}$ with $k \geq 4$ and suppose P_k is true, that is, $k! > 2^k$. Then

$$
(k+1)! = (k+1) \times k!
$$

> $(k+1) \times 2^{k}$ as $k! > 2^{k}$
> 2×2^{k} as $k+1 > 4$
= 2^{k+1} ,

so P_{k+1} is true. By induction, P_n is true for all $n \in \mathbb{N}$ with $n \geq 4$.

4. (3 marks) For $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ let P_n be the statement that x^n is even if and only if x is even.

Base: P_1 is the statement that x is even if and only if x is even, which is clearly true.

(5 marks) [Inductive step:] Suppose $k \in \mathbb{N}$ and suppose P_k is true, in other words x^k is even if and only if x is even.

Suppose x is even, so that $x = 2t$ for some $t \in \mathbb{Z}$. So $x^{k+1} = x \cdot x^k = 2(t2^k)$ is even.

Suppose x^{k+1} is even. From Question 1 (b) of this assignment, we know that for $a, b \in \mathbb{Z}$ if ab is even then either a or b is even. Now $x^{k+1} = x \cdot x^k$ is even, so x is even or x^k is even. If x is even, then P_{k+1} is true. On the other hand, if x^k is even, then by the induction hypothesis, x is even as well. Thus P_{k+1} is always true. Hence, by complete induction, P_n is true for all $n \in \mathbb{N}$.

5. (2 marks) Compute $x_1 = 3, x_2 = 18 = 2 \times 3^2, x_3 = 3 \times 3^3, x_4 = 4 \times 3^4$. We conjecture that

$$
x_n=n3^n.
$$

(2 marks) For $n \in \mathbb{N}$ let P_n be the statement that $x_n = n3^n$.

- **Base:** P_1 is the statement that $x_1 = 3$, which is true; P_2 is the statement that $x_2 = 2 \cdot 3^2 = 18$, which is also true.
- \mathbf{w} is also true. (4 marks) [Inductive step:] Suppose $k \in \mathbb{N}$ with $k \ge 2$ and suppose $P_1 \wedge \ldots \wedge P_k$ is true, in other words $x_i = i3^i$ for $1 \le i \le k$ Then words $x_i = i3^i$ for $1 \leq i \leq k$ Then

$$
x_{k+1} = 6x_k - 9x_{k-1}
$$

= $6k3^k - 9(k - 1)3^{k-1}$
= $2k3^{k+1} - (k - 1)3^{k+1}$
= $(2k - k + 1)3^{k+1}$
= $(k + 1)3^{k+1}$,

so $x_{k+1} = (k+1)3^{k+1}$, in other words P_{k+1} is true.

Hence, by complete induction, P_n is true for all $n \in \mathbb{N}$.

6. (3 marks each)

- (a) Note that $\rho = \{(x, y) \in A \times A : 2x + y = 0\} = \emptyset$ since both $x < 0$ and $y < 0$. So ρ is symmetric, antisymmetric and transitive. But ρ is not reflexive because $(-1, -1) \notin \rho$.
- (b) Not reflexive: $(0,0) \notin \rho$. Symmetric: $(x, y) \in \rho \iff x + y = 1 \iff y + x = 1 \iff (y, x) \in \rho;$ Not antisymmetric: $0 \rho 1 \wedge 1 \rho 0$ but $1 \neq 0$. Not transitive: $0 \rho_1 \wedge 1 \rho_0$ but $(0, 0) \notin \rho$.
- (c) Not reflexive: $(b, b) \notin \rho$. Not symmetric: $(a, c) \in \rho$ but $(c, a) \notin \rho$. Not antisymmetric: $(a, b) \in \rho \wedge (b, c) \in \rho$ but $a \neq c$. Not transitive: $(b, a) \in \rho \wedge (a, b) \in \rho$ but $(b, b) \notin \rho$.
- (d) **Reflexive**: for all $x \in D$, $|x x| = 0 < 2$. Symmetric: $(x, y) \in \rho \iff |x - y| < 2 \iff |y - x| < 2 \iff (y, x) \in \rho$. Not antisymmetric: $1\rho 0 \wedge 0 \rho 1$ but $0 \neq 1$. Not transitive: $1\rho 2 \wedge 2\rho 3$, that is, $|1-2| < 2$ and $|2-3| < 2$, but $|x-z| = |1-3| = 2 \nless 2$, namely x $\not\!/z$.
- 7. (a) (2 marks) Let $Q = A \times A$. It is easy to check that Q is an equivalents relation and $R \subseteq Q$.
	- (b) (5 marks) For any $x \in A$, if $Q \in \Omega$, then $(x, x) \in Q$ since Q is reflexive. Thus $(x, x) \in S$ and so S is reflexive.

If $(x, y) \in S$, then $(x, y) \in Q$ for any $Q \in \Omega$, so that $(y, x) \in Q$ as Q is symmetric. Thus $(y, x) \in S$ and so S is symmetric.

If $(x, y) \in S$ and $(y, z) \in S$, then $(x, y) \in Q$ and $(y, z) \in Q$ for any $Q \in \Omega$, so that $(x, z) \in Q$ as Q is transitive. Thus $(x, z) \in S$ and so S is **transitive**.

It follows that S is an equivalence relation.

For any $(x, y) \in R$ and any $Q \in \Omega$, $(x, y) \in Q$ as $R \subseteq Q$. Thus $(x, y) \in S$ and $R \subseteq S$.

- (c) (3 marks) If X is an equivalence relation containing R. Then $X \in \Omega$. For any $(x, y) \in S$, $(x, y) \in Q$ for any $Q \in \Omega$. In particular, $(x, y) \in X$ and so $S \subseteq X$.
- 8. (a) $(1 \text{ mark}) \sim \text{is reflexive because } 8 | 3x + 5x = 8x \text{ for any } x \in \mathbb{Z}$. (3 marks) \sim is symmetric. Suppose $x \sim y$. Then 8 | 3x + 5y, so 3x + 5y = 8m for some $m \in \mathbb{Z}$, and

$$
8 | 3y + 5x = 8x + 8y - (3x + 5y) = 8(x + y - m).
$$

Thus $y \sim x$.

(3 marks) \sim is transitive. Suppose $x \sim y$ and $y \sim z$ for $x, y, z \in \mathbb{Z}$. Then 8 | 3x + 5y and $8 | 3y + 5z$, so $8 | 3x + 5z = (3x + 5y) + (3y + 5z) - 8y$ and $x \sim z$.
(b) (3 marks)

 $\binom{3}{x}$ $\binom{3}{x}$ $\binom{4}{x}$

$$
x \in [0] \iff 8 \mid 5x + 3 \cdot 0 = 5x \iff 8 \mid x.
$$

Thus $[0] = \{x \in \mathbb{Z} : x = 8t, \exists t \in \mathbb{Z}\} = 8\mathbb{Z}.$

9. (a) (3 marks) We have the lattice diagrams

- (b) (2 marks) maximal elements = {15, 20, 8, 18}; minimal elements = {5, 2}.
- (c) (3 marks) Let $S = \{15, 18\}$. Then S has no upper bound and no lower bound.
- (d) (2 marks) 2 is the greatest lower bound of $\{4, 6, 10\}.$
- (e) $(2 \text{ marks}) \{2, 4, 20\}$ is totally ordered, since $2 \mid 4 \mid 20$. Thus it is totally ordered.