1. (a) (3 marks) Let E(x) := x is even. Then

$$(a) \iff (\forall a, b, c \in \mathbb{Z})(E(ac) \land E(ab) \land E(bc) \implies E(a) \land E(b) \land E(c)).$$
$$\neg(a) \iff (\exists a, b, c \in \mathbb{Z})(E(ac) \land E(ab) \land E(bc) \land (O(a) \lor O(b) \lor O(c))).$$

(1) Take a = 2 = b and c = 1.

(2) Then ac = 2 = bc and ab = 4 are even but c is odd.

Thus a = 2, b = 2 and c = 1 is a counterexample to the statement (a).

(b) (3 marks) Let O(x) := x is odd. Then

$$(b) \iff (\exists xy \in \mathbb{Z})(E(xy) \land O(x) \land O(y)).$$
$$\neg(b) \iff (\forall x, y \in \mathbb{Z})(E(xy) \implies (E(x) \lor E(y))).$$

Suppose, for a contradiction that x and y are both odd but xy is even for some $x, y \in \mathbb{Z}$. Then x = 2k + 1 and y = 2t + 1 for some $k, t \in \mathbb{Z}$. Thus

$$xy = (2k+1)(2t+1) = 4kt + 2k + 2t + 1 = 2(2kt + k + t) + 1.$$

Since 2kt + k + t is an integer, it follows that xy is odd, which is impossible.

2. (1 mark) For $n \in \mathbb{N}$, let P_n be the statement that $7 \mid (4^{2n} - 2^n)$.

(2 mark)

Base case: When n = 1, we have $4^{2n} - 2^n = 16 - 2 = 14 = 7 \times 2$, so $7 \mid (4^{2n} - 2^n)$.

(4 mark)

Inductive step: Let $k \in \mathbb{N}$ and suppose P_k is true, that is, $4^{2k} - 2^k = 7m$, for some integer m. Then $4^{2k} = 7m + 2^k$ and

$$4^{2(k+1)} - 2^{k+1} = 4^{2k+2} - 2^{k+1}$$

= $16 \times 4^{2k} - 2 \times 2^{k}$
= $16 \times (7m + 2^{k}) - 2 \times 2^{k}$
= $16 \times 7m + 14 \times 2^{k}$
= $7(16m + 2 \times 2^{k}),$

so it is divisible by 7. It follows that P_{k+1} is true and by mathematical induction, P_n is true for all $n \in \mathbb{N}$.

3. (1 mark) For n ∈ N with n ≥ 4, let P_n be the statement that n! > 2ⁿ.
(2 mark)

Base case: When n = 4, we have 4! = 24 and $2^n = 16$, so $n! > 2^n$, that is P_4 is true. (4 mark)

Inductive step: Let $k \in \mathbb{N}$ with $k \geq 4$ and suppose P_k is true, that is, $k! > 2^k$. Then

$$(k+1)! = (k+1) \times k!$$

> $(k+1) \times 2^k$ as $k! > 2^k$
> 2×2^k as $k+1 > 4$
= 2^{k+1} .

so P_{k+1} is true. By induction, P_n is true for all $n \in \mathbb{N}$ with $n \ge 4$.

4. (3 marks) For $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ let P_n be the statement that x^n is even if and only if x is even.

Base: P_1 is the statement that x is even if and only if x is even, which is clearly true.

(5 marks) [Inductive step:] Suppose $k \in \mathbb{N}$ and suppose P_k is true, in other words x^k is even if and only if x is even.

Suppose x is even, so that x = 2t for some $t \in \mathbb{Z}$. So $x^{k+1} = x \cdot x^k = 2(t2^k)$ is even.

Suppose x^{k+1} is even. From Question 1 (b) of this assignment, we know that for $a, b \in \mathbb{Z}$ if ab is even then either a or b is even. Now $x^{k+1} = x \cdot x^k$ is even, so x is even or x^k is even. If x is even, then P_{k+1} is true. On the other hand, if x^k is even, then by the induction hypothesis, x is even as well. Thus P_{k+1} is always true. Hence, by complete induction, P_n is true for all $n \in \mathbb{N}$.

5. (2 marks) Compute $x_1 = 3, x_2 = 18 = 2 \times 3^2, x_3 = 3 \times 3^3, x_4 = 4 \times 3^4$. We conjecture that

$$x_n = n3^n$$
.

(2 marks) For $n \in \mathbb{N}$ let P_n be the statement that $x_n = n3^n$.

- **Base:** P_1 is the statement that $x_1 = 3$, which is true; P_2 is the statement that $x_2 = 2 \cdot 3^2 = 18$, which is also true.
- (4 marks) [Inductive step:] Suppose $k \in \mathbb{N}$ with $k \ge 2$ and suppose $P_1 \land \ldots \land P_k$ is true, in other words $x_i = i3^i$ for $1 \le i \le k$ Then

$$\begin{aligned} x_{k+1} &= 6x_k - 9x_{k-1} \\ &= 6k3^k - 9(k-1)3^{k-1} \\ &= 2k3^{k+1} - (k-1)3^{k+1} \\ &= (2k-k+1)3^{k+1} \\ &= (k+1)3^{k+1}, \end{aligned}$$

so $x_{k+1} = (k+1)3^{k+1}$, in other words P_{k+1} is true.

Hence, by complete induction, P_n is true for all $n \in \mathbb{N}$.

6. (3 marks each)

- (a) Note that $\rho = \{(x, y) \in A \times A : 2x + y = 0\} = \emptyset$ since both x < 0 and y < 0. So ρ is symmetric, antisymmetric and transitive. But ρ is not reflexive because $(-1, -1) \notin \rho$.
- (b) Not reflexive: $(0,0) \notin \rho$. Symmetric: $(x,y) \in \rho \iff x+y=1 \iff y+x=1 \iff (y,x) \in \rho$; Not antisymmetric: $0\rho 1 \wedge 1\rho 0$ but $1 \neq 0$. Not transitive: $0\rho 1 \wedge 1\rho 0$ but $(0,0) \notin \rho$.
- (c) Not reflexive: $(b,b) \notin \rho$. Not symmetric: $(a,c) \in \rho$ but $(c,a) \notin \rho$. Not antisymmetric: $(a,b) \in \rho \land (b,c) \in \rho$ but $a \neq c$. Not transitive: $(b,a) \in \rho \land (a,b) \in \rho$ but $(b,b) \notin \rho$.
- (d) **Reflexive**: for all $x \in D$, |x x| = 0 < 2. **Symmetric**: $(x, y) \in \rho \iff |x - y| < 2 \iff |y - x| < 2 \iff (y, x) \in \rho$. **Not antisymmetric**: $1\rho 0 \land 0\rho 1$ but $0 \neq 1$. **Not transitive**: $1\rho 2 \land 2\rho 3$, that is, |1 - 2| < 2 and |2 - 3| < 2, but $|x - z| = |1 - 3| = 2 \not< 2$, namely $x \not/ pz$.
- 7. (a) (2 marks) Let $Q = A \times A$. It is easy to check that Q is an equivalents relation and $R \subseteq Q$.
 - (b) (5 marks) For any $x \in A$, if $Q \in \Omega$, then $(x, x) \in Q$ since Q is reflexive. Thus $(x, x) \in S$ and so S is reflexive.

If $(x, y) \in S$, then $(x, y) \in Q$ for any $Q \in \Omega$, so that $(y, x) \in Q$ as Q is symmetric. Thus $(y, x) \in S$ and so S is symmetric.

If $(x, y) \in S$ and $(y, z) \in S$, then $(x, y) \in Q$ and $(y, z) \in Q$ for any $Q \in \Omega$, so that $(x, z) \in Q$ as Q is transitive. Thus $(x, z) \in S$ and so S is **transitive**.

It follows that S is an equivalence relation.

For any $(x, y) \in R$ and any $Q \in \Omega$, $(x, y) \in Q$ as $R \subseteq Q$. Thus $(x, y) \in S$ and $R \subseteq S$.

- (c) (3 marks) If X is an equivalence relation containing R. Then $X \in \Omega$. For any $(x, y) \in S$, $(x, y) \in Q$ for any $Q \in \Omega$. In particular, $(x, y) \in X$ and so $S \subseteq X$.
- 8. (a) (1 mark) ~ is reflexive because 8 | 3x + 5x = 8x for any x ∈ Z.
 (3 marks) ~ is symmetric. Suppose x ~ y. Then 8 | 3x + 5y, so 3x + 5y = 8m for some m ∈ Z, and

$$8 \mid 3y + 5x = 8x + 8y - (3x + 5y) = 8(x + y - m).$$

Thus $y \sim x$.

(3 marks) ~ is transitive. Suppose $x \sim y$ and $y \sim z$ for $x, y, z \in \mathbb{Z}$. Then $8 \mid 3x + 5y$ and $8 \mid 3y + 5z$, so $8 \mid 3x + 5z = (3x + 5y) + (3y + 5z) - 8y$ and $x \sim z$.

(b) (**3 marks**)

$$x \in [0] \iff 8 \mid 5x + 3 \cdot 0 = 5x \iff 8 \mid x.$$

Thus $[0] = \{x \in \mathbb{Z} : x = 8t, \exists t \in \mathbb{Z}\} = 8\mathbb{Z}.$

9. (a) (3 marks) We have the lattice diagrams

- (b) (2 marks) maximal elements = $\{15, 20, 8, 18\}$; minimal elements = $\{5, 2\}$.
- (c) (3 marks) Let $S = \{15, 18\}$. Then S has no upper bound and no lower bound.
- (d) (2 marks) 2 is the greatest lower bound of $\{4, 6, 10\}$.
- (e) (2 marks) $\{2, 4, 20\}$ is totally ordered, since $2 \mid 4 \mid 20$. Thus it is totally ordered.