MATHS 255 FC

1. (2 marks each)

- (a) "Every even integer is a multiple of 4" is a statement. If E(x) = "x is an even number" and M(x) = "x is a multiple of 4", then the statement (a) can be translated as $(\forall n \in \mathbb{Z})(E(n) \Longrightarrow M(n))$.
- (b) "If n is a prime number then n^2 is not even" is a statement, which can be translated as $(\forall n \in \mathbb{Z})(P(n) \implies \sim E(n^2))$, where P(x) = "x is a prime number".
- (c) " x^2 is positive" is a predicate (with x a free variable), which can be translated as W(x), where W(x) = x is positive".
- (d) "Find an even number" is neither a statement nor a predicate. It is a command.
- (e) "For any integer n there is an even number m such that m + n = -n" is a statement, which can be translated as $(\forall n \in \mathbb{Z})(\exists m \in \mathbb{Z})(E(m) \land S(m, n))$, where S(x, y) = "x + y = -y".

2. (3 marks each)

(a) We have the following truth table:

A	B	$\sim B$	$\sim A$	$A \vee \sim B$	$\sim A \wedge B$	$(A \lor \sim B) \land (\sim A \land B$
Т	Т	F	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
Т	\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	Т	F	Т	\mathbf{F}	Т	\mathbf{F}
\mathbf{F}	F	Т	Т	Т	\mathbf{F}	\mathbf{F}

Since the last column contains only "F"s, $(A \lor \sim B) \land (\sim A \land B)$ is a contradiction.

(b) We have the following truth table:

A	B	$\sim A$	$\sim B$	$A \implies \sim B$	$(A \implies \sim B) \implies \sim A$
Т	Т	F	\mathbf{F}	\mathbf{F}	Т
Т	\mathbf{F}	F	Т	Т	\mathbf{F}
\mathbf{F}	Т	Т	\mathbf{F}	Т	Т
\mathbf{F}	\mathbf{F}	Т	Т	Т	Т

Since the last column contains both "T" and "F", $(A \implies \sim B) \implies \sim A$ is neither a tautology nor a contradiction.

(c) We have the following truth table:

A	B	$\sim B$	$\sim A$	$\sim A \implies B$	$\sim B \wedge A$	$(\sim A \implies B) \implies (\sim B \land A)$
Т	Т	F	\mathbf{F}	Т	F	F
Т	\mathbf{F}	Т	\mathbf{F}	Т	Т	Т
\mathbf{F}	Т	\mathbf{F}	Т	Т	\mathbf{F}	F
\mathbf{F}	\mathbf{F}	Т	Т	\mathbf{F}	F	\mathbf{F}

Since the last column contains both "T" and "F", $(A \implies \sim B) \implies (\sim B \implies A)$ is neither a tautology nor a contradiction.

(d) We have the following truth table:

A	B	$\sim A$	$\sim B$	$B \lor \sim B$	$(\sim A) \land (B \lor \sim B)$	$(\sim A) \iff (\sim A) \land (B \lor \sim B)$
Т	Т	F	F	Т	\mathbf{F}	Т
Т	\mathbf{F}	\mathbf{F}	Т	Т	\mathbf{F}	Т
\mathbf{F}	Т	Т	\mathbf{F}	Т	Т	Т
\mathbf{F}	\mathbf{F}	Т	Т	Т	Т	Т

Since the last column contains only "T"s, $(\sim A) \iff (\sim A) \lor (\sim B \land B)$ is a tautology.

- **3.** (a) (**3 marks**) The negation of A(n) is "n = 3q 1 or n = 3q 2 for some $q \in \mathbb{Z}$ and $n^2 \neq 3k + 1$ for all $k \in \mathbb{Z}$."
 - (b) (4 marks) The contrapositive of A(n) is "if $n^2 \neq 3k + 1$ for all $k \in \mathbb{Z}$, then $n \neq 3q 1$ and $n \neq 3q 2$ for any $q \in \mathbb{Z}$."
 - (c) (3 marks) The converse of A(n) is "if $n^2 = 3k+1$ for some $k \in \mathbb{Z}$, then n = 3q-1 or n = 3q-2 for some $q \in \mathbb{Z}$."
 - (d) (5 marks) Suppose n = 3q 1 or n = 3q 2 for some $q \in \mathbb{Z}$. If n = 3q 1, then $n^2 = 9q^2 6q + 1 = 3(3q^2 2q) + 1 = 3k + 1$ with $k = (3q^2 2q) \in \mathbb{Z}$. If n = 3q - 2, then $n^2 = 9q^2 - 12q + 4 = 3(3q^2 - 4q + 1) + 1 = 3k + 1$ with $k = (3q^2 - 4q + 1) \in \mathbb{Z}$. Thus $n^2 = 3k + 1$ for some $k \in \mathbb{Z}$.
 - (e) (3 marks) By (d), A(n) is true for all $n \in \mathbb{Z}$, so A(n) is true for all $n \in \mathbb{N}$. The contrapositive of A(n) is true for all $n \in \mathbb{N}$ because A(n) is true for all $n \in \mathbb{N}$ and the contrapositive of A(n) is equivalent to A(n).
 - (f) (5 marks) Suppose, for a contradiction that $n^2 = 3k + 1$ for some $k \in \mathbb{Z}$ but $n \neq 3q 1$ and $n \neq 3q 2$ for any $q \in \mathbb{Z}$. Then n = 3q for some $q \in \mathbb{Z}$ and $n^2 = 9q^2 = 3k + 1$, so that $3 \mid 3(3q^2 k) = 9q^2 3k = 1$. A contradiction.

4. (5 marks each)

(a) Suppose $A \subseteq B$. Then $a \in A \implies a \in B$, so

$$\begin{array}{rcl} (a,c)\in A\times C & \Longleftrightarrow & (a\in A)\wedge(c\in C)\\ & \Longrightarrow & (a\in B)\wedge(c\in C)\\ & \Leftrightarrow & (a,c)\in B\times C. \end{array}$$

Thus $(a, c) \in A \times C \implies (a, c) \in B \times C$, i.e. $A \times C \subseteq B \times C$. Conversely, suppose $A \times C \subseteq B \times C$, so that $(a, c) \in A \times C \implies (a, c) \in B \times C$. Since $C \neq \emptyset$, it follows that there is an element $c \in C$. If $a \in A$, then $(a, c) \in A \times C$ and so $(a, c) \in B \times C$ as $A \times C \subseteq B \times C$. Thus $a \in B$ (and $c \in C$) and so $a \in A \implies a \in B$, i.e. $A \subseteq B$.

(b)

$$\begin{array}{ll} (a,b)\in A\times (B\cap C) & \iff & (a\in A)\wedge (b\in (B\cap C)) \\ & \iff & (a\in A)\wedge ((b\in B)\wedge (b\in C)) \\ & \iff & ((a\in A)\wedge (b\in B))\wedge ((a\in A)\wedge (b\in C)) \\ & \iff & ((a,b)\in A\times B)\wedge ((a,b)\in A\times C) \\ & \iff & (a,b)\in (A\times B)\cap (A\times C), \end{array}$$

so $(a,b) \in A \times (B \cap C) \iff (a,b) \in (A \times B) \cap (A \times C)$, and hence $A \times (B \cap C) = (A \times B) \cap (A \times C)$. (c)

$$\begin{array}{ll} (a,b) \in (A \times B) \cap (C \times D) & \iff & ((a,b) \in A \times B) \wedge ((a,b) \in C \times D) \\ & \iff & ((a \in A) \wedge (b \in B)) \wedge ((a \in C) \wedge (b \in D)) \\ & \iff & ((a \in A) \wedge (a \in C)) \wedge ((b \in B) \wedge (b \in D)) \\ & \iff & ((a \in A \cap C) \wedge (b \in B \cap D)) \\ & \iff & (a,b) \in (A \cap C) \times (B \cap D), \end{array}$$

so $(a,b) \in (A \times B) \cap (C \times D) \iff (a,b) \in (A \cap C) \times (B \cap D)$, and hence $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

(d)

$$\begin{array}{ll} (a,b) \in (A \times B) \cup (C \times D) & \iff & ((a,b) \in A \times B) \vee ((a,b) \in C \times D) \\ & \iff & ((a \in A) \wedge (b \in B)) \vee ((a \in C) \wedge (b \in D)) \\ & \implies & ((a \in A) \vee (a \in C)) \wedge ((b \in B) \vee (b \in D)) \\ & \iff & ((a \in A \cup C) \wedge (b \in B \cup D)) \\ & \iff & (a,b) \in (A \cup C) \times (B \cup D), \end{array}$$

so $(a,b) \in (A \times B) \cap (C \times D) \implies (a,b) \in (A \cup C) \times (B \cup D)$, and hence $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. To show that $(A \times B) \cap (C \times D) \neq (A \cap C) \times (B \cap D)$ in general, we give an example.

Let $A = \{1\} = D$ and $B = C = \emptyset$. Then $A \times B = C \times D = \emptyset$ and so $(A \times B) \cup (C \times D) = \emptyset$. But $A \cup C = B \cup D = \{1\}$, so $(A \cup C) \times (B \cup D) = \{(1,1)\} \neq \emptyset$.

5. (3 marks each)

(a)

 $\mathcal{P}(Y) = \{\emptyset, \{a\}, \{b\}, \{9\}, \{a, b\}, \{a, 9\}, \{b, 9\}, \{a, b, 9\}\},\$ $X \cap Y = \{9\}, \text{ and } \mathcal{P}(X \cap Y) = \{\emptyset, \{9\}\}.$

(b) $X \cup Y = \{1, 9, a, b\}$, and

$$\begin{split} \mathcal{P}(X\cup Y) &= \{ \emptyset, \{1\}, \{9\}, \{a\}, \{b\}, \{1,9\}, \{1,a\}, \{1,b\}, \{9,a\}, \\ & \{9,B\}, \{a,b\}, \{1,9,a\}, \{1,9,b\}, \{1,a,b\}, \{9,a,b\}, \{1,5,9,a,b\} \}. \end{split}$$

- 6. (a) (2 marks) $S = \{1, 2, 3, 4\} \in \mathcal{P}(A)$ and the number of elements of S is 4.
 - (b) (3 marks) $S = \{\emptyset, \{1\}, \{3\}, A\} \subseteq \mathcal{P}(A)$ and the number of elements of S is 4.
 - (c) (4 marks) Let $S = \{\emptyset, \{1\}, \{3\}, \{1,3,5\}\}$ and $B = \{1,3,5\}$. Then $B \in S, S \subseteq \mathcal{P}(A), B$ has 3 elements and S has 4 elements.