1. (2 marks each)

- $M(x) = "x$ is a multiple of 4", then the statement (a) can be translated as $(\forall n \in \mathbb{Z}) (E(n) \implies M(n))$
- (b) "If n is a prime number then n^2 is not even" is a statement, which can be translated as $(\forall n \in \mathbb{Z})(P(n) \implies e \cdot F(n^2))$ where $P(n) = "n$ is a prime number" $(\forall n \in \mathbb{Z}) (P(n) \implies \sim E(n^2))$, where $P(x) = x$ is a prime number".
- (c) " x^2 is positive" is a predicate (with x a free variable), which can be translated as $W(x)$, where $W(x) = "x$ is positive".
- (d) "Find an even number" is neither a statement nor a predicate. It is a command.
- (d) \mathbb{F} is neither a statement number is neither a statement nor a predicate. It is a community is a community of \mathbb{F} . (e) "For any integer *n* there is an even number *m* such that $m + n = -n$ " is a statement, which
can be translated as $(\forall n \in \mathbb{Z})(\exists m \in \mathbb{Z})(F(m) \land S(m,n))$ where $S(x,u) = "x + u = u"$ " can be translated as $(\forall n \in \mathbb{Z})(\exists m \in \mathbb{Z})(E(m) \wedge S(m,n))$, where $S(x,y) = "x + y = -y$ ".

2. (3 marks each)

 $\left(x\right)$ We have the following truth table:

Since the last column contains only "F"s, $(A \vee \sim B) \wedge (\sim A \wedge B)$ is a contradiction.

(b) We have the following truth table:

Since the last column contains both "T" and "F", $(A \implies \sim B) \implies \sim A$ is neither a tautology nor a contradiction.

tautology nor a contradiction. (c) we have the following truth table

Since the last column contains both "T" and "F", $(A \implies \sim B) \implies (\sim B \implies A)$ is neither a tautology nor a contradiction.

Since the last column contains only "T"s, $(\sim A) \iff (\sim A) \lor (\sim B \land B)$ is a tautology.

- 3. (a) (3 marks) The negation of $A(n)$ is " $n = 3q 1$ or $n = 3q 2$ for some $q \in \mathbb{Z}$ and $n^2 \neq 3k + 1$ for all $k \in \mathbb{Z}$."
	- (b) (4 marks) The contrapositive of $A(n)$ is "if $n^2 \neq 3k + 1$ for all $k \in \mathbb{Z}$, then $n \neq 3q 1$ and $n \neq 3q - 2$ for any $q \in \mathbb{Z}$."
	- (c) (3 marks) The converse of $A(n)$ is "if $n^2 = 3k+1$ for some $k \in \mathbb{Z}$, then $n = 3q-1$ or $n = 3q-2$ for some $q \in \mathbb{Z}$."
	- (d) (5 marks) Suppose $n = 3q 1$ or $n = 3q 2$ for some $q \in \mathbb{Z}$. If $n = 3q 1$, then $n^2 =$ $9q^{2} - 6q + 1 = 3(3q^{2} - 2q) + 1 = 3k + 1$ with $k = (3q^{2} - 2q) \in \mathbb{Z}$. If $n = 3q - 2$, then $n^2 = 9q^2 - 12q + 4 = 3(3q^2 - 4q + 1) + 1 = 3k + 1$ with $k = (3q^2 - 4q + 1) \in \mathbb{Z}$. Thus $n^2 = 3k + 1$ for some $k \in \mathbb{Z}$.
	- (e) (3 marks) By (d), $A(n)$ is true for all $n \in \mathbb{Z}$, so $A(n)$ is true for all $n \in \mathbb{N}$. The contrapositive of $A(n)$ is true for all $n \in \mathbb{N}$ because $A(n)$ is true for all $n \in \mathbb{N}$ and the contrapositive of $A(n)$ is equivalent to $A(n)$.
	- (f) (5 marks) Suppose, for a contradiction that $n^2 = 3k + 1$ for some $k \in \mathbb{Z}$ but $n \neq 3q 1$ and $n^2 + 3q 2$ for any $q \in \mathbb{Z}$. Then $n = 3q$ for some $q \in \mathbb{Z}$ and $n^2 = 9q^2 3k + 1$, so that $n \neq 3q - 2$ for any $q \in \mathbb{Z}$. Then $n = 3q$ for some $q \in \mathbb{Z}$ and $n^2 = 9q^2 = 3k + 1$, so that $3 | 3(3q^2 - k) = 9q^2 - 3k = 1$. A contradiction.

4. (5 marks each)

(a) Suppose $A \subseteq B$. Then $a \in A \implies a \in B$, so

$$
(a, c) \in A \times C \iff (a \in A) \land (c \in C)
$$

$$
\implies (a \in B) \land (c \in C)
$$

$$
\iff (a, c) \in B \times C.
$$

Thus $(a, c) \in A \times C \implies (a, c) \in B \times C$, i.e. $A \times C \subseteq B \times C$. Conversely, suppose $A \times C \subseteq B \times C$, so that $(a, c) \in A \times C \implies (a, c) \in B \times C$. Since $C \neq \emptyset$, it follows that there is an element $c \in C$. If $a \in A$, then $(a, c) \in A \times C$ and so $(a, c) \in B \times C$ as $A \times C \subseteq B \times C$. Thus $a \in B$ (and $c \in C$) and so $a \in A \implies a \in B$, i.e. $A \subseteq B$.

 $\sum_{i=1}^{n}$

$$
(a,b) \in A \times (B \cap C) \iff (a \in A) \land (b \in (B \cap C))
$$

\n
$$
\iff (a \in A) \land ((b \in B) \land (b \in C))
$$

\n
$$
\iff ((a \in A) \land (b \in B)) \land ((a \in A) \land (b \in C))
$$

\n
$$
\iff ((a,b) \in A \times B) \land ((a,b) \in A \times C)
$$

\n
$$
\iff (a,b) \in (A \times B) \cap (A \times C),
$$

so
$$
(a, b) \in A \times (B \cap C) \iff (a, b) \in (A \times B) \cap (A \times C)
$$
, and hence $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
(c)

$$
(a,b) \in (A \times B) \cap (C \times D) \iff ((a,b) \in A \times B) \land ((a,b) \in C \times D)
$$

\n
$$
\iff ((a \in A) \land (b \in B)) \land ((a \in C) \land (b \in D))
$$

\n
$$
\iff ((a \in A) \land (a \in C)) \land ((b \in B) \land (b \in D))
$$

\n
$$
\iff ((a \in A \cap C) \land (b \in B \cap D))
$$

\n
$$
\iff (a,b) \in (A \cap C) \times (B \cap D),
$$

so $(a, b) \in (A \times B) \cap (C \times D) \iff (a, b) \in (A \cap C) \times (B \cap D)$, and hence $(A \times B) \cap (C \times D) =$ $(A \cap C) \times (B \cap D).$

(d)

$$
(a,b) \in (A \times B) \cup (C \times D) \iff ((a,b) \in A \times B) \vee ((a,b) \in C \times D)
$$

$$
\iff ((a \in A) \land (b \in B)) \vee ((a \in C) \land (b \in D))
$$

$$
\implies ((a \in A) \lor (a \in C)) \land ((b \in B) \lor (b \in D))
$$

$$
\iff ((a \in A \cup C) \land (b \in B \cup D))
$$

$$
\iff (a,b) \in (A \cup C) \times (B \cup D),
$$

so $(a, b) \in (A \times B) \cap (C \times D) \implies (a, b) \in (A \cup C) \times (B \cup D)$, and hence $(A \times B) \cap (C \times D) \subseteq$ $(A \cap C) \times (B \cap D).$

To show that $(A \times B) \cap (C \times D) \neq (A \cap C) \times (B \cap D)$ in general, we give an example. Let $A = \{1\} = D$ and $B = C = \emptyset$. Then $A \times B = C \times D = \emptyset$ and so $(A \times B) \cup (C \times D) = \emptyset$. But $A \cup C = B \cup D = \{1\}$, so $(A \cup C) \times (B \cup D) = \{(1, 1)\} \neq \emptyset$.

5. (3 marks each)

(a)

$$
\mathcal{P}(Y) = \{\emptyset, \{a\}, \{b\}, \{9\}, \{a, b\}, \{a, 9\}, \{b, 9\}, \{a, b, 9\}\},
$$

$$
X \cap Y = \{9\}, \text{ and } \mathcal{P}(X \cap Y) = \{\emptyset, \{9\}\}.
$$

(b)
$$
X \cup Y = \{1, 9, a, b\}
$$
, and

$$
\mathcal{P}(X \cup Y) = \{ \emptyset, \{1\}, \{9\}, \{a\}, \{1,9\}, \{1,a\}, \{1,b\}, \{9,a\}, \{9,a\}, \{9,a\}, \{9,B\}, \{a,b\}, \{1,9,a\}, \{1,9,b\}, \{1,a,b\}, \{9,a,b\}, \{1,5,9,a,b\} \}.
$$

- 6. (a) (2 marks) $S = \{1, 2, 3, 4\} \in \mathcal{P}(A)$ and the number of elements of S is 4.
	- (b) (3 marks) $S = \{\emptyset, \{1\}, \{3\}, A\} \subseteq \mathcal{P}(A)$ and the number of elements of S is 4.
	- (c) (4 marks) Let $S = \{\emptyset, \{1\}, \{3\}, \{1, 3, 5\}\}\$ and $B = \{1, 3, 5\}\$. Then $B \in S$, $S \subseteq \mathcal{P}(A)$, B has 3 elements and S has 4 elements.