$\overline{\text{MATHS}}$ 255

1. (a) Suppose $\epsilon > 0$. If |x| < 1, then $|x^2| = |x|^2 \le |x|$ and $|x^3| \le |x|$. Let $\delta = \min\{1, \epsilon\}$. If $x \ge 0$, then

 $|f(x) - f(0)| = |x^2| \le |x| < \epsilon \qquad \text{whenever } |x| < \delta.$

If x < 0, then

 $|f(x) - f(0)| = |x^3| \le |x| < \epsilon$ whenever $|x| < \delta$.

It follows that f(x) is continuous at 0.

(b) Take $\epsilon = 1$ and let $\delta_1 > 0$ be a real number such that

$$|(x+2)-3| < \epsilon$$
 whenever $|x-1| < \delta_1$.

Then for any x with $0 < x - 1 < \delta_1$,

$$|f(x) - f(1)| = |(x+2) - 3 + 3 - f(1)| \ge ||x-1| - 2| \ge 2 - |x-1| \ge 2 - \epsilon = \epsilon.$$

It follows that f(x) is not continuous at 1.

2. f is continous at $0 \iff (\forall \epsilon > 0)(\exists \delta_1 > 0)(\forall |y - 0| < \delta_1)$ $|f(y) - f(0)| < \epsilon.$

Suppose $|x| < \delta_2 := \sqrt{\delta_1/3}$, so that $|3x^2| < \delta_1$. Let $\delta := \min\{\delta_1, \delta_2\}$. If $|x| < \delta$, then $|3x^2 - 0| < \delta_1$ and so

$$|f(3x^2) - f(0)| < \epsilon.$$

3. (a) Let $a \in \mathbb{R}$ and b = f(a). f is continous at $b \iff (\forall \epsilon > 0)(\exists \delta_1 > 0)(\forall |y - b| < \delta_1)(|f(y) - f(b)| < \epsilon)$. Similarly, since $\delta_1 > 0$, g is continous at $a \implies (\exists \delta > 0)(\forall |x - a| < \delta)(|g(x) - g(a)| < \delta_1)$. Thus if $|x - a| < \delta$, then $|y - b| < \delta_1$ with y = f(x) and so

$$|f(y) - f(b)| = |f(g(x)) - f(g(a))| < \epsilon.$$

(b) For $\epsilon > 0$, suppose |x - 1| < 1. Then

$$|f(x) - f(1)| = |x^3 - 1| = |(x - 1)(x^2 + x + 1)| \le |x - 1||x^2 + |x| + 1|.$$

Now $|x| \le |x-1| + 1 < 2$, so

$$|f(x) - f(1)| = |x^3 - 1| < |x - 1||4 + 2 + 1| = 7|x - 1|.$$

Suppose $|x-1| < \delta_2 := \frac{\epsilon}{7}$ and set $\delta := \min\{1, \delta_2\}$. If $|x-1| < \delta$, then

$$|f(x) - f(1)| = |x^3 - 1| < 7|x - 1| < 7\delta_2 = \epsilon.$$

Thus f is continous at 1.

Note that f(-1) = -1. Take $\epsilon = 1$ and let $\delta_1 > 0$ be a real number such that

 $|3x+3| < \epsilon$ whenever $|x+1| < \delta_1$.

Then for any x with $0 < x + 1 < \delta_1$,

$$|f(x) - f(-1)| = |3x + 1| = |3x + 3 - 2| \ge ||3x + 3| - 2| \ge 2 - |3x + 3| \ge 2 - \epsilon = \epsilon.$$

It follows that f(x) is not continuous at -1.