1. (Final Exam 2004FS) Let f be a function from \mathbb{R} to itself defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \le 0, \\ x^3 & \text{if } 0 < x \le 1, \\ x+2 & \text{if } 1 < x. \end{cases}$$

- (a) Prove from the first principles that f(x) is continuous at 0.
- (b) Prove from the first principles that f(x) is *not* continuous at 1.
- **2.** Let f(x) be a continuus function from \mathbb{R} to itself. Proof from the first principles that $g(x) := f(3x^2)$ is continuus at x = 0.

3. (Final Exam 2004SS)

- (a) Use first principles to show that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous, then $f \circ g$ is continuous.
- (b) Use first principles to show that $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^3 & \text{if } x \ge -1, \\ 3x & \text{if } x < -1 \end{cases}$$

is continuous at 1, but not at -1.