MATHS 255Regular Tutorial 5May 18, 2

- **1.** (Finite subgroup test) Let (G, *) be a group and H a non-empty finite subset of G. Suppose $x * y \in H$ for any $x, y \in H$.
 - (a) For any $x \in H$, there are positive integers m, n such that $n \neq m$ and $x^n = x^m$.
 - (b) Show that $H \leq G$.
- **2.** Let G be a group.
 - (a) Suppose L and K are subgroup of G. Show that $L \cap K$ is a subgroup of G.
 - (b) Let $L \leq G$ and $K \leq L$. Show that $K \leq G$.
 - (c) Let H be a subgroup of G and $x \in G$. Show that the left coset x * H is a subgroup of G if and only if x * H = H.
- **3.** Let $GL_2(\mathbb{R})$ be all invertible 2×2 real matrices and det the determinant of matrix.
 - (a) Show that $\operatorname{GL}_2(\mathbb{R})$ is a group under matrix multiplication.
 - (b) Show det is a group homomorphism from $GL_2(\mathbb{R})$ to R^* , where $R^* = \mathbb{R} \setminus \{0\}$ is the group under multiplication.
 - (c) Show det is not a group isomorphism.
 - (d) Let $SL_2(\mathbb{R}) = \{X \in GL_2(\mathbb{R}) : det(X) = 1\}$. Show that $SL_2(\mathbb{R}) \le GL_2(\mathbb{R})$.