MATHS 255 Regular Tutorial 3 April 13, 200	
--	--

- **1.** Let A and B be finite nonempty sets such that $|A| = |B| < \infty$, and let $f : A \to B$ be a function. Show that f is one-to-one if and only if f is onto.
- **2.** Let $A = \{x \in \mathbb{R} : x \neq 1\}, B = \{x \in \mathbb{R} : x \neq 2\}$ and define $f : A \to B$ by $f(x) = \frac{2x}{x-1}$.
 - (a) Show that f is one-to-one and onto.
 - (b) Determine the inverse f^{-1} of f.
 - (c) Determine $f \circ f^{-1} \circ f$.
- **3.** Let $f: A \to B$ and $g: B \to C$ be functions. Show that if $g \circ f$ is onto and g is one-to-one then f is onto.
- **4.** Let $f : A \to B$ be a function. Define a new function $F : \mathcal{P}(A) \to \mathcal{P}(B)$ by declaring that, for $S \subseteq A$,

$$F(S) = \{ f(a) : a \in S \}.$$

- (a) Show that F is one-to-one if and only if f is one-to-one.
- (b) Show that F is onto if and only if f is onto.
- **5.** Let $A = \{1 \frac{1}{2^n} : n \in \mathbb{N}\}$ and view A as a totally ordered set under the usual ordering on \mathbb{R} . Show $A \simeq \mathbb{N}$ as posets.