MATHS 255

Solutions to Regular Tutorial 2

1. For $n \in \mathbb{N}$, let P_n be the statement

"5 |
$$(n^5 - n)$$
".

Base case: When n = 1, $1^5 - 1 = 0 = 5 \cdot 0$. Thus P_1 is true.

Inductive step: For $k \in \mathbb{N}$ suppose P_k is true, that is, $5 \mid (n^5 - n)$, which is equivalent to $5c = k^5 - k$ for some $c \in \mathbb{N} \iff k^5 = 5c + k$ for some $c \in \mathbb{N}$.

Want to show that P_{k+1} is true, i.e. $5 | ((k+1)^5 - (k+1))$. Now

$$(k+1)^5 - (k+1) = k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 - (k+1) = 5c + k + 5k^4 + 10k^3 + 10k^2 + 5k + 1 - k - 1 = 5(c + k^4 + 2k^3 + 2k^2 + k).$$

Thus P_{k+1} is true and by induction, P_n is true for all $n \in \mathbb{N}$.

2. $x_1 = 1, x_2 = 4, x_3 = 2x_2 - x_1 + 2 = 8 - 1 + 2 = 9, x_4 = 2x_3 - x_2 + 2 = 18 - 4 + 2 = 16$ and $x_5 = 2x_4 - x_3 + 2 = 32 - 9 + 2 = 25$. We conjecture that $x_n = n^2$.

For $n \in \mathbb{N}$, let P_n be the statement $x_n = n^2$.

Base case: $x_1 = 1 = 1^2$ and $x_2 = 4 = 2^2$, so that $x_n = n^2$ for n = 1 and n = 2.

Inductive step: Let $k \in \mathbb{N}$ with $k \geq 2$ and suppose P_i is true for all $1 \leq i \leq k$, that is, $x_i = i^2$ for all $1 \leq i \leq k$.

Want to show that P_{k+1} is true, that is, $x_{k+1} = (k+1)^2$. Since $k+1 \ge 3$,

$$x_{k+1} = 2x_k - x_{k-1} + 2$$

= $2k^2 - (k-1)^2 + 2$ as $x_i = i^2$
= $2k^2 - (k^2 - 2k + 1) + 2$
= $k^2 + 2k + 1$
= $(k+1)^2$,

that is, $x_{k+1} = (k+1)^2$. Thus P_{k+1} is true and by complete induction, P_n is true for all $n \in \mathbb{N}$, that is $x_n = n^2$.

3. For $n \in \mathbb{N}$ with $n \geq 2$, let P_n be the statement that

$$(A_1 \cap A_2 \cap \ldots \cap A_n)_U^C = (A_1)_U^C \cup (A_2)_U^C \cup \ldots \cup (A_n)_U^C.$$

Base case: When n = 2, P_2 is the statement $(A_1 \cap A_2)_U^C = (A_1)_U^C \cup (A_2)_U^C$. Now

$$x \in (A_1 \cap A_2)_U^C \iff (x \in U) \land (x \notin (A_1 \cap A_2))$$

$$\iff (x \in U) \land (x \notin A_1 \lor x \notin A_2)$$

$$\iff (x \in U \land x \notin A_1) \lor (x \in U \land x \notin A_2)$$

$$\iff x \in (A_1)_U^C \lor x \in (A_2)_U^C$$

$$\iff x \in (A_1)_U^C \cup (A_2)_U^C,$$

that is, $(A_1 \cap A_2)_U^C = (A_1)_U^C \cup (A_2)_U^C$ and P_2 is true. Inductive step: Let $k \in \mathbb{N}$ with $k \geq 2$ and suppose P_k is true, that is,

$$(A_1 \cap A_2 \cap \ldots \cap A_k)_U^C = (A_1)_U^C \cup (A_2)_U^C \cup \ldots \cup (A_k)_U^C.$$

If $T = A_1 \cap A_2 \cap \ldots \cap A_k$, then

$$(A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1})_{U}^{C} = (T \cap A_{k+1})_{U}^{C}$$

= $T_{U}^{C} \cup (A_{k+1})_{U}^{C}$
= $(A_{1} \cap \ldots \cap A_{k})_{U}^{C} \cup (A_{k+1})_{U}^{C}$
= $(A_{1})_{U}^{C} \cup \ldots \cup (A_{k})_{U}^{C} \cup (A_{k+1})_{U}^{C}$,

that is, P_{k+1} is true and by induction, P_n is true for all $n \in \mathbb{N}$.

4. For $n \in \mathbb{N}$, let P_n be the statement $(1+x)^n \ge 1 + nx$.

Base case: P_1 is true, because $(1+x)^1 = 1 + 1 \cdot x \ge 1 + 1 \cdot x$.

Inductive step: Let $k \in \mathbb{N}$ with $k \ge 2$ and suppose P_k is true, that is, $(1+x)^k \ge 1+kx$. Want to show that $(1+x)^{k+1} \ge (1+(k+1)x)$. Now

$$\begin{array}{rcl} (1+x)^{k+1} &=& (1+x)^k (1+x) \\ &\geq& (1+kx)(1+x) & \text{as} & (1+x)^k \geq 1+kx & \text{and} & (1+x) > 0 \\ &=& 1+kx+x+kx^2 \\ &\geq& 1+kx+x & \text{as} & kx^2 \geq 0 \\ &=& 1+(k+1)x, \end{array}$$

that is, $(1+x)^k \ge 1 + kx$. Thus P_{k+1} is true and by induction, P_n is true for all $n \in \mathbb{N}$, that is, $(1+x)^n > 1 + nx$.