$\frac{1}{\sqrt{2}}$ solutions to $\frac{1}{\sqrt{2}}$ solutions to $\frac{1}{\sqrt{2}}$ such $\frac{1}{\sqrt{2}}$

1. (a) We have the truth table

The columns for $A \iff B$ and $(A \implies B) \land (B \implies A)$ are identical. Therefore $A \iff B$
and $(A \longrightarrow B) \land (B \longrightarrow A)$ are logically equivalent that is $(A \leftrightarrow B) \leftrightarrow ((A \rightarrow$ and $(A \implies B) \land (B \implies A)$ are logically equivalent, that is, $(A \iff B) \iff ((A \implies B) \land (B \implies A))$ is a tautology B) \land (B \implies A)) is a tautology.
(b) We have the truth table

 $\sum_{i=1}^{n} x_i$

Since the column for \iff contains both "T" and "F", $(A \iff B) \iff ((A \Rightarrow$
B) $\land (B \rightarrow A))$ is notther a tautology per a contradiction $B) \wedge (B \implies A)$ is neither a tautology nor a contradiction.

2. (a) Suppose *n* is an integer. Let $F(n) := "(\exists q \in \mathbb{Z})(n = 4q + 1)'', G(n) := "(\exists q \in \mathbb{Z})(n = 4q + 2)''$ and $O(n) := "n$ is odd". Then

$$
A(n) = ((F(n) \vee G(n)) \implies O(n^2)).
$$

- (b) $\sim A(n) \iff ((F(n) \vee G(n)) \wedge E(n^2))$, so the negation of $A(n)$ is "there exists $q \in \mathbb{Z}$ such that $n = 4q + 1$ or $n = 4q + 3$ but $n²$ is even.
- (c) The converse of $A(n)$ is $(O(n^2) \implies (F(n) \vee G(n)))$, namely, if n^2 is odd then $n = 4q + 1$ or $4q + 3$ for some $q \in \mathbb{Z}$.
- (d) The contrapositive of $A(n)$ is $(\sim O(n^2) \implies \sim ((F(n) \vee G(n))) \iff (E(n^2) \implies (\forall q \in$ $\mathbb{Z}(n \neq 4q + 1) \wedge (\forall q \in \mathbb{Z})(n \neq 4q + 3)$, that is, if n^2 is even, then $n \neq 4q + 1$ and $n \neq 4q + 3$ for any $q \in \mathbb{Z}$.
- (e) Suppose $n = 4q + 1$ or $4q + 3$ for some $q \in \mathbb{Z}$. If $n = 4q + 1$, then $n^2 = (4q + 1)^2 = 16q^2 + 8q + 1 = 2(8q^2 + 4q) + 1$ and so n^2 is odd as $8q^2 + 4q$ is an integer.

If $n = 4q + 3$, then $n^2 = (4q + 3)^2 = 16q^2 + 24q + 9 = 2(8q^2 + 12q + 4) + 1$ and n^2 is also odd as $8q^2+12q+4$ is an integer. It follows that n^2 is odd.

- (f) The converse of $A(n)$ is that if n^2 is odd then $n = 4q + 1$ or $4q + 3$ for some $q \in \mathbb{Z}$. Suppose, for a contradiction that n^2 is odd but $n \neq 4q + 1$ or $n \neq 4q + 3$ for any $q \in \mathbb{Z}$. Then $n = 4\ell$ or $4\ell + 2$ for some integer $\ell \in \mathbb{Z}$, so that n is even. Thus n^2 is even and so n^2 is both even and odd, which is a contradiction. It follows that if n^2 is odd then $n = 4q + 1$ or $4q + 3$ for some $q \in \mathbb{Z}$.
- (g) The contrapositive of $A(n)$ is true, since it is equivalent to $A(n)$ and by (b) $A(n)$ is true for all $n \in \mathbb{Z}$.
- 3. (a) $\iff (\forall x, y, z \in \mathbb{Z}) (O(x + z) \implies (O(x + y) \land O(y + z))).$ So ~(a) $\iff (\exists x, y, z \in \mathbb{Z}) (O(x + z) \implies (O(x + y) \land O(y + z))).$ \mathbb{Z})($O(x + z) \wedge (E(x + y) \vee E(y + z))$).
(1) Take $x = 1$, $y = 2$ and $z = 2$.
	-
	- (2) $x + z = 3$ is odd and $y + z = 4$ is even.

Thus $x = 1$, $y = 2$ and $z = 2$ is a counterexample to the statement (a).

Thus $x = 1, y = 2$ and $x = 2$ is a counterexample to the statement. (a). (b) $\iff (\exists n \in \mathbb{Z}) E(n^3 + n + 1)$. So ~(a) $\iff (\forall n \in \mathbb{Z}) O(n^3 + n + 1)$, namely, $n^3 + n + 1$ is odd for any $n \in \mathbb{Z}$ odd for any $n \in \mathbb{Z}$.

Suppose *n* is an integer. If *n* is even, then $n = 2k$ for some $k \in \mathbb{Z}$ and so

$$
n^3 + n + 1 = 8k^3 + 2k + 1 = 2(4k^3 + k) + 1.
$$

Since $4k^3 + k \in \mathbb{Z}$, it follows that $n^3 + n + 1$ is odd. If *n* is odd, then $n = 2k + 1$ for some $k \in \mathbb{Z}$ and so

$$
n^3 + n + 1 = 8k^3 + 12k^2 + 6k + 1 + 2k + 1 + 1 = 2(4k^3 + 6k^2 + 4k + 1) + 1.
$$

Since $4k^3 + 6k^2 + 4k + 1 \in \mathbb{Z}$, it follows that $n^3 + n + 1$ is odd. Thus $n^3 + n + 1$ is odd for any $n \in \mathbb{Z}$.

- (c) $\iff (\forall a, c \in \mathbb{Z}) (P(a) \land P(c) \implies (\exists b \in \mathbb{Z}) (P(b) \land S(a, b, c))$, where $P(x) := "x > 0"$ and $S(x, y, z) := "x + y = z''.$ So ∼(c) $\iff (\exists a, c \in \mathbb{Z}) (P(a) \land P(c) \land (\forall b \in \mathbb{Z}) (\sim P(b) \lor \exists c \in \mathbb{Z})$ $\sim S(a, b, c))$.
(1) Take $a = 2$ and $c = 1$.
	-

(a) $> 0.1.2$ and ~ 0.5 (2) $a > 0$ and $c > 0$. For any $b \in \mathbb{Z}$ either $a + b \neq c$ or $a + b = c$ but $b = c - a = 1 - 2 < 0$,
that is $(\forall b \in \mathbb{Z})(\infty P(b) \lor \in S(a, b, c))$ that is, $(\forall b \in \mathbb{Z})(\sim P(b) \vee \sim S(a, b, c)).$
Thus $a = 2$ and $c = 1$ is a counterexample to the statement (c).

 Γ and counterexample to the statement of Γ