MATHS 255

Solutions to Regular Tutorial 1

1. (a) We have the truth table

A	В	$A \iff B$	$A \implies B$	$B \implies A$	$(A \implies B) \land (B \implies A)$
Т	Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}
\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	Т	Т	Т	Т

The columns for $A \iff B$ and $(A \implies B) \land (B \implies A)$ are identical. Therefore $A \iff B$ and $(A \implies B) \land (B \implies A)$ are logically equivalent, that is, $(A \iff B) \iff ((A \implies B) \land (B \implies A))$ is a tautology.

(b) We have the truth table

A	B	C	$A \lor B$	$B \vee C$	$A \implies (B \lor C)$	\iff	$(A \lor B) \implies C$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	\mathbf{F}	Т	Т	Т	F	F
Т	\mathbf{F}	Т	Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	Т	F	\mathbf{F}	Т	F
\mathbf{F}	Т	Т	Т	Т	Т	Т	Т
\mathbf{F}	Т	F	Т	Т	Т	F	F
\mathbf{F}	\mathbf{F}	Т	F	Т	Т	Т	Т
\mathbf{F}	F	F	F	F	Т	Т	Т

Since the column for \iff contains both "T" and "F", $(A \iff B) \iff ((A \implies B) \land (B \implies A))$ is neither a tautology nor a contradiction.

2. (a) Suppose n is an integer. Let $F(n) := (\exists q \in \mathbb{Z})(n = 4q + 1)'', G(n) := (\exists q \in \mathbb{Z})(n = 4q + 2)''$ and O(n) := n is odd". Then

$$A(n) = ((F(n) \lor G(n)) \implies O(n^2)).$$

- (b) $\sim A(n) \iff ((F(n) \lor G(n)) \land E(n^2))$, so the negation of A(n) is "there exists $q \in \mathbb{Z}$ such that n = 4q + 1 or n = 4q + 3 but n^2 is even.
- (c) The converse of A(n) is $(O(n^2) \implies (F(n) \lor G(n)))$, namely, if n^2 is odd then n = 4q + 1 or 4q + 3 for some $q \in \mathbb{Z}$.
- (d) The contrapositive of A(n) is $(\sim O(n^2) \implies \sim((F(n) \lor G(n))) \iff (E(n^2) \implies (\forall q \in \mathbb{Z})(n \neq 4q + 1) \land (\forall q \in \mathbb{Z})(n \neq 4q + 3))$, that is, if n^2 is even, then $n \neq 4q + 1$ and $n \neq 4q + 3$ for any $q \in \mathbb{Z}$.
- (e) Suppose n = 4q + 1 or 4q + 3 for some $q \in \mathbb{Z}$. If n = 4q + 1, then $n^2 = (4q + 1)^2 = 16q^2 + 8q + 1 = 2(8q^2 + 4q) + 1$ and so n^2 is odd as $8q^2 + 4q$ is an integer.

If n = 4q + 3, then $n^2 = (4q + 3)^2 = 16q^2 + 24q + 9 = 2(8q^2 + 12q + 4) + 1$ and n^2 is also odd as $8q^2 + 12q + 4$ is an integer. It follows that n^2 is odd.

- (f) The converse of A(n) is that if n^2 is odd then n = 4q + 1 or 4q + 3 for some $q \in \mathbb{Z}$. Suppose, for a contradiction that n^2 is odd but $n \neq 4q + 1$ or $n \neq 4q + 3$ for any $q \in \mathbb{Z}$. Then $n = 4\ell$ or $4\ell + 2$ for some integer $\ell \in \mathbb{Z}$, so that n is even. Thus n^2 is even and so n^2 is both even and odd, which is a contradiction. It follows that if n^2 is odd then n = 4q + 1 or 4q + 3 for some $q \in \mathbb{Z}$.
- (g) The contrapositive of A(n) is true, since it is equivalent to A(n) and by (b) A(n) is true for all $n \in \mathbb{Z}$.
- **3.** (a) $\iff (\forall x, y, z \in \mathbb{Z})(O(x+z) \implies (O(x+y) \land O(y+z))).$ So $\sim(a) \iff (\exists x, y, z \in \mathbb{Z})(O(x+z) \land (E(x+y) \lor E(y+z))).$
 - (1) Take x = 1, y = 2 and z = 2.
 - (2) x + z = 3 is odd and y + z = 4 is even.

Thus x = 1, y = 2 and z = 2 is a counterexample to the statement (a).

(b) $\iff (\exists n \in \mathbb{Z})E(n^3 + n + 1)$. So $\sim(a) \iff (\forall n \in \mathbb{Z})O(n^3 + n + 1)$, namely, $n^3 + n + 1$ is odd for any $n \in \mathbb{Z}$.

Suppose n is an integer. If n is even, then n = 2k for some $k \in \mathbb{Z}$ and so

$$n^{3} + n + 1 = 8k^{3} + 2k + 1 = 2(4k^{3} + k) + 1.$$

Since $4k^3 + k \in \mathbb{Z}$, it follows that $n^3 + n + 1$ is odd. If n is odd, then n = 2k + 1 for some $k \in \mathbb{Z}$ and so

$$n^{3} + n + 1 = 8k^{3} + 12k^{2} + 6k + 1 + 2k + 1 + 1 = 2(4k^{3} + 6k^{2} + 4k + 1) + 1.$$

Since $4k^3 + 6k^2 + 4k + 1 \in \mathbb{Z}$, it follows that $n^3 + n + 1$ is odd. Thus $n^3 + n + 1$ is odd for any $n \in \mathbb{Z}$.

- (c) $\iff (\forall a, c \in \mathbb{Z})(P(a) \land P(c) \implies (\exists b \in \mathbb{Z})(P(b) \land S(a, b, c))), \text{ where } P(x) := "x > 0"$ and S(x, y, z) := "x + y = z". So $\sim(c) \iff (\exists a, c \in \mathbb{Z})(P(a) \land P(c) \land (\forall b \in \mathbb{Z})(\sim P(b) \lor \sim S(a, b, c))).$
 - (1) Take a = 2 and c = 1.

(2) a > 0 and c > 0. For any $b \in \mathbb{Z}$ either $a + b \neq c$ or a + b = c but b = c - a = 1 - 2 < 0, that is, $(\forall b \in \mathbb{Z})(\sim P(b) \lor \sim S(a, b, c))$.

Thus a = 2 and c = 1 is a counterexample to the statement (c).