Regular Tutorial 1

- 1. Let A, B and C be statements. Construct truth tables for the following statements. For each statement, state whether it is a tautology, a contradiction or neither.
 - (a) $(A \iff B) \iff ((A \implies B) \land (B \implies A)).$
 - (b) $(A \implies (B \lor C)) \iff ((A \lor B) \implies C).$
- **2.** Suppose n is an integer. Let A(n) be the statement that if n = 4q + 1 or n = 4q + 3 for some integer q, then n^2 is odd.
 - (a) Translate A(n) into symbols.
 - (b) Write down the negation of A(n).
 - (c) Write down the converse of A(n).
 - (d) Write down the contrapositive of A(n).
 - (e) Use a direct proof to show that $(\forall n \in \mathbb{Z}) A(n)$.
 - (f) Use a proof by contradiction to show that the converse of A(n) is true for all $n \in \mathbb{Z}$.
 - (g) Determine whether or not the contrapositive of A(n) is true.
- 3. Translate the following statements into symbols and disprove each of them.
 - (a) For any integers $x, y, z \in \mathbb{Z}$, if x + z is odd, then x + y and y + z are both odd.
 - (b) There is an integer $n \in \mathbb{Z}$ such that $n^3 + n + 1$ is even.
 - (c) For every two positive integers $a, c \in \mathbb{Z}$, there exists a positive integer b such that a + b = c.