Collaborative Tutorial 5

May 25, 2005

- **1.** Prove from first principals that $\{\frac{3n+5}{2n+9}\}$ converges to $\frac{3}{2}$.
- **2.** Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences. Let $(c_m)_{m=1}^{\infty}$ be the sequence such that

$$c_m = \begin{cases} a_m & \text{if } m = 2k - 1, \\ b_m & \text{if } m = 2k. \end{cases}$$

Suppose that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

for some real number $a \in \mathbb{R}$. Prove from the first principles that $\lim_{m \to \infty} c_m = a$.

3. (Final Exam of 2004SS)

Let $(a_n)_{n=1}^{\infty}$ be the sequence such that $a_n = \frac{n^2}{2^n}$.

- (a) Show that (a_n) is monotonic decreasing when n > 3.
- (b) Show that (a_n) is bounded.
- (c) Find the greatest lower bound and the least upper bound of the set $\{a_n : n \in \mathbb{N}\}$ and determine whether or not either is an element of $\{a_n : n \in \mathbb{N}\}$.
- (d) Find the limit of the sequence.