MATHS 255 FSAnswers for Collaborative Tutorial 4May 11, 2005

1. (a) Note that in \mathbb{Z}_7 ,

Thus $3^{-1} = 5$ in \mathbb{Z}_7 , and

$$3x^{2} + 2 \xrightarrow{5x^{3}} +6x +3$$

$$3x^{2} + 2 \xrightarrow{7} x^{5} +3x^{3} +2x^{2} +x +4$$

$$4x^{3} +2x^{2} +x +4$$

$$4x^{3} +5x$$

$$2x^{2} -4x +4$$

$$2x^{2} -4x +4$$

$$2x^{2} +6$$

$$3x +5$$

So $q(x) = 5x^3 + 6x + 5$ and r(x) = 3x + 5.

(b) Use long division again

The algorithm gives us

from which we see that gcd(f(x), g(x)) = 1 and

$$1 = f(x)(6x+4) + g(x)(5x^4 + x^3 + 6x^2 + 3),$$

so that u(x) = 6x + 4 and $v(x) = 5x^4 + x^3 + 6x^2 + 3$.

2. (a) For all $a, b \in \mathbb{R}$

$$(1+a)(1+b) = 1 + a + b + ab = 1 + a * b.$$

If * is not a binary operation on A, then $a * b \notin A$ for some $a, b \in A$, so that a * b = -1, since $a * b \in \mathbb{R}$ and $A = \mathbb{R} \setminus \{-1\}$. Thus (1 + a)(1 + b) = 1 + a * b = 0 and a = -1 or b = -1. Contradiction.

For $a, b, c \in A$, ((1+a)(1+b))(1+c) = 1 + (a * b) * c and (1+a)((1+b)(1+c)) = 1 + a * (b * c). Since ((1+a)(1+b))(1+c) = (1+a)((1+b)(1+c)) in \mathbb{R} , it follows that (a * b) * c = a * (b * c).

(b) 0 is the identity of (A, *), since 0 * a = 0 + a + 0a = a = a * 0 for all $a \in A$. For $a \in A$, if b is its inverse, then $a * b = 0 \iff (1+a)(1+b) = 1 \iff b = \frac{-a}{1+a}$. Note that $b = \frac{-a}{1+a} \neq -1$, since (1+a)(1+b) = 1. Check $a * \frac{-a}{1+a} = \frac{-a}{1+a} * a = 0$, so $\frac{-a}{1+a}$ is the inverse of a. Thus (A, *) is a group.

Since a * b = a + b + ab = b * a for any $a, b \in G$, it follows that (A, *) is an abelian group.

- **3.** (a) $e * e^{-1} = e = e * e \implies e^{-1} = e$ by Cancellation low.
 - (b) $x * x^{-1} = e = x * x^{n-1} \implies x^{-1} = x^{n-1}$ by Cancellation low.