MATHS 255Collaborative Tutorial 4May 11,
--

1. Let f(x), g(x) and h(x) be polynomials in $\mathbb{Z}_{7}[x]$ defined by

 $f(x) = x^5 + 2x^2 + x + 4,$ $g(x) = 3x^2 + 2.$

Here for simple, we denote \bar{a} by a for $\bar{a} \in \mathbb{Z}_7$.

- (a) Find quotient q(x) and remainder r(x) when f(x) is divided by g(x).
- (b) Find the monic greatest common divisor d(x) of f(x) and g(x), and find polynomials u(x) and v(x) such that

$$d(x) = f(x)u(x) + g(x)v(x).$$

- **2.** Let $A = \mathbb{R} \setminus \{-1\}$ and let * be an operation on A defined by a * b = a + b + ab.
 - (a) Check (1 + a)(1 + b) = 1 + a * b for all $a, b \in A$. Hence show that * is an associative binary operation on A.
 - (b) Show (A, *) is an abelian group.
- **3.** Let G be a group with identity e and let $a \in G$.
 - (a) Show that $e^{-1} = e$.
 - (b) Let $a^n = a \cdot a \cdots a$ (*n* terms). If $x^n = e$ with $n \ge 2$, then show that $x^{-1} = x^{n-1}$.