1. (a) Write $\sim = \rho$. Reflexive: $(\forall X \in S)((x \in X) \implies (\exists x \in X)(x|x))$, that is, $X \sim X$. Not antisymmetric: Take $X = \{2, 4\}$ and $Y = \{2\}$. Then $X \sim Y$ and $Y \sim X$, but $X \neq Y$. Not symmetric: Take $X = \{2\}$ and $Y = \{2, 3\}$. Then $X \sim Y$, but $Y \not\sim X$ since $3 \in Y$ but $2 \mid /3$.

Transitive: $(X \sim Y) \land (Y \sim Z) \iff (\forall x \in X)(\exists y \in Y)(y|x) \land (\forall y \in Y)(\exists z \in Z)(z|y)$. If $x \in X$ and y|x for some $y \in Y$, then z|y for some $z \in Z$, so z|x. Thus $(\forall x \in X)(\exists z \in Z)(z|x)$, and so $X \sim Z$.

(b) Write $\sim = \rho$. Not reflexive: Take $x = 3 \in B$. Then $3 \sim 3 \iff 3t = 3$ for some $t \in B$, so that $t = 1 \notin B$. Contradiction.

Antisymmetric: If $x, y \in B$ with $x \sim y$ and $y \sim x$, then xt = y and ys = x for some $t, s \in B$. So x = tsx and ts = 1 for some $s, t \in B$, which is impossible. Thus $(x \sim y) \land (y \sim x)$ is always false and hence $(x \sim y) \land (y \sim x) \implies (x = x)$.

Not symmetric: Take x = 3 and y = 9. Then $3 \sim 9$ as $3 \cdot 3 = 9$ and $3 \in B$. But $9s \neq 3$ for any $s \in B$, so $9 \not\sim 3$.

Transitive: $(x \sim y) \land (y \sim z) \iff (\exists t \in B)(xt = y) \land (\exists s \in B)(ys = z) \implies (\exists ts \in B)(x(ts) = y) \iff x \sim z.$

- (c) Note that $\rho = \{(a, b) \in C \times C : a + b = 6\} = \{(2, 4), (4, 2)\}$. Thus ρ is not reflexive, not antisymmetric, symmetric and not transitive.
- (d) Note that $\rho = \{(a, b) \in D \times D : a + 2b = 6\} = \emptyset$. Thus ρ is not reflexive, antisymmetric, symmetric and transitive.
- 2. (a) For all $x \in S$, $(x, x) \in \rho$, so ρ is reflexive. For all $x, y \in S$, $(x, y) \in \rho \implies (y, x) \in \rho$, so ρ is symmetric. For all $x, y, z \in S$, $((x, y) \in \rho \land (y, z) \in \rho) \implies (x, z) \in \rho$, so ρ is transitive. $[1] = T_1 = \{1, 2, 3\}, [4] = T_4 = \{4, 5\}$ and $[6] = T_6 = \{6\}$.
 - (b) $S_i \neq \emptyset$ for each $i, S_i \cap S_j = \emptyset$ for $i \neq j$ and $S = S_1 \cup S_2 \cup S_3$. So $\{S_1, S_2, S_3\}$ is a partition.

 $\rho = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (3,4), (4,3), (3,6), (6,3)(4,6), (6,4)\}.$

3. (a) Reflexive: $(\forall x \in A)(3|x+2x=3x)$ so $x \sim x$. Symmetric: $x \sim y \iff 3|(x+2y) \iff (\exists a \in \mathbb{Z})(x+2y=3a)$. Thus y+2x = 3y+3x-(x+2y)=3(y+x-a) and 3|(y+2x), so $y \sim x$. Transitive: $(x \sim y) \land (y \sim z) \iff (\exists a \in \mathbb{Z})(x+2y=3a) \land (\exists b \in \mathbb{Z})(y+2z=3b)$. Thus x+2z = (x+2y)+(y+2z)-3y = 3(a+b-y), so 3|(x+2z) and $x \sim z$.

(b) $x \in [0] \iff 3|(x+2 \cdot 0) \iff x = 3t$ for some $t \in \mathbb{Z}, x \in [1] \iff 3|(x+2) \iff x = 3t-2 = 3(t-1)+1$ for some $t \in \mathbb{Z}$ and $x \in [2] \iff 3|(x+4) \iff x = 3t-4 = 3(4-2)+2$ for some $t \in \mathbb{Z}$. Thus $\mathbb{Z} = [0] \cup [1] \cup [2]$ and so [0], [1], [2] are all the distinct equivalence classes.