DEPARTMENT OF MATHEMATICS

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- **1.** (10 marks) Let $X = \{a, b, c, d\}$ be a set of four elements and define * by x * y = y for all $x, y \in X$.
 - (a) (3 marks) Show that * is a binary operation on X and construct its Cayley Table.
 - (b) (3 marks) Show that * is associative but non-commutative.
 - (c) (2 marks) Determine whether or not (X, *) has an identity.
 - (d) (2 marks) Determine whether or not (X, *) is a group.
- 2. (20 marks) Let $G = D_4$ be the group of symmetries of the square in the plane. The Cayley table is shown below

*	e	φ	π	ϕ	h	v	d	d'
e	e	φ	π	ϕ	h	v	d	d'
φ	φ	π	ϕ	e	d'	d	h	v
π	π	ϕ	e	φ	v	h	d'	d
ϕ	ϕ	e	φ	π	d	d'	v	h
h	h	d	v	d'	e	π	φ	ϕ
v	v	d'	h	d	π	e	ϕ	φ
d	d	v	d'	h	ϕ	φ	e	π
d'	d'	h	d	$egin{array}{c} \phi & & \ \phi & & \ e & arphi & \ arphi & \ arphi' & \ d' & \ d & \ h & \ v & \ \end{array}$	φ	ϕ	π	e

- (a) (3 marks) Show that D_4 is non-Abelian.
- (b) (4 marks) List the elements which are their own inverse.
- (c) (4 marks) Find two distinct subgroups of order 2.
- (d) (5 marks) Find two distinct subgroups of order 4.
- (e) (4 marks) Explain why there are no subgroups of G containing five elements.

3. (18 marks)

- (a) Let A be a non-empty bounded subset of \mathbb{R} , and $B = \{y \in \mathbb{R} : y = -x, \exists x \in A\}$.
 - (i) (**3 marks**) Show that *B* is bounded.
 - (ii) (5 marks) If L is the least upper bound of B, then show that -L is the greatest lower bound of B.
 - (iii) (5 marks) Suppose M is a lower bound of B, and suppose $(\forall \epsilon > 0)(\exists y \in B)(M \le y \le M + \epsilon)$. Show that M is the greatest lower bound of B.
- (b) (5 marks) Let X be a non-empty subset of \mathbb{R} which is bounded and $s \in \mathbb{R}$ with s > 0. Let $Y := \{y : y = sx, \exists x \in X\}$. Show that

glb
$$Y = s$$
 glb X .

- **4.** (10 marks) Suppose F is a field with finite number of elemenets. Write $nx = x + x + \ldots + x$ (n terms).
 - (a) (4 marks) Show that there is a positive integer m such that

$$m1_F = 0_F,$$

- (b) (3 marks) Suppose p is the smallest positive integer such that $p1_F = 0_F$. Show that p is prime. (The number p is called the *characteristic* of the field F).
- (c) (3 marks) Show that for every $x \in F$ $px = 0_F$, where p is given by (b) above.
- 5. (7 marks) Prove from the first principles that the sequence $\left\{\frac{2n+3}{5n-2}\right\}_{n=1}^{\infty}$ converges to $\frac{2}{5}$.
- 6. (15 marks) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers and define the sequence $\{c_n\}_{n=1}^{\infty}$ by

$$c_n = \begin{cases} a_n & \text{if } b_n \le a_n, \\ b_n & \text{if } a_n < b_n. \end{cases}$$

Suppose that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

for some real number $a \in \mathbb{R}$. Prove from the first principles that $\lim_{n \to \infty} c_n = a$.